An Amorphous Anode for Proton Battery
Corresponding Author: Li Li
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 24
Abstract
Developing advanced electrode materials is crucial for improving the electrochemical performances of proton batteries. Currently, the anodes are primarily crystalline materials which suffer from inferior cyclic stability and high electrode potential. Herein, we propose amorphous electrode materials for proton batteries by using a general ion-exchange protocol to introduce multivalent metal cations for activating the host material. Taking Al3+ as an example, theoretical and experimental analysis demonstrates electrostatic interaction between metal cations and lattice oxygen, which is the primary barrier for direct introduction of the multivalent cations, is effectively weakened through ion exchange between Al3+ and pre-intercalated K+. The as-prepared Al-MoOx anode therefore delivered a remarkable capacity and outstanding cycling stability that outperforms most of the state-of-the-art counterparts. The assembled full cell also achieved a high voltage of 1.37 V. This work opens up new opportunities for developing high-performance electrodes of proton batteries by introducing amorphous materials.
Highlights:
1 Amorphous MoOx with pre-insertion of Al3+ was prepared via ion-exchange protocol.
2 Al-MoOx anode had remarkable capacity and record-level cycling stability for proton battery.
3 The proton battery using Al-MoOx anode achieved a high voltage of 1.37 V.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4(7), 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
- H. Liu, X. Liu, S. Wang, H. Liu, L. Li, Transition metal based battery-type electrodes in hybrid supercapacitor: a review. Energy Storage Mater. 28, 122–145 (2020). https://doi.org/10.1016/j.ensm.2020.03.003
- J. Xie, Y.C. Lu, A retrospective on lithium-ion batteries. Nat. Commun. 11(1), 2499 (2020). https://doi.org/10.1038/s41467-020-16259-9
- Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin et al., Rechargeable batteries for grid scale energy storage. Chem. Rev. (2022). https://doi.org/10.1021/acs.chemrev.2c00289
- X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
- S. Yang, Y. Zhang, S. Wang, J. Shi, X. Liu et al., Rational construction of MoS2/Mo2N/C hierarchical porous tubular nanostructures for enhanced lithium storage. J. Mater. Chem. A 7, 23886–23894 (2019). https://doi.org/10.1039/C9TA04516C
- Y. Wang, H. Li, S. Chen, B. Zhai, S. Di et al., An ultralong-life SnS-based anode through phosphate-induced structural regulation for high-performance sodium ion batteries. Sci. Bull. 67(20), 2085–2095 (2022). https://doi.org/10.1016/j.scib.2022.09.021
- H. Ying, P. Huang, Z. Zhang, S. Zhang, Q. Han et al., Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-ion batteries. Nano-Micro Lett. 14, 180 (2022). https://doi.org/10.1007/s40820-022-00921-6
- S. Ye, X. Chen, R. Zhang, Y. Jiang, F. Huang et al., Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode. Nano-Micro Lett. 14, 187 (2022). https://doi.org/10.1007/s40820-022-00932-3
- H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 60(2), 598–616 (2021). https://doi.org/10.1002/anie.202004433
- D. Bin, F. Wang, A.G. Tamirat, L. Suo, Y. Wang et al., Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. 8(17), 1703008 (2018). https://doi.org/10.1002/aenm.201703008
- X. Wang, C. Bommier, Z. Jian, Z. Li, R.S. Chandrabose et al., Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode. Angew. Chem. Int. Ed. 56(11), 2909–2913 (2017). https://doi.org/10.1002/anie.201700148
- X. Wang, Y. Xie, K. Tang, C. Wang, C. Yan, Redox chemistry of molybdenum trioxide for ultrafast hydrogen-ion storage. Angew. Chem. Int. Ed. 57(36), 11569–11573 (2018). https://doi.org/10.1002/anie.201803664
- H. Jiang, J.J. Hong, X. Wu, T.W. Surta, Y. Qi et al., Insights on the proton insertion mechanism in the electrode of hexagonal tungsten oxide hydrate. J. Am. Chem. Soc. 140(37), 11556–11559 (2018). https://doi.org/10.1021/jacs.8b03959
- X. Wu, J.J. Hong, W. Shin, L. Ma, T. Liu et al., Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4(2), 123–130 (2019). https://doi.org/10.1038/s41560-018-0309-7
- Z. Zhu, W. Wang, Y. Yin, Y. Meng, Z. Liu et al., An ultrafast and ultra-low-temperature hydrogen gas-proton battery. J. Am. Chem. Soc. 143(48), 20302–20308 (2021). https://doi.org/10.1021/jacs.1c09529
- T. Xu, D. Wang, Z. Li, Z. Chen, J. Zhang et al., Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 14, 126 (2022). https://doi.org/10.1007/s40820-022-00864-y
- C. Geng, T. Sun, Z. Wang, J.M. Wu, Y.J. Gu et al., Surface-induced desolvation of hydronium ion enables anatase TiO2 as an efficient anode for proton batteries. Nano Lett. 21(16), 7021–7029 (2021). https://doi.org/10.1021/acs.nanolett.1c02421
- Y. Xu, X. Wu, X. Ji, The renaissance of proton batteries. Small Struct. 2(5), 2000113 (2021). https://doi.org/10.1002/sstr.202000113
- C. Dong, F. Xu, L. Chen, Z. Chen, Y. Cao, Design strategies for high-voltage aqueous batteries. Small Struct. 2(7), 2100001 (2021). https://doi.org/10.1002/sstr.202100001
- W. Chen, G. Li, A. Pei, Y. Li, L. Liao et al., A manganese-hydrogen battery with potential for grid-scale energy storage. Nat. Energy 3(5), 428–435 (2018). https://doi.org/10.1038/s41560-018-0147-7
- L. Yan, J. Huang, Z. Guo, X. Dong, Z. Wang et al., Solid-state proton battery operated at ultralow temperature. ACS Energy Lett. 5(2), 685–691 (2020). https://doi.org/10.1021/acsenergylett.0c00109
- H. Jiang, W. Shin, L. Ma, J.J. Hong, Z. Wei et al., A high-rate aqueous proton battery delivering power below -78 °C via an unfrozen phosphoric acid. Adv. Energy Mater. 10(28), 2000968 (2020). https://doi.org/10.1002/aenm.202000968
- R. Emanuelsson, M. Sterby, M. Stromme, M. Sjodin, An all-organic proton battery. J. Am. Chem. Soc. 139(13), 4828–4834 (2017). https://doi.org/10.1021/jacs.7b00159
- S. Wang, X. Zhao, X. Yan, Z. Xiao, C. Liu et al., Regulating fast anionic redox for high-voltage aqueous hydrogen-ion-based energy storage. Angew. Chem. Int. Ed. 58(1), 205–210 (2019). https://doi.org/10.1002/anie.201811220
- Z. Su, W. Ren, H. Guo, X. Peng, X. Chen et al., Ultrahigh areal capacity hydrogen-ion batteries with MoO3 loading over 90 mg cm−2. Adv. Funct. Mater. 30(46), 2005477 (2020). https://doi.org/10.1002/adfm.202005477
- Q. Li, Y. Xu, S. Zheng, X. Guo, H. Xue et al., Recent progress in some amorphous materials for supercapacitors. Small 14(28), 1800426 (2018). https://doi.org/10.1002/smll.201800426
- X. Cai, Y. Song, S.Q. Wang, X. Sun, X.X. Liu, Extending the cycle life of high mass loading MoOx electrode for supercapacitor applications. Electrochim. Acta 325, 134877 (2019). https://doi.org/10.1016/j.electacta.2019.134877
- X. Cai, X.G. Sang, Y. Song, D. Guo, X.X. Liu et al., Activating the highly reversible Mo4+/Mo5+ redox couple in amorphous molybdenum oxide for high-performance supercapacitors. ACS Appl. Mater. Interfaces 12(43), 48565–48571 (2020). https://doi.org/10.1021/acsami.0c13692
- Y. Dong, X. Xu, S. Li, C. Han, K. Zhao et al., Inhibiting effect of Na+ pre-intercalation in MoO3 nanobelts with enhanced electrochemical performance. Nano Energy 15, 145–152 (2015). https://doi.org/10.1016/j.nanoen.2015.04.015
- H. Sakagami, Y. Asano, T. Ohno, N. Takahashi, H. Itoh et al., Reduction of HxMoO3 with different amounts of hydrogen to high surface area molybdenum oxides. Appl. Catal. A-Gen. 297(2), 189–197 (2006). https://doi.org/10.1016/j.apcata.2005.09.005
- Z. Liu, Y. Huang, Y. Huang, Q. Yang, X. Li et al., Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49(1), 180–232 (2020). https://doi.org/10.1039/C9CS00131J
- H. Tian, T. Gao, X. Li, X. Wang, C. Luo et al., High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 8, 14083 (2017). https://doi.org/10.1038/ncomms14083
- S. Yan, K.P. Abhilash, L. Tang, M. Yang, Y. Ma et al., Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small 15(4), 1804371 (2019). https://doi.org/10.1002/smll.201804371
- Z. Wang, Z. Wang, W. Liu, W. Xiao, X.W. Lou, Amorphous CoSnO3@C nanoboxes with superior lithium storage capability. Energy Environ. Sci. 6, 87–91 (2013). https://doi.org/10.1039/C2EE23330D
- Z. Qin, Y. Song, Y. Liu, X. Liu, Accessing the proton storage in neutral buffer electrolytes using an electrodeposited molybdenum phosphate. Energy Storage Mater. 53, 569–579 (2022). https://doi.org/10.1016/j.ensm.2022.09.035
- H. Wu, X. Li, Y. Cheng, Y. Xiao, R. Li et al., Plasmon-driven N2 photofixation in pure water over MoO3-x nanosheets under visible to NIR excitation. J. Mater. Chem. A 8(5), 2827–2835 (2020). https://doi.org/10.1039/C9TA13038A
- H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 16(4), 454–460 (2017). https://doi.org/10.1038/nmat4810
- Y. Zhang, J. Yuan, Y. Cao, L. Song, X. Hu, Photochromic behavior of Li-stabilized MoO3 sol-gels. J. Non-Cryst. Solids 354(12–13), 1276–1280 (2008). https://doi.org/10.1016/j.jnoncrysol.2006.11.035
- A. Adamski, Z. Sojka, EPR studies on NO interaction with MoOx/t-ZrO2 catalysts obtained by slurry deposition. Catal. Today 137(2–4), 283–287 (2008). https://doi.org/10.1016/j.cattod.2008.02.018
- K. Ajito, L.A. Nagahara, D.A. Tryk, K. Hashimoto, A. Fujishima, Study of the photochromic properties of amorphous MoO3 films using raman microscopy. J. Phys. Chem. 99, 16383–16388 (1995). https://doi.org/10.1021/j100044a028
- X.K. Hu, Y.T. Qian, Z.T. Song, J.R. Huang, R. Cao et al., Comparative study on MoO3 and HxMoO3 nanobelts: structure and electric transport. Chem. Mater. 20, 1527–1533 (2008). https://doi.org/10.1021/cm702942y
- S. Fleischmann, Y. Sun, N.C. Osti, R. Wang, E. Mamontov et al., Interlayer separation in hydrogen titanates enables electrochemical proton intercalation. J. Mater. Chem. A 8(1), 412–421 (2020). https://doi.org/10.1039/C9TA11098D
- R. Baddour-Hadjean, J.-P. Pereira-Ramos, Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem. Rev. 110, 1278–1319 (2010). https://doi.org/10.1021/cr800344k
- H. Lahan, S.K. Das, Al3+ ion intercalation in MoO3 for aqueous aluminum-ion battery. J. Power Sources 413, 134–138 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.032
- Z. Lin, H.Y. Shi, L. Lin, X. Yang, W. Wu et al., A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat. Commun. 12(1), 4424 (2021). https://doi.org/10.1038/s41467-021-24701-9
- K.K. Upadhyay, T. Nguyen, T.M. Silva, M.J. Carmezim, M.F. Montemor, Electrodeposited MoOx films as negative electrode materials for redox supercapacitors. Electrochim. Acta 225, 19–28 (2017). https://doi.org/10.1016/j.electacta.2016.12.106
- S. Dong, W. Shin, H. Jiang, X. Wu, Z. Li et al., Ultra-fast NH4+ storage: strong H bonding between NH4+ and Bi-layered V2O5. Chem 5(6), 1537–1551 (2019). https://doi.org/10.1016/j.chempr.2019.03.009
- W. Li, C. Han, Q. Gu, S.L. Chou, J.Z. Wang et al., Electron delocalization and dissolution-restraint in vanadium oxide superlattices to boost electrochemical performance of aqueous zinc-ion batteries. Adv. Energy Mater. 10(48), 2001852 (2020). https://doi.org/10.1002/aenm.202001852
- S. Chong, J. Yang, L. Sun, S. Guo, Y. Liu et al., Potassium nickel iron hexacyanoferrate as ultra-long-life cathode material for potassium-ion batteries with high energy density. ACS Nano 14(8), 9807–9818 (2020). https://doi.org/10.1021/acsnano.0c02047
- X. Sha, L. Chen, A.C. Cooper, G.P. Pez, H. Cheng, Hydrogen absorption and diffusion in bulk α-MoO3. J. Phys. Chem. C 113, 11399–11407 (2009). https://doi.org/10.1021/jp9017212
- C. Battaglia, X. Yin, M. Zheng, I.D. Sharp, T. Chen et al., Hole selective MoOx contact for silicon solar cells. Nano Lett. 14(2), 967–971 (2014). https://doi.org/10.1021/nl404389u
- Z. Guo, J. Huang, X. Dong, Y. Xia, L. Yan et al., An organic/inorganic electrode-based hydronium-ion battery. Nat. Commun. 11(1), 959 (2020). https://doi.org/10.1038/s41467-020-14748-5
- T. Xiong, Z.G. Yu, H. Wu, Y. Du, Q. Xie et al., Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 9(14), 1803815 (2019). https://doi.org/10.1002/aenm.201803815
- N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
- M. Chuai, J. Yang, R. Tan, Z. Liu, Y. Yuan et al., Theory-driven design of a cationic accelerator for high-performance electrolytic MnO2-Zn batteries. Adv. Mater. 34(33), 2203249 (2022). https://doi.org/10.1002/adma.202203249
- T. Sun, H. Du, S. Zheng, J. Shi, Z. Tao, High power and energy density aqueous proton battery operated at −90 °C. Adv. Funct. Mater. 31(16), 2010127 (2021). https://doi.org/10.1002/adfm.202010127
- T. Sun, H. Du, S. Zheng, J. Shi, X. Yuan et al., Bipolar organic polymer for high performance symmetric aqueous proton battery. Small Methods 5(8), e2100367 (2021). https://doi.org/10.1002/smtd.202100367
References
Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4(7), 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
H. Liu, X. Liu, S. Wang, H. Liu, L. Li, Transition metal based battery-type electrodes in hybrid supercapacitor: a review. Energy Storage Mater. 28, 122–145 (2020). https://doi.org/10.1016/j.ensm.2020.03.003
J. Xie, Y.C. Lu, A retrospective on lithium-ion batteries. Nat. Commun. 11(1), 2499 (2020). https://doi.org/10.1038/s41467-020-16259-9
Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin et al., Rechargeable batteries for grid scale energy storage. Chem. Rev. (2022). https://doi.org/10.1021/acs.chemrev.2c00289
X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
S. Yang, Y. Zhang, S. Wang, J. Shi, X. Liu et al., Rational construction of MoS2/Mo2N/C hierarchical porous tubular nanostructures for enhanced lithium storage. J. Mater. Chem. A 7, 23886–23894 (2019). https://doi.org/10.1039/C9TA04516C
Y. Wang, H. Li, S. Chen, B. Zhai, S. Di et al., An ultralong-life SnS-based anode through phosphate-induced structural regulation for high-performance sodium ion batteries. Sci. Bull. 67(20), 2085–2095 (2022). https://doi.org/10.1016/j.scib.2022.09.021
H. Ying, P. Huang, Z. Zhang, S. Zhang, Q. Han et al., Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-ion batteries. Nano-Micro Lett. 14, 180 (2022). https://doi.org/10.1007/s40820-022-00921-6
S. Ye, X. Chen, R. Zhang, Y. Jiang, F. Huang et al., Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode. Nano-Micro Lett. 14, 187 (2022). https://doi.org/10.1007/s40820-022-00932-3
H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 60(2), 598–616 (2021). https://doi.org/10.1002/anie.202004433
D. Bin, F. Wang, A.G. Tamirat, L. Suo, Y. Wang et al., Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. 8(17), 1703008 (2018). https://doi.org/10.1002/aenm.201703008
X. Wang, C. Bommier, Z. Jian, Z. Li, R.S. Chandrabose et al., Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode. Angew. Chem. Int. Ed. 56(11), 2909–2913 (2017). https://doi.org/10.1002/anie.201700148
X. Wang, Y. Xie, K. Tang, C. Wang, C. Yan, Redox chemistry of molybdenum trioxide for ultrafast hydrogen-ion storage. Angew. Chem. Int. Ed. 57(36), 11569–11573 (2018). https://doi.org/10.1002/anie.201803664
H. Jiang, J.J. Hong, X. Wu, T.W. Surta, Y. Qi et al., Insights on the proton insertion mechanism in the electrode of hexagonal tungsten oxide hydrate. J. Am. Chem. Soc. 140(37), 11556–11559 (2018). https://doi.org/10.1021/jacs.8b03959
X. Wu, J.J. Hong, W. Shin, L. Ma, T. Liu et al., Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4(2), 123–130 (2019). https://doi.org/10.1038/s41560-018-0309-7
Z. Zhu, W. Wang, Y. Yin, Y. Meng, Z. Liu et al., An ultrafast and ultra-low-temperature hydrogen gas-proton battery. J. Am. Chem. Soc. 143(48), 20302–20308 (2021). https://doi.org/10.1021/jacs.1c09529
T. Xu, D. Wang, Z. Li, Z. Chen, J. Zhang et al., Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 14, 126 (2022). https://doi.org/10.1007/s40820-022-00864-y
C. Geng, T. Sun, Z. Wang, J.M. Wu, Y.J. Gu et al., Surface-induced desolvation of hydronium ion enables anatase TiO2 as an efficient anode for proton batteries. Nano Lett. 21(16), 7021–7029 (2021). https://doi.org/10.1021/acs.nanolett.1c02421
Y. Xu, X. Wu, X. Ji, The renaissance of proton batteries. Small Struct. 2(5), 2000113 (2021). https://doi.org/10.1002/sstr.202000113
C. Dong, F. Xu, L. Chen, Z. Chen, Y. Cao, Design strategies for high-voltage aqueous batteries. Small Struct. 2(7), 2100001 (2021). https://doi.org/10.1002/sstr.202100001
W. Chen, G. Li, A. Pei, Y. Li, L. Liao et al., A manganese-hydrogen battery with potential for grid-scale energy storage. Nat. Energy 3(5), 428–435 (2018). https://doi.org/10.1038/s41560-018-0147-7
L. Yan, J. Huang, Z. Guo, X. Dong, Z. Wang et al., Solid-state proton battery operated at ultralow temperature. ACS Energy Lett. 5(2), 685–691 (2020). https://doi.org/10.1021/acsenergylett.0c00109
H. Jiang, W. Shin, L. Ma, J.J. Hong, Z. Wei et al., A high-rate aqueous proton battery delivering power below -78 °C via an unfrozen phosphoric acid. Adv. Energy Mater. 10(28), 2000968 (2020). https://doi.org/10.1002/aenm.202000968
R. Emanuelsson, M. Sterby, M. Stromme, M. Sjodin, An all-organic proton battery. J. Am. Chem. Soc. 139(13), 4828–4834 (2017). https://doi.org/10.1021/jacs.7b00159
S. Wang, X. Zhao, X. Yan, Z. Xiao, C. Liu et al., Regulating fast anionic redox for high-voltage aqueous hydrogen-ion-based energy storage. Angew. Chem. Int. Ed. 58(1), 205–210 (2019). https://doi.org/10.1002/anie.201811220
Z. Su, W. Ren, H. Guo, X. Peng, X. Chen et al., Ultrahigh areal capacity hydrogen-ion batteries with MoO3 loading over 90 mg cm−2. Adv. Funct. Mater. 30(46), 2005477 (2020). https://doi.org/10.1002/adfm.202005477
Q. Li, Y. Xu, S. Zheng, X. Guo, H. Xue et al., Recent progress in some amorphous materials for supercapacitors. Small 14(28), 1800426 (2018). https://doi.org/10.1002/smll.201800426
X. Cai, Y. Song, S.Q. Wang, X. Sun, X.X. Liu, Extending the cycle life of high mass loading MoOx electrode for supercapacitor applications. Electrochim. Acta 325, 134877 (2019). https://doi.org/10.1016/j.electacta.2019.134877
X. Cai, X.G. Sang, Y. Song, D. Guo, X.X. Liu et al., Activating the highly reversible Mo4+/Mo5+ redox couple in amorphous molybdenum oxide for high-performance supercapacitors. ACS Appl. Mater. Interfaces 12(43), 48565–48571 (2020). https://doi.org/10.1021/acsami.0c13692
Y. Dong, X. Xu, S. Li, C. Han, K. Zhao et al., Inhibiting effect of Na+ pre-intercalation in MoO3 nanobelts with enhanced electrochemical performance. Nano Energy 15, 145–152 (2015). https://doi.org/10.1016/j.nanoen.2015.04.015
H. Sakagami, Y. Asano, T. Ohno, N. Takahashi, H. Itoh et al., Reduction of HxMoO3 with different amounts of hydrogen to high surface area molybdenum oxides. Appl. Catal. A-Gen. 297(2), 189–197 (2006). https://doi.org/10.1016/j.apcata.2005.09.005
Z. Liu, Y. Huang, Y. Huang, Q. Yang, X. Li et al., Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49(1), 180–232 (2020). https://doi.org/10.1039/C9CS00131J
H. Tian, T. Gao, X. Li, X. Wang, C. Luo et al., High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 8, 14083 (2017). https://doi.org/10.1038/ncomms14083
S. Yan, K.P. Abhilash, L. Tang, M. Yang, Y. Ma et al., Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small 15(4), 1804371 (2019). https://doi.org/10.1002/smll.201804371
Z. Wang, Z. Wang, W. Liu, W. Xiao, X.W. Lou, Amorphous CoSnO3@C nanoboxes with superior lithium storage capability. Energy Environ. Sci. 6, 87–91 (2013). https://doi.org/10.1039/C2EE23330D
Z. Qin, Y. Song, Y. Liu, X. Liu, Accessing the proton storage in neutral buffer electrolytes using an electrodeposited molybdenum phosphate. Energy Storage Mater. 53, 569–579 (2022). https://doi.org/10.1016/j.ensm.2022.09.035
H. Wu, X. Li, Y. Cheng, Y. Xiao, R. Li et al., Plasmon-driven N2 photofixation in pure water over MoO3-x nanosheets under visible to NIR excitation. J. Mater. Chem. A 8(5), 2827–2835 (2020). https://doi.org/10.1039/C9TA13038A
H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 16(4), 454–460 (2017). https://doi.org/10.1038/nmat4810
Y. Zhang, J. Yuan, Y. Cao, L. Song, X. Hu, Photochromic behavior of Li-stabilized MoO3 sol-gels. J. Non-Cryst. Solids 354(12–13), 1276–1280 (2008). https://doi.org/10.1016/j.jnoncrysol.2006.11.035
A. Adamski, Z. Sojka, EPR studies on NO interaction with MoOx/t-ZrO2 catalysts obtained by slurry deposition. Catal. Today 137(2–4), 283–287 (2008). https://doi.org/10.1016/j.cattod.2008.02.018
K. Ajito, L.A. Nagahara, D.A. Tryk, K. Hashimoto, A. Fujishima, Study of the photochromic properties of amorphous MoO3 films using raman microscopy. J. Phys. Chem. 99, 16383–16388 (1995). https://doi.org/10.1021/j100044a028
X.K. Hu, Y.T. Qian, Z.T. Song, J.R. Huang, R. Cao et al., Comparative study on MoO3 and HxMoO3 nanobelts: structure and electric transport. Chem. Mater. 20, 1527–1533 (2008). https://doi.org/10.1021/cm702942y
S. Fleischmann, Y. Sun, N.C. Osti, R. Wang, E. Mamontov et al., Interlayer separation in hydrogen titanates enables electrochemical proton intercalation. J. Mater. Chem. A 8(1), 412–421 (2020). https://doi.org/10.1039/C9TA11098D
R. Baddour-Hadjean, J.-P. Pereira-Ramos, Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem. Rev. 110, 1278–1319 (2010). https://doi.org/10.1021/cr800344k
H. Lahan, S.K. Das, Al3+ ion intercalation in MoO3 for aqueous aluminum-ion battery. J. Power Sources 413, 134–138 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.032
Z. Lin, H.Y. Shi, L. Lin, X. Yang, W. Wu et al., A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat. Commun. 12(1), 4424 (2021). https://doi.org/10.1038/s41467-021-24701-9
K.K. Upadhyay, T. Nguyen, T.M. Silva, M.J. Carmezim, M.F. Montemor, Electrodeposited MoOx films as negative electrode materials for redox supercapacitors. Electrochim. Acta 225, 19–28 (2017). https://doi.org/10.1016/j.electacta.2016.12.106
S. Dong, W. Shin, H. Jiang, X. Wu, Z. Li et al., Ultra-fast NH4+ storage: strong H bonding between NH4+ and Bi-layered V2O5. Chem 5(6), 1537–1551 (2019). https://doi.org/10.1016/j.chempr.2019.03.009
W. Li, C. Han, Q. Gu, S.L. Chou, J.Z. Wang et al., Electron delocalization and dissolution-restraint in vanadium oxide superlattices to boost electrochemical performance of aqueous zinc-ion batteries. Adv. Energy Mater. 10(48), 2001852 (2020). https://doi.org/10.1002/aenm.202001852
S. Chong, J. Yang, L. Sun, S. Guo, Y. Liu et al., Potassium nickel iron hexacyanoferrate as ultra-long-life cathode material for potassium-ion batteries with high energy density. ACS Nano 14(8), 9807–9818 (2020). https://doi.org/10.1021/acsnano.0c02047
X. Sha, L. Chen, A.C. Cooper, G.P. Pez, H. Cheng, Hydrogen absorption and diffusion in bulk α-MoO3. J. Phys. Chem. C 113, 11399–11407 (2009). https://doi.org/10.1021/jp9017212
C. Battaglia, X. Yin, M. Zheng, I.D. Sharp, T. Chen et al., Hole selective MoOx contact for silicon solar cells. Nano Lett. 14(2), 967–971 (2014). https://doi.org/10.1021/nl404389u
Z. Guo, J. Huang, X. Dong, Y. Xia, L. Yan et al., An organic/inorganic electrode-based hydronium-ion battery. Nat. Commun. 11(1), 959 (2020). https://doi.org/10.1038/s41467-020-14748-5
T. Xiong, Z.G. Yu, H. Wu, Y. Du, Q. Xie et al., Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 9(14), 1803815 (2019). https://doi.org/10.1002/aenm.201803815
N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
M. Chuai, J. Yang, R. Tan, Z. Liu, Y. Yuan et al., Theory-driven design of a cationic accelerator for high-performance electrolytic MnO2-Zn batteries. Adv. Mater. 34(33), 2203249 (2022). https://doi.org/10.1002/adma.202203249
T. Sun, H. Du, S. Zheng, J. Shi, Z. Tao, High power and energy density aqueous proton battery operated at −90 °C. Adv. Funct. Mater. 31(16), 2010127 (2021). https://doi.org/10.1002/adfm.202010127
T. Sun, H. Du, S. Zheng, J. Shi, X. Yuan et al., Bipolar organic polymer for high performance symmetric aqueous proton battery. Small Methods 5(8), e2100367 (2021). https://doi.org/10.1002/smtd.202100367