Boosting Sodium Storage of Fe1−xS/MoS2 Composite via Heterointerface Engineering
Corresponding Author: Hui Ying Yang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 80
Abstract
Improving the cycling stability of metal sulfide-based anode materials at high rate is of great significance for advanced sodium ion batteries. However, the sluggish reaction kinetics is a big obstacle for the development of high-performance sodium storage electrodes. Herein, we have rationally engineered the heterointerface by designing the Fe1−xS/MoS2 heterostructure with abundant “ion reservoir” to endow the electrode with excellent cycling stability and rate capability, which is proved by a series of in and ex situ electrochemical investigations. Density functional theory calculations further reveal that the heterointerface greatly decreases sodium ion diffusion barrier and facilitates charge-transfer kinetics. Our present findings not only provide a deep analysis on the correlation between the structure and performance, but also draw inspiration for rational heterointerface engineering toward the next-generation high-performance energy storage devices.
Highlights:
1 Fe1−xS/MoS2 heterostructure with abundant “ion reservoir” interfaces is designed to reduce sodium ion diffusion barrier and facilitate charge-transfer kinetics, thus endowing the electrode with excellent cycling stability and rate capability.
2 The in-depth analysis on the dynamic relationship between heterointerface and sodium storage performance carves a new path for interface engineering toward the next-generation high-performance energy storage devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529 (2017). https://doi.org/10.1039/C6CS00776G
- Y. Wang, D. Kong, W. Shi, B. Liu, G.J. Sim, Q. Ge, H.Y. Yang, Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv. Energy Mater. 6, 1601057 (2016). https://doi.org/10.1002/aenm.201601057
- D. Kong, Y. Wang, Y.V. Lim, S. Huang, J. Zhang, B. Liu, T. Chen, H. Yang, 3D hierarchical defect-rich NiMo3S4 nanosheet arrays grown on carbon textiles for high-performance sodium-ion batteries and hydrogen evolution reaction. Nano Energy 49, 460–470 (2018). https://doi.org/10.1016/j.nanoen.2018.04.051
- Y. Wang, D. Kong, S. Huang, Y. Shi, M. Ding et al., 3D carbon foam supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. J. Mater. Chem. A 6, 10813 (2018). https://doi.org/10.1039/C8TA02773K
- S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011). https://doi.org/10.1039/c1ee01782a
- Y. Zhao, A. Manthiram, Amorphous Sb2S3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries. Chem. Commun. 51, 13205–13208 (2015). https://doi.org/10.1039/C5CC03825A
- L. Cao, B. Zhang, X. Ou, C. Wang, C. Peng, J. Zhang, Synergistical coupling interconnected ZnS/SnS2 nanoboxes with polypyrrole-derived N/S dual-doped carbon for boosting high-performance sodium storage. Small 15, 1804861 (2019). https://doi.org/10.1002/smll.201804861
- W. Chen, X. Zhang, L. Mi, C. Liu, J. Zhang et al., High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv. Mater. 31, 1806664 (2019). https://doi.org/10.1002/adma.201806664
- D. Li, D. Yang, X. Yang, Y. Wang, Z. Guo, Y. Xia, S. Sun, S. Guo, Double-helix structure in carrageenan-metal hydrogels: a general approach to porous metal sulfides/carbon aerogels with excellent sodium-ion storage. Angew. Chem. Int. Ed. 55, 15925–15928 (2016). https://doi.org/10.1002/anie.201610301
- J.K. Kim, S.K. Park, J.S. Park, Y.C. Kang, Uniquely structured composite microspheres of metal sulfides and carbon with cubic nanorooms for highly efficient anode materials for sodium-ion batteries. J. Mater. Chem. A 7, 2636–2645 (2019). https://doi.org/10.1039/C8TA11481A
- Y. Xiao, S.H. Lee, Y.K. Sun, The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 7, 1601329 (2017). https://doi.org/10.1002/aenm.201601329
- Y. Xiao, J.Y. Hwang, I. Belharouak, Y.K. Sun, Na storage capability investigation of a carbon nanotube-encapsulated Fe1−xS composite. ACS Energy Lett. 2, 364–372 (2017). https://doi.org/10.1021/acsenergylett.6b00660
- J. Xiang, Z. Liu, T. Song, Hierarchical iron sulfide-graphene nanocubes consisting of multiple nanoparticles with superior sodium ion storage properties. Electrochim. Acta 283, 683–690 (2018). https://doi.org/10.1016/j.electacta.2018.07.017
- Q. Pan, F. Zheng, X. Ou, C. Yang, X. Xiong, Z. Tang, L. Zhao, M. Liu, MoS2 decorated Fe3O4/Fe1−xS@C nanosheets as high-performance anode materials for lithium ion and sodium ion batteries. ACS Sustain. Chem. Eng. 5, 4739–4745 (2017). https://doi.org/10.1021/acssuschemeng.7b00119
- X. Xu, R. Zhao, W. Ai, B. Chen, H. Du et al., Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: toward fast sodium storage by tunable pseudocapacitance. Adv. Mater. 30, 1800658 (2018). https://doi.org/10.1002/adma.201800658
- D. Sun, D. Ye, P. Liu, Y. Tang, J. Guo, L. Wang, H. Wang, MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv. Energy Mater. 8, 1702383 (2018). https://doi.org/10.1002/aenm.201702383
- X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv. Funct. Mater. 25, 1393–1403 (2015). https://doi.org/10.1002/adfm.201404078
- Y. Huang, Q. Pan, H. Wang, C. Ji, X. Wu, Z. He, Q. Li, Preparation of a Sn@SnO2@C@MoS2 composite as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 4, 7185–7189 (2016). https://doi.org/10.1039/C6TA02080A
- H. Yin, S.H. Cheung, J.H.L. Ngai, C.H.Y. Ho, K.L. Chiu et al., Thick-film high-performance bulk-heterojunction solar cells retaining 90% PCEs of the optimized thin film cells. Adv. Electron. Mater. 3, 1700007 (2017). https://doi.org/10.1002/aelm.201700007
- H. Yin, P. Bi, S.H. Cheung, W.L. Cheng, K.L. Chiu et al., Balanced electric field dependent mobilities: a key to access high fill factors in organic bulk heterojunction solar cells. Sol. RRL 2, 1700239 (2018). https://doi.org/10.1002/solr.201700239
- X. Hong, J. Kim, S.F. Shi, Y. Zhang, C. Jin et al., Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014). https://doi.org/10.1038/nnano.2014.167
- H. Yin, S. Chen, S.H. Cheung, H.W. Li, Y. Xie et al., Porphyrin-based thick-film bulk-heterojunction solar cells for indoor light harvesting. J. Mater. Chem. C 6, 9111–9118 (2018). https://doi.org/10.1039/C8TC02838A
- Y. Ji, W. Guo, H. Chen, L. Zhang, S. Chen, M. Hua, Y. Long, Z. Chen, Surface Ti3+/Ti4+ redox shuttle enhancing photocatalytic H2 production in ultrathin TiO2 nanosheets/CdSe quantum dots. J. Phys. Chem. C 119, 27053–27059 (2015). https://doi.org/10.1021/acs.jpcc.5b09055
- H. Yin, S. Chen, P. Bi, X. Xu, S.H. Cheung et al., Rationalizing device performance of perylenediimide derivatives as acceptors for bulk-heterojunction organic solar cells. Org. Electron. 65, 156 (2019). https://doi.org/10.1016/j.orgel.2018.11.006
- L. An, Z. Zhang, J. Feng, F. Lv, Y. Li et al., Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc-air battery with neutral aqueous electrolyte. J. Am. Chem. Soc. 140, 17624–17631 (2018). https://doi.org/10.1021/jacs.8b09805
- H. Yin, K.L. Chiu, C.H.Y. Ho, H.K.H. Lee, H.W. Li, Y. Cheng, S.W. Tsang, S.K. So, Bulk-heterojunction solar cells with enriched polymer contents. Org. Electron. 40, 1–7 (2017). https://doi.org/10.1016/j.orgel.2016.10.030
- Y. Wang, B. Hou, Y. Wang, H. Lu, J. Guo, Q. Ning, J. Zhang, C. Lu, X. Wu, Multiple heterointerfaces boosted de-/sodiation kinetics towards superior Na storage and Na-Ion full battery. J. Mater. Chem. A 6, 6578–6586 (2018). https://doi.org/10.1039/C8TA01132J
- X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, J. Gong, Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 137, 8356–8359 (2015). https://doi.org/10.1021/jacs.5b04186
- J. Nishitani, K.M. Yu, W. Walukiewicz, Charge transfer and mobility enhancement at CdO/SnTe heterointerfaces. Appl. Phys. Lett. 105, 132103 (2014). https://doi.org/10.1063/1.4896912
- H. Yin, J.K.W. Ho, S.H. Cheung, R.J. Yan, K.L. Chiu, X. Hao, S.K. So, Designing a ternary photovoltaic cell for indoor light harvesting with a power conversion efficiency exceeding 20%. J. Mater. Chem. A 6, 8579–8585 (2018). https://doi.org/10.1039/C8TA01728J
- J. Wang, J. Liu, H. Yang, D. Chao, J. Yan, S.V. Savilove, J. Lin, Z.X. Shen, MoS2 nanosheets decorated Ni3S2@MoS2 coaxial nanofibers: constructing an ideal heterostructure for enhanced Na-ion storage. Nano Energy 20, 1–10 (2016). https://doi.org/10.1016/j.nanoen.2015.12.010
- J. Wang, D. Chao, J. Liu, L. Li, L. Lai, J. Lin, Z. Shen, Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage. Nano Energy 7, 151–160 (2014). https://doi.org/10.1016/j.nanoen.2014.04.019
- L. Fang, Z. Lan, W. Guan, P. Zhou, N. Bahlawane et al., Hetero-interface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage. Energy Storage Mater. 18, 107–113 (2019). https://doi.org/10.1016/j.ensm.2018.10.002
- Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu, Z. Guo, Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 55, 3408–3413 (2016). https://doi.org/10.1002/anie.201510978
- Z. Zhang, J. Zhao, M. Xu, H. Wang, Y. Gong, J. Xu, Facile synthesis of Sb2S3/MoS2 heterostructure as anode material for sodium-ion batteries. Nanotechnology 29, 335401 (2018). https://doi.org/10.1088/1361-6528/aac645
- S. Dong, C. Li, X. Ge, Z. Li, X. Miao, L. Yin, ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano 11, 6474–6482 (2017). https://doi.org/10.1021/acsnano.7b03321
- H. Ming, N.L.K. Torad, Y.D. Chiang, K.C.W. Wu, Size- and shape-controlled synthesis of Prussian Blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. CrystEngComm 14, 3387–3396 (2012). https://doi.org/10.1039/c2ce25040c
- G. Kresse, J. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993). https://doi.org/10.1103/PhysRevB.47.558
- G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188
- MathSciNet
- G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901 (2000). https://doi.org/10.1063/1.1329672
- B. Hou, Y. Wang, J. Guo, Q. Ning, X. Xi et al., Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries. Nanoscale 10, 9218–9225 (2018). https://doi.org/10.1039/C7NR09674G
- X. Zhu, D. Liu, D. Zheng, G. Wang, X. Huang, J. Harris, D. Qu, D. Qu, Dual carbon-protected metal sulfides and their application to sodium-ion battery anodes. J. Mater. Chem. A 6, 13294–13301 (2018). https://doi.org/10.1039/C8TA03444C
- Q. Pan, Q. Zhang, F. Zheng, Y. Liu, Y. Li et al., Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries. ACS Nano 12, 12578–12586 (2018). https://doi.org/10.1021/acsnano.8b07172
- Z. Yang, P. Zhang, J. Wang, Y. Yan, Y. Yu, Q. Wang, M. Liu, Hierarchical carbon@SnS2 aerogel with “skeleton/skin” architectures as a high-capacity, high-rate capability and long cycle life anode for sodium ion storage. ACS Appl. Mater. Interfaces 10, 37434–37444 (2018). https://doi.org/10.1021/acsami.8b14861
- B. Hou, Y. Wang, D. Liu, Z. Gu, X. Feng et al., N-doped carbon-coated Ni1.8Co1.2Se4 nanoaggregates encapsulated in N-doped carbon nanoboxes as advanced anode with outstanding high-rate and low-temperature performance for sodium-ion half/full batteries. Adv. Funct. Mater. 28, 1805444 (2018). https://doi.org/10.1002/adfm.201805444
- Z. Liu, T. Lu, T. Song, X. Yu, X.W. Lou, U. Paik, Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10, 1576–1580 (2017). https://doi.org/10.1039/C7EE01100H
- Q. Wang, W. Zhang, C. Guo, Y. Liu, C. Wang, Z. Guo, In situ construction of 3D interconnected FeS@Fe3C@graphitic carbon networks for high-performance sodium-ion batteries. Adv. Funct. Mater. 27, 1703390 (2017). https://doi.org/10.1002/adfm.201703390
- W. Yu, C. Liu, L. Zhang, P. Hou, F. Li, B. Zhang, H. Cheng, Synthesis and electrochemical lithium storage behavior of carbon nanotubes filled with iron sulfide nanoparticles. Adv. Sci. 3, 1600113 (2016). https://doi.org/10.1002/advs.201600113
- D. Su, S. Dou, G. Wang, Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv. Energy Mater. 5, 1401205 (2015). https://doi.org/10.1002/aenm.201401205
- Y. Wang, B. Hou, J. Guo, Q. Ning, W. Pang, J. Wang, C. Lü, X. Wu, An Ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv. Energy Mater. 8, 1703252 (2018). https://doi.org/10.1002/aenm.201703252
- Z. Wu, J. Li, Y. Zhong, J. Liu, K. Wang et al., Synthesis of FeS@C-N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. J. Alloys Compds. 688, 790–797 (2016). https://doi.org/10.1016/j.jallcom.2016.07.268
- X. Wei, W. Li, J. Shi, L. Gu, Y. Yu, FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces 7, 27804–27809 (2015). https://doi.org/10.1021/acsami.5b09062
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601
- S. Huang, L. Liu, Y. Zheng, Y. Wang, D. Kong et al., Effcient sodium storage in rolled-up amorphous Si nanomembranes. Adv. Mater. 30, 1706637 (2018). https://doi.org/10.1002/adma.201706637
- P.K. Dutta, U.K. Sen, S. Mitra, Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode. RSC Adv. 4, 43155–43159 (2014). https://doi.org/10.1039/C4RA05851H
- S. Chen, Z. Chen, Y. Luo, M. Xia, C. Cao, Silicon hollow sphere anode with enhanced cycling stability by a template-free method. Nanotechnology 28, 165404 (2017). https://doi.org/10.1088/1361-6528/aa63a1
- D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
- S. Chen, Z. Chen, C. Cao, Mesoporous spinel LiMn2O4 cathode material by a soft-templating route. Electrochim. Acta 199, 51–58 (2016). https://doi.org/10.1016/j.electacta.2016.03.135
- S. Chen, Z. Chen, X. Xu, C. Cao, M. Xia, Y. Luo, Scalable 2D mesoporous silicon nanosheets for high-performance lithium-ion battery anode. Small 14, 1703361 (2018). https://doi.org/10.1002/smll.201703361
- G. Fang, Z. Wu, J. Zhou, C. Zhu, X. Cao et al., Pseudocapacitive effect and fast ion diffusion in bimetallic sulfdes as an advanced sodium-ion battery anode. Adv. Energy Mater. 8, 1703155 (2018). https://doi.org/10.1002/aenm.201703155
- S. Huang, S. Fan, L. Xie, Q. Wu, D. Kong et al., Promoting highly reversible sodium storage of iron sulfde hollow polyhedrons via cobalt incorporation and graphene wrapping. Adv. Energy Mater. 9, 1901584 (2019). https://doi.org/10.1002/aenm.201901584
- X. Wang, X. Shen, Z. Wang, R. Yu, L. Chen, Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 8, 11394–11400 (2014). https://doi.org/10.1021/nn505501v
- P. Gao, L. Wang, Y. Zhang, Y. Huang, K. Liu, Atomic-scale probing of the dynamics of sodium transport and intercalation-induced phase transformations in MoS2. ACS Nano 9, 11296–11301 (2015). https://doi.org/10.1021/acsnano.5b04950
References
J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529 (2017). https://doi.org/10.1039/C6CS00776G
Y. Wang, D. Kong, W. Shi, B. Liu, G.J. Sim, Q. Ge, H.Y. Yang, Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv. Energy Mater. 6, 1601057 (2016). https://doi.org/10.1002/aenm.201601057
D. Kong, Y. Wang, Y.V. Lim, S. Huang, J. Zhang, B. Liu, T. Chen, H. Yang, 3D hierarchical defect-rich NiMo3S4 nanosheet arrays grown on carbon textiles for high-performance sodium-ion batteries and hydrogen evolution reaction. Nano Energy 49, 460–470 (2018). https://doi.org/10.1016/j.nanoen.2018.04.051
Y. Wang, D. Kong, S. Huang, Y. Shi, M. Ding et al., 3D carbon foam supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. J. Mater. Chem. A 6, 10813 (2018). https://doi.org/10.1039/C8TA02773K
S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011). https://doi.org/10.1039/c1ee01782a
Y. Zhao, A. Manthiram, Amorphous Sb2S3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries. Chem. Commun. 51, 13205–13208 (2015). https://doi.org/10.1039/C5CC03825A
L. Cao, B. Zhang, X. Ou, C. Wang, C. Peng, J. Zhang, Synergistical coupling interconnected ZnS/SnS2 nanoboxes with polypyrrole-derived N/S dual-doped carbon for boosting high-performance sodium storage. Small 15, 1804861 (2019). https://doi.org/10.1002/smll.201804861
W. Chen, X. Zhang, L. Mi, C. Liu, J. Zhang et al., High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv. Mater. 31, 1806664 (2019). https://doi.org/10.1002/adma.201806664
D. Li, D. Yang, X. Yang, Y. Wang, Z. Guo, Y. Xia, S. Sun, S. Guo, Double-helix structure in carrageenan-metal hydrogels: a general approach to porous metal sulfides/carbon aerogels with excellent sodium-ion storage. Angew. Chem. Int. Ed. 55, 15925–15928 (2016). https://doi.org/10.1002/anie.201610301
J.K. Kim, S.K. Park, J.S. Park, Y.C. Kang, Uniquely structured composite microspheres of metal sulfides and carbon with cubic nanorooms for highly efficient anode materials for sodium-ion batteries. J. Mater. Chem. A 7, 2636–2645 (2019). https://doi.org/10.1039/C8TA11481A
Y. Xiao, S.H. Lee, Y.K. Sun, The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 7, 1601329 (2017). https://doi.org/10.1002/aenm.201601329
Y. Xiao, J.Y. Hwang, I. Belharouak, Y.K. Sun, Na storage capability investigation of a carbon nanotube-encapsulated Fe1−xS composite. ACS Energy Lett. 2, 364–372 (2017). https://doi.org/10.1021/acsenergylett.6b00660
J. Xiang, Z. Liu, T. Song, Hierarchical iron sulfide-graphene nanocubes consisting of multiple nanoparticles with superior sodium ion storage properties. Electrochim. Acta 283, 683–690 (2018). https://doi.org/10.1016/j.electacta.2018.07.017
Q. Pan, F. Zheng, X. Ou, C. Yang, X. Xiong, Z. Tang, L. Zhao, M. Liu, MoS2 decorated Fe3O4/Fe1−xS@C nanosheets as high-performance anode materials for lithium ion and sodium ion batteries. ACS Sustain. Chem. Eng. 5, 4739–4745 (2017). https://doi.org/10.1021/acssuschemeng.7b00119
X. Xu, R. Zhao, W. Ai, B. Chen, H. Du et al., Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: toward fast sodium storage by tunable pseudocapacitance. Adv. Mater. 30, 1800658 (2018). https://doi.org/10.1002/adma.201800658
D. Sun, D. Ye, P. Liu, Y. Tang, J. Guo, L. Wang, H. Wang, MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv. Energy Mater. 8, 1702383 (2018). https://doi.org/10.1002/aenm.201702383
X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv. Funct. Mater. 25, 1393–1403 (2015). https://doi.org/10.1002/adfm.201404078
Y. Huang, Q. Pan, H. Wang, C. Ji, X. Wu, Z. He, Q. Li, Preparation of a Sn@SnO2@C@MoS2 composite as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 4, 7185–7189 (2016). https://doi.org/10.1039/C6TA02080A
H. Yin, S.H. Cheung, J.H.L. Ngai, C.H.Y. Ho, K.L. Chiu et al., Thick-film high-performance bulk-heterojunction solar cells retaining 90% PCEs of the optimized thin film cells. Adv. Electron. Mater. 3, 1700007 (2017). https://doi.org/10.1002/aelm.201700007
H. Yin, P. Bi, S.H. Cheung, W.L. Cheng, K.L. Chiu et al., Balanced electric field dependent mobilities: a key to access high fill factors in organic bulk heterojunction solar cells. Sol. RRL 2, 1700239 (2018). https://doi.org/10.1002/solr.201700239
X. Hong, J. Kim, S.F. Shi, Y. Zhang, C. Jin et al., Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014). https://doi.org/10.1038/nnano.2014.167
H. Yin, S. Chen, S.H. Cheung, H.W. Li, Y. Xie et al., Porphyrin-based thick-film bulk-heterojunction solar cells for indoor light harvesting. J. Mater. Chem. C 6, 9111–9118 (2018). https://doi.org/10.1039/C8TC02838A
Y. Ji, W. Guo, H. Chen, L. Zhang, S. Chen, M. Hua, Y. Long, Z. Chen, Surface Ti3+/Ti4+ redox shuttle enhancing photocatalytic H2 production in ultrathin TiO2 nanosheets/CdSe quantum dots. J. Phys. Chem. C 119, 27053–27059 (2015). https://doi.org/10.1021/acs.jpcc.5b09055
H. Yin, S. Chen, P. Bi, X. Xu, S.H. Cheung et al., Rationalizing device performance of perylenediimide derivatives as acceptors for bulk-heterojunction organic solar cells. Org. Electron. 65, 156 (2019). https://doi.org/10.1016/j.orgel.2018.11.006
L. An, Z. Zhang, J. Feng, F. Lv, Y. Li et al., Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc-air battery with neutral aqueous electrolyte. J. Am. Chem. Soc. 140, 17624–17631 (2018). https://doi.org/10.1021/jacs.8b09805
H. Yin, K.L. Chiu, C.H.Y. Ho, H.K.H. Lee, H.W. Li, Y. Cheng, S.W. Tsang, S.K. So, Bulk-heterojunction solar cells with enriched polymer contents. Org. Electron. 40, 1–7 (2017). https://doi.org/10.1016/j.orgel.2016.10.030
Y. Wang, B. Hou, Y. Wang, H. Lu, J. Guo, Q. Ning, J. Zhang, C. Lu, X. Wu, Multiple heterointerfaces boosted de-/sodiation kinetics towards superior Na storage and Na-Ion full battery. J. Mater. Chem. A 6, 6578–6586 (2018). https://doi.org/10.1039/C8TA01132J
X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, J. Gong, Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 137, 8356–8359 (2015). https://doi.org/10.1021/jacs.5b04186
J. Nishitani, K.M. Yu, W. Walukiewicz, Charge transfer and mobility enhancement at CdO/SnTe heterointerfaces. Appl. Phys. Lett. 105, 132103 (2014). https://doi.org/10.1063/1.4896912
H. Yin, J.K.W. Ho, S.H. Cheung, R.J. Yan, K.L. Chiu, X. Hao, S.K. So, Designing a ternary photovoltaic cell for indoor light harvesting with a power conversion efficiency exceeding 20%. J. Mater. Chem. A 6, 8579–8585 (2018). https://doi.org/10.1039/C8TA01728J
J. Wang, J. Liu, H. Yang, D. Chao, J. Yan, S.V. Savilove, J. Lin, Z.X. Shen, MoS2 nanosheets decorated Ni3S2@MoS2 coaxial nanofibers: constructing an ideal heterostructure for enhanced Na-ion storage. Nano Energy 20, 1–10 (2016). https://doi.org/10.1016/j.nanoen.2015.12.010
J. Wang, D. Chao, J. Liu, L. Li, L. Lai, J. Lin, Z. Shen, Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage. Nano Energy 7, 151–160 (2014). https://doi.org/10.1016/j.nanoen.2014.04.019
L. Fang, Z. Lan, W. Guan, P. Zhou, N. Bahlawane et al., Hetero-interface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage. Energy Storage Mater. 18, 107–113 (2019). https://doi.org/10.1016/j.ensm.2018.10.002
Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu, Z. Guo, Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 55, 3408–3413 (2016). https://doi.org/10.1002/anie.201510978
Z. Zhang, J. Zhao, M. Xu, H. Wang, Y. Gong, J. Xu, Facile synthesis of Sb2S3/MoS2 heterostructure as anode material for sodium-ion batteries. Nanotechnology 29, 335401 (2018). https://doi.org/10.1088/1361-6528/aac645
S. Dong, C. Li, X. Ge, Z. Li, X. Miao, L. Yin, ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano 11, 6474–6482 (2017). https://doi.org/10.1021/acsnano.7b03321
H. Ming, N.L.K. Torad, Y.D. Chiang, K.C.W. Wu, Size- and shape-controlled synthesis of Prussian Blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. CrystEngComm 14, 3387–3396 (2012). https://doi.org/10.1039/c2ce25040c
G. Kresse, J. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993). https://doi.org/10.1103/PhysRevB.47.558
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188
MathSciNet
G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901 (2000). https://doi.org/10.1063/1.1329672
B. Hou, Y. Wang, J. Guo, Q. Ning, X. Xi et al., Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries. Nanoscale 10, 9218–9225 (2018). https://doi.org/10.1039/C7NR09674G
X. Zhu, D. Liu, D. Zheng, G. Wang, X. Huang, J. Harris, D. Qu, D. Qu, Dual carbon-protected metal sulfides and their application to sodium-ion battery anodes. J. Mater. Chem. A 6, 13294–13301 (2018). https://doi.org/10.1039/C8TA03444C
Q. Pan, Q. Zhang, F. Zheng, Y. Liu, Y. Li et al., Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries. ACS Nano 12, 12578–12586 (2018). https://doi.org/10.1021/acsnano.8b07172
Z. Yang, P. Zhang, J. Wang, Y. Yan, Y. Yu, Q. Wang, M. Liu, Hierarchical carbon@SnS2 aerogel with “skeleton/skin” architectures as a high-capacity, high-rate capability and long cycle life anode for sodium ion storage. ACS Appl. Mater. Interfaces 10, 37434–37444 (2018). https://doi.org/10.1021/acsami.8b14861
B. Hou, Y. Wang, D. Liu, Z. Gu, X. Feng et al., N-doped carbon-coated Ni1.8Co1.2Se4 nanoaggregates encapsulated in N-doped carbon nanoboxes as advanced anode with outstanding high-rate and low-temperature performance for sodium-ion half/full batteries. Adv. Funct. Mater. 28, 1805444 (2018). https://doi.org/10.1002/adfm.201805444
Z. Liu, T. Lu, T. Song, X. Yu, X.W. Lou, U. Paik, Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10, 1576–1580 (2017). https://doi.org/10.1039/C7EE01100H
Q. Wang, W. Zhang, C. Guo, Y. Liu, C. Wang, Z. Guo, In situ construction of 3D interconnected FeS@Fe3C@graphitic carbon networks for high-performance sodium-ion batteries. Adv. Funct. Mater. 27, 1703390 (2017). https://doi.org/10.1002/adfm.201703390
W. Yu, C. Liu, L. Zhang, P. Hou, F. Li, B. Zhang, H. Cheng, Synthesis and electrochemical lithium storage behavior of carbon nanotubes filled with iron sulfide nanoparticles. Adv. Sci. 3, 1600113 (2016). https://doi.org/10.1002/advs.201600113
D. Su, S. Dou, G. Wang, Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv. Energy Mater. 5, 1401205 (2015). https://doi.org/10.1002/aenm.201401205
Y. Wang, B. Hou, J. Guo, Q. Ning, W. Pang, J. Wang, C. Lü, X. Wu, An Ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv. Energy Mater. 8, 1703252 (2018). https://doi.org/10.1002/aenm.201703252
Z. Wu, J. Li, Y. Zhong, J. Liu, K. Wang et al., Synthesis of FeS@C-N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. J. Alloys Compds. 688, 790–797 (2016). https://doi.org/10.1016/j.jallcom.2016.07.268
X. Wei, W. Li, J. Shi, L. Gu, Y. Yu, FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces 7, 27804–27809 (2015). https://doi.org/10.1021/acsami.5b09062
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601
S. Huang, L. Liu, Y. Zheng, Y. Wang, D. Kong et al., Effcient sodium storage in rolled-up amorphous Si nanomembranes. Adv. Mater. 30, 1706637 (2018). https://doi.org/10.1002/adma.201706637
P.K. Dutta, U.K. Sen, S. Mitra, Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode. RSC Adv. 4, 43155–43159 (2014). https://doi.org/10.1039/C4RA05851H
S. Chen, Z. Chen, Y. Luo, M. Xia, C. Cao, Silicon hollow sphere anode with enhanced cycling stability by a template-free method. Nanotechnology 28, 165404 (2017). https://doi.org/10.1088/1361-6528/aa63a1
D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
S. Chen, Z. Chen, C. Cao, Mesoporous spinel LiMn2O4 cathode material by a soft-templating route. Electrochim. Acta 199, 51–58 (2016). https://doi.org/10.1016/j.electacta.2016.03.135
S. Chen, Z. Chen, X. Xu, C. Cao, M. Xia, Y. Luo, Scalable 2D mesoporous silicon nanosheets for high-performance lithium-ion battery anode. Small 14, 1703361 (2018). https://doi.org/10.1002/smll.201703361
G. Fang, Z. Wu, J. Zhou, C. Zhu, X. Cao et al., Pseudocapacitive effect and fast ion diffusion in bimetallic sulfdes as an advanced sodium-ion battery anode. Adv. Energy Mater. 8, 1703155 (2018). https://doi.org/10.1002/aenm.201703155
S. Huang, S. Fan, L. Xie, Q. Wu, D. Kong et al., Promoting highly reversible sodium storage of iron sulfde hollow polyhedrons via cobalt incorporation and graphene wrapping. Adv. Energy Mater. 9, 1901584 (2019). https://doi.org/10.1002/aenm.201901584
X. Wang, X. Shen, Z. Wang, R. Yu, L. Chen, Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 8, 11394–11400 (2014). https://doi.org/10.1021/nn505501v
P. Gao, L. Wang, Y. Zhang, Y. Huang, K. Liu, Atomic-scale probing of the dynamics of sodium transport and intercalation-induced phase transformations in MoS2. ACS Nano 9, 11296–11301 (2015). https://doi.org/10.1021/acsnano.5b04950