Ferroelectric Oxide Nanocomposites with Trimodal Pore Structure for High Photocatalytic Performance
Corresponding Author: Li Li
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 37
Abstract
An effective method to improve the photocatalytic performances of powder catalysts is to use the internal electric field from ferroelectrics to separate photogenerated charge carriers. The design and engineering of a complex hetero-junction with a hierarchical pore structure is highly desirable for the efficient application of ferroelectric materials in photocatalysis. Here, we present a novel strategy using two templates to fabricate PbTiO3/TiO2/carbon (PTC) nanocomposites with a tunable microstructure. A hard SiO2 template combined with an ice template followed by an appropriate pyrolysis procedure introduced trimodal (micro-, meso-, macro-) porosity. The as-prepared PTC nanocomposites with optimal mass ratio exhibited excellent photocatalytic and photoelectrochemical performances. PbTiO3/TiO2 annealed at 900 °C (PTC-900) showed a MB degradation rate of 0.21 and 0.021 min−1 under UV and visible light irradiation, which are, respectively, 7.2 and 3 times those of pure PbTiO3. The photocurrent density of the composite catalyst is 1.48 mA cm−2 at the potential of 1.0 V versus saturated calomel electrode, and the rates of hydrogen generation of PTC-900 are as high as 2360 and 9.6 μmol h−1 g−1 under UV and visible light irradiation, respectively. More importantly, the simultaneous application of ultrasound-induced mechanical waves further improved the photocatalytic reactivity. This work serves to improve understanding on the design of ferroelectric/piezoelectric photocatalysts with a hierarchical pore structure and also proposes a widely applicable strategy for the fabrication of high-performance micro–nano/nano–nano structures.
Highlights:
1 PbTiO3/TiO2@carbon (PTC) composites with trimodal pore distribution were synthesized by a dual-template method. Localized quasi-1D nanoneedle morphology was formed that can promote charge separation.
2 The as-prepared PTC nanocomposites with optimal mass ratio exhibited excellent photocatalytic and photoelectrochemical performances.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Liang, P. Wang, M. Li, Q. Zhang, Z. Wang et al., Adsorption of gaseous ethylene via induced polarization on plasmonic photocatalyst Ag/AgCl/TiO2 and subsequent photodegradation. Appl. Catal. B Environ. 220, 356–361 (2018). https://doi.org/10.1016/j.apcatb.2017.07.075
- R.-B. Wei, Z.-L. Huang, G.-H. Gu, Z. Wang, L. Zeng, Y. Chen, Z.-Q. Liu, Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Appl. Catal. B Environ. 231, 101–107 (2018). https://doi.org/10.1016/j.apcatb.2018.03.014
- L. Li, P.A. Salvador, G.S. Rohrer, Photocatalysts with internal electric fields. Nanoscale 6, 24–42 (2014). https://doi.org/10.1039/C3NR03998F
- L. Li, G.S. Rohrer, P.A. Salvador, E. Dickey, Heterostructured ceramic powders for photocatalytic hydrogen production: nanostructured TiO2 shells surrounding microcrystalline (Ba, Sr)TiO3 cores. J. Am. Ceram. Soc. 95, 1414–1420 (2012). https://doi.org/10.1111/j.1551-2916.2012.05076.x
- L. Li, X. Liu, Y. Zhang, P.A. Salvador, G.S. Rohrer, Heterostructured (Ba, Sr)TiO3/TiO2 core/shell photocatalysts: influence of processing and structure on hydrogen production. Int. J. Hydrogen Energy 38, 6948–6959 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.130
- Y. Kuroiwa, S. Aoyagi, A. Sawada, J. Harada, E. Nishibori, M. Takata, M. Sakata, Evidence for Pb-O covalency in tetragonal PbTiO3. Phys. Rev. Lett. 87, 217601 (2001). https://doi.org/10.1103/PhysRevLett.87.217601
- R.E. Cohen, Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992). https://doi.org/10.1038/358136a0
- L. Li, Y. Zhang, A.M. Schultz, X. Liu, P.A. Salvador, G.S. Rohrer, Visible light photochemical activity of heterostructured PbTiO3/TiO2 core-shell particles. Catal. Sci. Technol. 2, 1945 (2012). https://doi.org/10.1039/c2cy20202f
- Q. Zheng, Y. Guo, F. Lei, X. Wu, D. Lin, Microstructure, ferroelectric, piezoelectric and ferromagnetic properties of BiFeO3–BaTiO3–Bi(Zn0.5Ti0.5)O3 lead-free multiferroic ceramics. J. Mater. Sci.: Mater. Electron. 25, 2638–2648 (2014). https://doi.org/10.1007/s10854-014-1923-1
- L. Li, X. Liu, Y. Zhang, N.T. Nuhfer, K. Barmak, P.A. Salvador, G.S. Rohrer, Visible-light photochemical activity of heterostructured core-shell materials composed of selected ternary titanates and ferrites coated by TiO2. ACS Appl. Mater. Interfaces. 5, 5064–5071 (2013). https://doi.org/10.1021/am4008837
- G. Liu, L. Ma, L.-C. Yin, G. Wan, H. Zhu, C. Zhen, Y. Yang, Y. Liang, J. Tan, Selective chemical epitaxial growth of TiO2 islands on ferroelectric PbTiO3 crystals to boost photocatalytic activity. Joule 2, 1095–1107 (2018). https://doi.org/10.1016/j.joule.2018.03.006
- Y. Zhang, A.M. Schultz, L. Li, H. Chien, P.A. Salvador, G.S. Rohrer, Combinatorial substrate epitaxy: a high-throughput method for determining phase and orientation relationships and its application to BiFeO3/TiO2 heterostructures. Acta Mater. 60, 6486–6493 (2012). https://doi.org/10.1016/j.actamat.2012.07.060
- Y. Cui, J. Briscoe, S. Dunn, Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3—influence on the carrier separation and stern layer formation. Chem. Mater. 25, 4215–4223 (2013). https://doi.org/10.1021/cm402092f
- P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M.-H. Whangbo, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Ed. 120, 8049–8051 (2008). https://doi.org/10.1002/ange.200802483
- N.V. Burbure, P.A. Salvador, G.S. Rohrer, Photochemical reactivity of titania films on BaTiO3 substrates: influence of titania phase and orientation. Chem. Mater. 22, 5831–5837 (2010). https://doi.org/10.1021/cm1018019
- Y. Zhang, A.M. Schultz, P.A. Salvador, G.S. Rohrer, Spatially selective visible light photocatalytic activity of TiO2/BiFeO3 heterostructures. J. Mater. Chem. 21, 4168 (2011). https://doi.org/10.1039/c0jm04313c
- C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25–44 (2014). https://doi.org/10.1039/C3EE42454E
- H.-A. Park, S. Liu, P.A. Salvador, G.S. Rohrer, M.F. Islam, High visible-light photochemical activity of titania decorated on single-wall carbon nanotube aerogels. RSC Adv. 6, 22285–22294 (2016). https://doi.org/10.1039/C6RA03801H
- S. Dutta, A. Bhaumik, K.C. Wu, Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574–3592 (2014). https://doi.org/10.1039/C4EE01075B
- H. Wang, X. Liu, S. Wang, L. Li, Dual templating fabrication of hierarchical porous three-dimensional ZnO/carbon nanocomposites for enhanced photocatalytic and photoelectrochemical activity. Appl. Catal. B Environ. 222, 209–218 (2018). https://doi.org/10.1016/j.apcatb.2017.10.012
- H. Wang, H. Liu, S. Wang, L. Li, X. Liu, Influence of tunable pore size on photocatalytic and photoelectrochemical performances of hierarchical porous TiO2/C nanocomposites synthesized via dual-Templating. Appl. Catal. B Environ. 224, 341–349 (2018). https://doi.org/10.1016/j.apcatb.2017.10.039
- H. Liu, X. Liu, S. Mu, S. Wang, S. Wang, L. Li, E.P. Giannelis, A novel fabrication approach for three-dimensional hierarchical porous metal oxide/carbon nanocomposites for enhanced solar photocatalytic performance. Catal. Sci. Technol. 7, 1965–1970 (2017). https://doi.org/10.1039/C7CY00317J
- J. Ran, T.Y. Ma, G. Gao, X.-W. Du, S.Z. Qiao, Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 8, 3708–3717 (2015). https://doi.org/10.1039/C5EE02650D
- H.J. Lee, S. Zhang, J. Luo, F. Li, T.R. Shrout, Thickness dependent properties of relaxor-PbTiO3 ferroelectrics for ultrasonic transducers. Adv. Funct. Mater. 20, 3154–3162 (2010). https://doi.org/10.1002/adfm.201000390
- A. Leelavathi, G. Madras, N. Ravishankar, Origin of enhanced photocatalytic activity and photoconduction in high aspect ratio ZnO nanorods. Phys. Chem. Chem. Phys. 15, 10795–10802 (2013). https://doi.org/10.1039/c3cp51058a
- H.J. Yun, H. Lee, J.B. Joo, W. Kim, J, Yi, Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid. J. Phys. Chem. C 113, 3050–3055 (2009). https://doi.org/10.1021/jp808604t
- N. Wetchakun, S. Phanichphant, Effect of temperature on the degree of anatase–rutile transformation in titanium dioxide nanoparticles synthesized by the modified sol–gel method. Curr. Appl. Phys. 8, 343–346 (2008). https://doi.org/10.1016/j.cap.2007.10.028
- B. Tryba, A.W. Morawski, M. Inagaki, Application of TiO2-mounted activated carbon to the removal of phenol from water. Appl. Catal. B Environ. 41, 427–433 (2003). https://doi.org/10.1016/S0926-3373(02)00173-X
- T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl. Catal. A Gen. 244, 383–391 (2003). https://doi.org/10.1016/S0926-860X(02)00610-5
- C. Wu, Y. Yue, X. Deng, W. Hua, Z. Gao, Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations. Catal. Today 93–95, 863–869 (2004). https://doi.org/10.1016/j.cattod.2004.06.087
- J. Lin, M. Guo, C.T. Yip, W. Lu, G. Zhang, X.L. Liu, L.M. Zhou, X.F. Chen, High temperature crystallization of free-standing anatase TiO2 nanotube membranes for high efficiency dye sensitized solar cells. Adv. Funct. Mater. 23, 5952–5960 (2013). https://doi.org/10.1002/adfm.201301066
- F. Huang, K.T. Yue, P. Tan, S.-L. Zhang, Z. Shi, X. Zhou, Z. Gu, Temperature dependence of the Raman spectra of carbon nanotubes. J. Appl. Phys. 84, 4022–4024 (1998). https://doi.org/10.1063/1.368585
- S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, H. Nakai, Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 97, 104320 (2005). https://doi.org/10.1063/1.1900297
- J. Zhong, F. Chen, J. Zhang, Carbon-deposited TiO2: synthesis, characterization, and visible photocatalytic performance. J. Phys. Chem. C 114, 933–939 (2009). https://doi.org/10.1021/jp909835m
- D. Mitoraj, H. Kisch, The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. Angew. Chem. Int. Ed. 47, 9975–9978 (2008). https://doi.org/10.1002/anie.200800304
- L.-W. Zhang, H.-B. Fu, Y.-F. Zhu, Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv. Funct. Mater. 18, 2180–2189 (2008). https://doi.org/10.1002/adfm.200701478
- C.G. Silva, J.L. Faria, Photocatalytic oxidation of benzene derivatives in aqueous suspensions: synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix. Appl. Catal. B: Environ. 101, 81–89 (2010). https://doi.org/10.1016/j.apcatb.2010.09.010
- F.F. Ge, W.D. Wu, X.M. Wang, H.P. Wang, Y. Dai, H.B. Wang, J. Shen, The first-principle calculation of structures and defect energies in tetragonal PbTiO3. Physica B Condens. Matter 404, 3814–3818 (2009). https://doi.org/10.1016/j.physb.2009.06.150
- L. Liu, T. Ning, Y. Ren, Z. Sun, F. Wang et al., Synthesis, characterization, photoluminescence and ferroelectric properties of PbTiO3 nanotube arrays. Mater. Sci. Eng., B 149, 41–46 (2008). https://doi.org/10.1016/j.mseb.2007.12.003
- C.H. Jeon, Y.S. Lee, K.J. Yee, J.K. Han, S.D. Bu, Strain effect on the visible emission in PbTiO3 nanotubes: template and wall-thickness dependence. Curr. Appl. Phys. 15, 115–119 (2015). https://doi.org/10.1016/j.cap.2014.11.017
- Y. Yang, X. Wang, C. Sun, L. Li, Photoluminescence of high-aspect-ratio PbTiO3 nanotube arrays. J. Am. Ceram. Soc. 91, 3820–3822 (2008). https://doi.org/10.1111/j.1551-2916.2008.02763.x
- Z.W. Mei, B.K. Zhang, J.X. Zheng, S. Yuan, Z.Q. Zhuo et al., Tuning Cu dopant of Zn0.5Cd0.5S nanocrystals enables high-performance photocatalytic H2 evolution from water splitting under visible-light irradiation. Nano Energy 26, 405–416 (2016). https://doi.org/10.1016/j.nanoen.2016.05.051
- A.A. Ismail, I. Abdelfattah, M. Faisal, A. Helal, Efficient photodecomposition of herbicide imazapyr over mesoporous Ga2O3-TiO2 nanocomposites. J. Hazard. Mater. 342, 519–526 (2018). https://doi.org/10.1016/j.jhazmat.2017.08.046
- C. Wang, Z. Chen, H. Jin, C. Cao, J. Li, Z. Mi, Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. J. Mater. Chem. A 2, 17820–17827 (2014). https://doi.org/10.1039/C4TA04254A
- X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016). https://doi.org/10.1039/C5CS00838G
- L. Zhang, X. He, X. Xu, C. Liu, Y. Duan et al., Highly active TiO2/g-C3N4/G photocatalyst with extended spectral response towards selective reduction of nitrobenzene. Appl. Catal. B Environ. 203, 1–8 (2017). https://doi.org/10.1016/j.apcatb.2016.10.003
- C.J. Lu, A.X. Kuang, G.Y. Huang, X-ray photoelectron spectroscopy study on composition and structure of sol-gel derived PbTiO3 thin films. J. Appl. Phys. 80, 202–206 (1996). https://doi.org/10.1063/1.362805
- K.B. Lee, K.H. Lee, J.O. Cha, J.S. Ahn, Ti-O binding states of resistive switching TiO2 thin films prepared by reactive magnetron sputtering. J. Korean Phys. Soc. 53, 1996–2001 (2008). https://doi.org/10.3938/jkps.53.1996
- T. Xu, W. Hou, X. Shen, H. Wu, X. Li, J. Wang, Z. Jiang, Sulfonated titania submicrospheres-doped sulfonated poly(ether ether ketone) hybrid membranes with enhanced proton conductivity and reduced methanol permeability. J. Power Sources 196, 4934–4942 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.017
- X. Chen, L. Liu, L. Yi, G. Guo, M. Li, J. Xie, Y. Ouyang, X. Wang, High-performance lithium storage of Ti3+-doped anatase TiO2@C composite spheres. RSC Adv. 6, 99695–99703 (2016). https://doi.org/10.1039/C6RA22105J
- W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal. B Environ. 69, 138–144 (2007). https://doi.org/10.1016/j.apcatb.2006.06.015
- I. Popescu, A. Urda, T. Yuzhakova, I.-C. Marcu, J. Kovacs, I. Sandulescu, BaTiO3 and PbTiO3 perovskite as catalysts for methane combustion. C. R. Chimie. 12, 1072–1078 (2009). https://doi.org/10.1016/j.crci.2008.09.006
- D. Leinen, A. Fernández, J.P. Espinós, A.R. Gonzalez-Elipe, XPS and ISS study of NiTiO3 and PbTiO3 subjected to low-energy ion bombardment. Surf. Interface Anal. 20, 941–948 (1993). https://doi.org/10.1002/sia.740201203
- Y. Yu, Z. Ren, M. Li, S. Gong, S. Yin et al., Facile synthesis and visible photocatalytic activity of single-crystal TiO2/PbTiO3 heterostructured nanofiber composites. CrystEngComm 17, 1024–1029 (2015). https://doi.org/10.1039/C4CE01864H
- A. Houas, H. Lachheb, M.E. KsibiElaloui, C. Guillard, J.-M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 31, 145–157 (2001). https://doi.org/10.1016/S0926-3373(00)00276-9
- C.M. Parlett, K. Wilson, A.F. Lee, Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42, 3876–3893 (2013). https://doi.org/10.1039/C2CS35378D
- D.C. Hurum, K.A. Gray, T. Rajh, M.C. Thurnauer, Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. J. Phys. Chem. B 109, 977–980 (2005). https://doi.org/10.1021/jp045395d
- X. Li, J. Xie, C. Jiang, J. Yu, P. Zhang, Review on design and evaluation of environmental photocatalysts. Front. Environ. Sci. Eng. 12, 14 (2018). https://doi.org/10.1007/s11783-018-1076-1
- K. Qi, C. Bei, J. Yu, W. Ho, A review on TiO2-based Z-scheme photocatalysts. Chinese. J. Catal. 38, 1936–1955 (2017). https://doi.org/10.1016/S1872-2067(17)62962-0
- L. Liang, K. Li, K. Lv, W. Ho, Y. Duan, Highly photoreactive TiO2 hollow microspheres with super thermal stability for acetone oxidation.Chinese. J. Catal. 38, 2085–2093 (2017). https://doi.org/10.1016/S1872-2067(17)62952-8
- G. Dai, H. Qin, H. Zhou, W. Wang, T. Luo, Template-free fabrication of Hierarchical macro/mesoporpous SnS2/TiO2, composite with enhanced photocatalytic degradation of methyl orange (MO). Appl. Surf. Sci. 430, 488–495 (2018). https://doi.org/10.1016/j.apsusc.2017.06.091
- Y. Qiu, F. Ouyang, Fabrication of TiO2 hierarchical architecture assembled by nanowires with anatase/TiO2(B) phase-junctions for efficient photocatalytic hydrogen production. Appl. Surf. Sci. 403, 691–698 (2017). https://doi.org/10.1016/j.apsusc.2017.01.255
- A. Meng, B. Zhu, B. Zhong, L. Zhang, B. Cheng, Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl. Surf. Sci. 422, 518–527 (2017). https://doi.org/10.1016/j.apsusc.2017.06.028
- T. Huang, J. Lu, R. Xiao, Q. Wu, W. Yang, Enhanced photocatalytic properties of hierarchical three-dimensional TiO2 grown on femtosecond laser structured titanium substrate. Appl. Surf. Sci. 403, 584–589 (2017). https://doi.org/10.1016/j.apsusc.2017.01.203
- A.M. Glass, D. von der Linde, T.J. Negran, High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett. 25, 233–235 (1974). https://doi.org/10.1063/1.1655453
- R. Shen, C. Jiang, Q. Xiang, J. Xie, X. Li, Surface and interface engineering of hierarchical photocatalysts. Appl. Surf. Sci. 471, 43–87 (2019). https://doi.org/10.1016/j.apsusc.2018.11.205
- X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962–4179 (2019). https://doi.org/10.1021/acs.chemrev.8b00400
References
X. Liang, P. Wang, M. Li, Q. Zhang, Z. Wang et al., Adsorption of gaseous ethylene via induced polarization on plasmonic photocatalyst Ag/AgCl/TiO2 and subsequent photodegradation. Appl. Catal. B Environ. 220, 356–361 (2018). https://doi.org/10.1016/j.apcatb.2017.07.075
R.-B. Wei, Z.-L. Huang, G.-H. Gu, Z. Wang, L. Zeng, Y. Chen, Z.-Q. Liu, Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Appl. Catal. B Environ. 231, 101–107 (2018). https://doi.org/10.1016/j.apcatb.2018.03.014
L. Li, P.A. Salvador, G.S. Rohrer, Photocatalysts with internal electric fields. Nanoscale 6, 24–42 (2014). https://doi.org/10.1039/C3NR03998F
L. Li, G.S. Rohrer, P.A. Salvador, E. Dickey, Heterostructured ceramic powders for photocatalytic hydrogen production: nanostructured TiO2 shells surrounding microcrystalline (Ba, Sr)TiO3 cores. J. Am. Ceram. Soc. 95, 1414–1420 (2012). https://doi.org/10.1111/j.1551-2916.2012.05076.x
L. Li, X. Liu, Y. Zhang, P.A. Salvador, G.S. Rohrer, Heterostructured (Ba, Sr)TiO3/TiO2 core/shell photocatalysts: influence of processing and structure on hydrogen production. Int. J. Hydrogen Energy 38, 6948–6959 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.130
Y. Kuroiwa, S. Aoyagi, A. Sawada, J. Harada, E. Nishibori, M. Takata, M. Sakata, Evidence for Pb-O covalency in tetragonal PbTiO3. Phys. Rev. Lett. 87, 217601 (2001). https://doi.org/10.1103/PhysRevLett.87.217601
R.E. Cohen, Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992). https://doi.org/10.1038/358136a0
L. Li, Y. Zhang, A.M. Schultz, X. Liu, P.A. Salvador, G.S. Rohrer, Visible light photochemical activity of heterostructured PbTiO3/TiO2 core-shell particles. Catal. Sci. Technol. 2, 1945 (2012). https://doi.org/10.1039/c2cy20202f
Q. Zheng, Y. Guo, F. Lei, X. Wu, D. Lin, Microstructure, ferroelectric, piezoelectric and ferromagnetic properties of BiFeO3–BaTiO3–Bi(Zn0.5Ti0.5)O3 lead-free multiferroic ceramics. J. Mater. Sci.: Mater. Electron. 25, 2638–2648 (2014). https://doi.org/10.1007/s10854-014-1923-1
L. Li, X. Liu, Y. Zhang, N.T. Nuhfer, K. Barmak, P.A. Salvador, G.S. Rohrer, Visible-light photochemical activity of heterostructured core-shell materials composed of selected ternary titanates and ferrites coated by TiO2. ACS Appl. Mater. Interfaces. 5, 5064–5071 (2013). https://doi.org/10.1021/am4008837
G. Liu, L. Ma, L.-C. Yin, G. Wan, H. Zhu, C. Zhen, Y. Yang, Y. Liang, J. Tan, Selective chemical epitaxial growth of TiO2 islands on ferroelectric PbTiO3 crystals to boost photocatalytic activity. Joule 2, 1095–1107 (2018). https://doi.org/10.1016/j.joule.2018.03.006
Y. Zhang, A.M. Schultz, L. Li, H. Chien, P.A. Salvador, G.S. Rohrer, Combinatorial substrate epitaxy: a high-throughput method for determining phase and orientation relationships and its application to BiFeO3/TiO2 heterostructures. Acta Mater. 60, 6486–6493 (2012). https://doi.org/10.1016/j.actamat.2012.07.060
Y. Cui, J. Briscoe, S. Dunn, Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3—influence on the carrier separation and stern layer formation. Chem. Mater. 25, 4215–4223 (2013). https://doi.org/10.1021/cm402092f
P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M.-H. Whangbo, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Ed. 120, 8049–8051 (2008). https://doi.org/10.1002/ange.200802483
N.V. Burbure, P.A. Salvador, G.S. Rohrer, Photochemical reactivity of titania films on BaTiO3 substrates: influence of titania phase and orientation. Chem. Mater. 22, 5831–5837 (2010). https://doi.org/10.1021/cm1018019
Y. Zhang, A.M. Schultz, P.A. Salvador, G.S. Rohrer, Spatially selective visible light photocatalytic activity of TiO2/BiFeO3 heterostructures. J. Mater. Chem. 21, 4168 (2011). https://doi.org/10.1039/c0jm04313c
C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25–44 (2014). https://doi.org/10.1039/C3EE42454E
H.-A. Park, S. Liu, P.A. Salvador, G.S. Rohrer, M.F. Islam, High visible-light photochemical activity of titania decorated on single-wall carbon nanotube aerogels. RSC Adv. 6, 22285–22294 (2016). https://doi.org/10.1039/C6RA03801H
S. Dutta, A. Bhaumik, K.C. Wu, Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574–3592 (2014). https://doi.org/10.1039/C4EE01075B
H. Wang, X. Liu, S. Wang, L. Li, Dual templating fabrication of hierarchical porous three-dimensional ZnO/carbon nanocomposites for enhanced photocatalytic and photoelectrochemical activity. Appl. Catal. B Environ. 222, 209–218 (2018). https://doi.org/10.1016/j.apcatb.2017.10.012
H. Wang, H. Liu, S. Wang, L. Li, X. Liu, Influence of tunable pore size on photocatalytic and photoelectrochemical performances of hierarchical porous TiO2/C nanocomposites synthesized via dual-Templating. Appl. Catal. B Environ. 224, 341–349 (2018). https://doi.org/10.1016/j.apcatb.2017.10.039
H. Liu, X. Liu, S. Mu, S. Wang, S. Wang, L. Li, E.P. Giannelis, A novel fabrication approach for three-dimensional hierarchical porous metal oxide/carbon nanocomposites for enhanced solar photocatalytic performance. Catal. Sci. Technol. 7, 1965–1970 (2017). https://doi.org/10.1039/C7CY00317J
J. Ran, T.Y. Ma, G. Gao, X.-W. Du, S.Z. Qiao, Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 8, 3708–3717 (2015). https://doi.org/10.1039/C5EE02650D
H.J. Lee, S. Zhang, J. Luo, F. Li, T.R. Shrout, Thickness dependent properties of relaxor-PbTiO3 ferroelectrics for ultrasonic transducers. Adv. Funct. Mater. 20, 3154–3162 (2010). https://doi.org/10.1002/adfm.201000390
A. Leelavathi, G. Madras, N. Ravishankar, Origin of enhanced photocatalytic activity and photoconduction in high aspect ratio ZnO nanorods. Phys. Chem. Chem. Phys. 15, 10795–10802 (2013). https://doi.org/10.1039/c3cp51058a
H.J. Yun, H. Lee, J.B. Joo, W. Kim, J, Yi, Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid. J. Phys. Chem. C 113, 3050–3055 (2009). https://doi.org/10.1021/jp808604t
N. Wetchakun, S. Phanichphant, Effect of temperature on the degree of anatase–rutile transformation in titanium dioxide nanoparticles synthesized by the modified sol–gel method. Curr. Appl. Phys. 8, 343–346 (2008). https://doi.org/10.1016/j.cap.2007.10.028
B. Tryba, A.W. Morawski, M. Inagaki, Application of TiO2-mounted activated carbon to the removal of phenol from water. Appl. Catal. B Environ. 41, 427–433 (2003). https://doi.org/10.1016/S0926-3373(02)00173-X
T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl. Catal. A Gen. 244, 383–391 (2003). https://doi.org/10.1016/S0926-860X(02)00610-5
C. Wu, Y. Yue, X. Deng, W. Hua, Z. Gao, Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations. Catal. Today 93–95, 863–869 (2004). https://doi.org/10.1016/j.cattod.2004.06.087
J. Lin, M. Guo, C.T. Yip, W. Lu, G. Zhang, X.L. Liu, L.M. Zhou, X.F. Chen, High temperature crystallization of free-standing anatase TiO2 nanotube membranes for high efficiency dye sensitized solar cells. Adv. Funct. Mater. 23, 5952–5960 (2013). https://doi.org/10.1002/adfm.201301066
F. Huang, K.T. Yue, P. Tan, S.-L. Zhang, Z. Shi, X. Zhou, Z. Gu, Temperature dependence of the Raman spectra of carbon nanotubes. J. Appl. Phys. 84, 4022–4024 (1998). https://doi.org/10.1063/1.368585
S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, H. Nakai, Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 97, 104320 (2005). https://doi.org/10.1063/1.1900297
J. Zhong, F. Chen, J. Zhang, Carbon-deposited TiO2: synthesis, characterization, and visible photocatalytic performance. J. Phys. Chem. C 114, 933–939 (2009). https://doi.org/10.1021/jp909835m
D. Mitoraj, H. Kisch, The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. Angew. Chem. Int. Ed. 47, 9975–9978 (2008). https://doi.org/10.1002/anie.200800304
L.-W. Zhang, H.-B. Fu, Y.-F. Zhu, Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv. Funct. Mater. 18, 2180–2189 (2008). https://doi.org/10.1002/adfm.200701478
C.G. Silva, J.L. Faria, Photocatalytic oxidation of benzene derivatives in aqueous suspensions: synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix. Appl. Catal. B: Environ. 101, 81–89 (2010). https://doi.org/10.1016/j.apcatb.2010.09.010
F.F. Ge, W.D. Wu, X.M. Wang, H.P. Wang, Y. Dai, H.B. Wang, J. Shen, The first-principle calculation of structures and defect energies in tetragonal PbTiO3. Physica B Condens. Matter 404, 3814–3818 (2009). https://doi.org/10.1016/j.physb.2009.06.150
L. Liu, T. Ning, Y. Ren, Z. Sun, F. Wang et al., Synthesis, characterization, photoluminescence and ferroelectric properties of PbTiO3 nanotube arrays. Mater. Sci. Eng., B 149, 41–46 (2008). https://doi.org/10.1016/j.mseb.2007.12.003
C.H. Jeon, Y.S. Lee, K.J. Yee, J.K. Han, S.D. Bu, Strain effect on the visible emission in PbTiO3 nanotubes: template and wall-thickness dependence. Curr. Appl. Phys. 15, 115–119 (2015). https://doi.org/10.1016/j.cap.2014.11.017
Y. Yang, X. Wang, C. Sun, L. Li, Photoluminescence of high-aspect-ratio PbTiO3 nanotube arrays. J. Am. Ceram. Soc. 91, 3820–3822 (2008). https://doi.org/10.1111/j.1551-2916.2008.02763.x
Z.W. Mei, B.K. Zhang, J.X. Zheng, S. Yuan, Z.Q. Zhuo et al., Tuning Cu dopant of Zn0.5Cd0.5S nanocrystals enables high-performance photocatalytic H2 evolution from water splitting under visible-light irradiation. Nano Energy 26, 405–416 (2016). https://doi.org/10.1016/j.nanoen.2016.05.051
A.A. Ismail, I. Abdelfattah, M. Faisal, A. Helal, Efficient photodecomposition of herbicide imazapyr over mesoporous Ga2O3-TiO2 nanocomposites. J. Hazard. Mater. 342, 519–526 (2018). https://doi.org/10.1016/j.jhazmat.2017.08.046
C. Wang, Z. Chen, H. Jin, C. Cao, J. Li, Z. Mi, Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. J. Mater. Chem. A 2, 17820–17827 (2014). https://doi.org/10.1039/C4TA04254A
X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016). https://doi.org/10.1039/C5CS00838G
L. Zhang, X. He, X. Xu, C. Liu, Y. Duan et al., Highly active TiO2/g-C3N4/G photocatalyst with extended spectral response towards selective reduction of nitrobenzene. Appl. Catal. B Environ. 203, 1–8 (2017). https://doi.org/10.1016/j.apcatb.2016.10.003
C.J. Lu, A.X. Kuang, G.Y. Huang, X-ray photoelectron spectroscopy study on composition and structure of sol-gel derived PbTiO3 thin films. J. Appl. Phys. 80, 202–206 (1996). https://doi.org/10.1063/1.362805
K.B. Lee, K.H. Lee, J.O. Cha, J.S. Ahn, Ti-O binding states of resistive switching TiO2 thin films prepared by reactive magnetron sputtering. J. Korean Phys. Soc. 53, 1996–2001 (2008). https://doi.org/10.3938/jkps.53.1996
T. Xu, W. Hou, X. Shen, H. Wu, X. Li, J. Wang, Z. Jiang, Sulfonated titania submicrospheres-doped sulfonated poly(ether ether ketone) hybrid membranes with enhanced proton conductivity and reduced methanol permeability. J. Power Sources 196, 4934–4942 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.017
X. Chen, L. Liu, L. Yi, G. Guo, M. Li, J. Xie, Y. Ouyang, X. Wang, High-performance lithium storage of Ti3+-doped anatase TiO2@C composite spheres. RSC Adv. 6, 99695–99703 (2016). https://doi.org/10.1039/C6RA22105J
W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal. B Environ. 69, 138–144 (2007). https://doi.org/10.1016/j.apcatb.2006.06.015
I. Popescu, A. Urda, T. Yuzhakova, I.-C. Marcu, J. Kovacs, I. Sandulescu, BaTiO3 and PbTiO3 perovskite as catalysts for methane combustion. C. R. Chimie. 12, 1072–1078 (2009). https://doi.org/10.1016/j.crci.2008.09.006
D. Leinen, A. Fernández, J.P. Espinós, A.R. Gonzalez-Elipe, XPS and ISS study of NiTiO3 and PbTiO3 subjected to low-energy ion bombardment. Surf. Interface Anal. 20, 941–948 (1993). https://doi.org/10.1002/sia.740201203
Y. Yu, Z. Ren, M. Li, S. Gong, S. Yin et al., Facile synthesis and visible photocatalytic activity of single-crystal TiO2/PbTiO3 heterostructured nanofiber composites. CrystEngComm 17, 1024–1029 (2015). https://doi.org/10.1039/C4CE01864H
A. Houas, H. Lachheb, M.E. KsibiElaloui, C. Guillard, J.-M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 31, 145–157 (2001). https://doi.org/10.1016/S0926-3373(00)00276-9
C.M. Parlett, K. Wilson, A.F. Lee, Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42, 3876–3893 (2013). https://doi.org/10.1039/C2CS35378D
D.C. Hurum, K.A. Gray, T. Rajh, M.C. Thurnauer, Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. J. Phys. Chem. B 109, 977–980 (2005). https://doi.org/10.1021/jp045395d
X. Li, J. Xie, C. Jiang, J. Yu, P. Zhang, Review on design and evaluation of environmental photocatalysts. Front. Environ. Sci. Eng. 12, 14 (2018). https://doi.org/10.1007/s11783-018-1076-1
K. Qi, C. Bei, J. Yu, W. Ho, A review on TiO2-based Z-scheme photocatalysts. Chinese. J. Catal. 38, 1936–1955 (2017). https://doi.org/10.1016/S1872-2067(17)62962-0
L. Liang, K. Li, K. Lv, W. Ho, Y. Duan, Highly photoreactive TiO2 hollow microspheres with super thermal stability for acetone oxidation.Chinese. J. Catal. 38, 2085–2093 (2017). https://doi.org/10.1016/S1872-2067(17)62952-8
G. Dai, H. Qin, H. Zhou, W. Wang, T. Luo, Template-free fabrication of Hierarchical macro/mesoporpous SnS2/TiO2, composite with enhanced photocatalytic degradation of methyl orange (MO). Appl. Surf. Sci. 430, 488–495 (2018). https://doi.org/10.1016/j.apsusc.2017.06.091
Y. Qiu, F. Ouyang, Fabrication of TiO2 hierarchical architecture assembled by nanowires with anatase/TiO2(B) phase-junctions for efficient photocatalytic hydrogen production. Appl. Surf. Sci. 403, 691–698 (2017). https://doi.org/10.1016/j.apsusc.2017.01.255
A. Meng, B. Zhu, B. Zhong, L. Zhang, B. Cheng, Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl. Surf. Sci. 422, 518–527 (2017). https://doi.org/10.1016/j.apsusc.2017.06.028
T. Huang, J. Lu, R. Xiao, Q. Wu, W. Yang, Enhanced photocatalytic properties of hierarchical three-dimensional TiO2 grown on femtosecond laser structured titanium substrate. Appl. Surf. Sci. 403, 584–589 (2017). https://doi.org/10.1016/j.apsusc.2017.01.203
A.M. Glass, D. von der Linde, T.J. Negran, High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett. 25, 233–235 (1974). https://doi.org/10.1063/1.1655453
R. Shen, C. Jiang, Q. Xiang, J. Xie, X. Li, Surface and interface engineering of hierarchical photocatalysts. Appl. Surf. Sci. 471, 43–87 (2019). https://doi.org/10.1016/j.apsusc.2018.11.205
X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962–4179 (2019). https://doi.org/10.1021/acs.chemrev.8b00400