A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium–Sulfur Batteries
Corresponding Author: Chao Lai
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 71
Abstract
The utilization of solid-state electrolytes (SSEs) presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries, which has garnered significant interest recently. However, the high interfacial impedances existing between the SSEs and the electrodes (both lithium anodes and sulfur cathodes) hinder the charge transfer and intensify the uneven deposition of lithium, which ultimately result in insufficient capacity utilization and poor cycling stability. Hence, the reduction of interfacial resistance between SSEs and electrodes is of paramount importance in the pursuit of efficacious solid-state batteries. In this review, we focus on the experimental strategies employed to enhance the interfacial contact between SSEs and electrodes, and summarize recent progresses of their applications in solid-state Li–S batteries. Moreover, the challenges and perspectives of rational interfacial design in practical solid-state Li–S batteries are outlined as well. We expect that this review will provide new insights into the further technique development and practical applications of solid-state lithium batteries.
Highlights:
1 The engineering design principles for enhancing interfacial contact between the electrodes (Li anodes and S cathode) and solid-state electrolytes in solid-state Li–S batteries are classified and discussed.
2 Research progresses of experimental strategies for reducing interfacial impedance in solid-state Li–S batteries are summarized.
3 Challenges and future perspectives of rational interfacial strategies in solid-state Li–S batteries are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
- C.-X. Bi, M. Zhao, L.-P. Hou, Z.-X. Chen, X.-Q. Zhang et al., Anode material options toward 500 wh kg−1 lithium-sulfur batteries. Adv. Sci. 9, e2103910 (2022). https://doi.org/10.1002/advs.202103910
- Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016). https://doi.org/10.1038/nenergy.2016.132
- A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 46(5), 1125–1134 (2013). https://doi.org/10.1021/ar300179v
- Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016). https://doi.org/10.1039/c5cs00410a
- T. Liu, H. Hu, X. Ding, H. Yuan, C. Jin et al., 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Mater. 30, 346–366 (2020). https://doi.org/10.1016/j.ensm.2020.05.023
- X. Zhang, Y. Yang, Z. Zhou, Towards practical lithium-metal anodes. Chem. Soc. Rev. 49(20), 3040–3071 (2020). https://doi.org/10.1039/c9cs00838a
- Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang et al., Advances in lithium-sulfur batteries: From academic research to commercial viability. Adv. Mater. 33, e2003666 (2021). https://doi.org/10.1002/adma.202003666
- F. Zhao, J. Xue, W. Shao, H. Yu, W. Huang et al., Toward high-sulfur-content, high-performance lithium-sulfur batteries: review of materials and technologies. J. Energy Chem. 80, 625–657 (2023). https://doi.org/10.1016/j.jechem.2023.02.009
- W. Yan, J. Wei, T. Chen, L. Duan, L. Wang et al., Superstretchable, thermostable and ultrahigh-loading lithium–sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy 80, 105510 (2021). https://doi.org/10.1016/j.nanoen.2020.105510
- W. Yan, K.-Y. Yan, G.-C. Kuang, Z. Jin, Fluorinated quinone derived organosulfur copolymer cathodes for long-cycling, thermostable and flexible lithium–sulfur batteries. Chem. Eng. J. 424, 130316 (2021). https://doi.org/10.1016/j.cej.2021.130316
- L. Fan, M. Li, X. Li, W. Xiao, Z. Chen et al., Interlayer material selection for lithium-sulfur batteries. Joule 3(2), 361–386 (2019). https://doi.org/10.1016/j.joule.2019.01.003
- M. Zhao, B.-Q. Li, H.-J. Peng, H. Yuan, J.-Y. Wei et al., Lithium-sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. 59, 12636–12652 (2020). https://doi.org/10.1002/anie.201909339
- Y. Zhong, P. Huang, W. Yan, Z. Su, C. Sun et al., Ion-conductive polytitanosiloxane networks enable a robust solid-electrolyte interface for long-cycling lithium metal anodes. Adv. Funct. Mater. 32(9), 2110347 (2022). https://doi.org/10.1002/adfm.202110347
- M. Jiang, Z. Zhang, B. Tang, T. Dong, H. Xu et al., Polymer electrolytes for Li-S batteries: polymeric fundamentals and performance optimization. J. Energy Chem. 58, 300–317 (2021). https://doi.org/10.1016/j.jechem.2020.10.009
- W.-J. Chen, B.-Q. Li, C.-X. Zhao, M. Zhao, T.-Q. Yuan et al., Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes. Angew. Chem. Int. Ed. 59(27), 10732–10745 (2020). https://doi.org/10.1002/anie.201912701
- X. Yang, J. Luo, X. Sun, Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design. Chem. Soc. Rev. 49(7), 2140–2195 (2020). https://doi.org/10.1039/c9cs00635d
- H. Li, S. Ma, J. Li, F. Liu, H. Zhou et al., Altering the reaction mechanism to eliminate the shuttle effect in lithium-sulfur batteries. Energy Storage Mater. 26, 203–212 (2020). https://doi.org/10.1016/j.ensm.2020.01.002
- H. Li, S. Ma, H. Cai, H. Zhou, Z. Huang et al., Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries. Energy Storage Mater. 18, 338–348 (2019). https://doi.org/10.1016/j.ensm.2018.08.016
- H. Pan, Z. Cheng, Z. Zhou, S. Xie, W. Zhang et al., Boosting lean electrolyte lithium-sulfur battery performance with transition metals: a comprehensive review. Nano-Micro Lett. 15, 165 (2023). https://doi.org/10.1007/s40820-023-01137-y
- B. Ding, J. Wang, Z. Fan, S. Chen, Q. Lin et al., Solid-state lithium–sulfur batteries: advances, challenges and perspectives. Mater. Today 40, 114–131 (2020). https://doi.org/10.1016/j.mattod.2020.05.020
- Y. Gong, J. Li, K. Yang, S. Li, M. Xu et al., Towards practical application of Li–S battery with high sulfur loading and lean electrolyte: Will carbon-based hosts win this race? Nano-Micro Lett. 15, 150 (2023). https://doi.org/10.1007/s40820-023-01120-7
- Y. Wang, Y. Zhao, K. Liu, S. Wang, N. Li et al., Li intercalation in an MoSe2 electrocatalyst: in situ observation and modulation of its precisely controllable phase engineering for a high-performance flexible Li-S battery. Carbon Energy 5(2), e255 (2023). https://doi.org/10.1002/cey2.255
- A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
- J. Gu, Z. Liang, J. Shi, Y. Yang, Electrochemo-mechanical stresses and their measurements in sulfide-based all-solid-state batteries: a review. Adv. Energy Mater. 13, 2203153 (2023). https://doi.org/10.1002/aenm.202203153
- Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang et al., Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, e1705702 (2018). https://doi.org/10.1002/adma.201705702
- T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3
- M. Liu, S. Ganapathy, M. Wagemaker, A direct view on Li-ion transport and Li-metal plating in inorganic and hybrid solid-state electrolytes. Acc. Chem. Res. 55(3), 333–344 (2022). https://doi.org/10.1021/acs.accounts.1c00618
- M.L. Holekevi Chandrappa, J. Qi, C. Chen, S. Banerjee, S.P. Ong, Thermodynamics and kinetics of the cathode-electrolyte interface in all-solid-state Li-S batteries. J. Am. Chem. Soc. 144(39), 18009–18022 (2022). https://doi.org/10.1021/jacs.2c07482
- X. Zhu, L. Wang, Z. Bai, J. Lu, T. Wu, Sulfide-based all-solid-state lithium-sulfur batteries: challenges and perspectives. Nano-Micro Lett. 15, 75 (2023). https://doi.org/10.1007/s40820-023-01053-1
- W.D. Jung, J.S. Kim, S. Choi, S. Kim, M. Jeon et al., Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal growth. Nano Lett. 20(4), 2303–2309 (2020). https://doi.org/10.1021/acs.nanolett.9b04597
- N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno et al., A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). https://doi.org/10.1038/nmat3066
- L. Zhou, A. Assoud, Q. Zhang, X. Wu, L.F. Nazar, New family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc. 141(48), 19002–19013 (2019). https://doi.org/10.1021/jacs.9b08357
- P. Adeli, J.D. Bazak, A. Huq, G.R. Goward, L.F. Nazar, Influence of aliovalent cation substitution and mechanical compression on Li-ion conductivity and diffusivity in argyrodite solid electrolytes. Chem. Mater. 33(1), 146–157 (2021). https://doi.org/10.1021/acs.chemmater.0c03090
- Y. Lee, J. Jeong, H.-D. Lim, S.-O. Kim, H.-G. Jung et al., Superionic Si-substituted lithium argyrodite sulfide electrolyte Li6+xSb1–xSixS5I for all-solid-state batteries. ACS Sustain. Chem. Eng. 9(1), 120–128 (2021). https://doi.org/10.1021/acssuschemeng.0c05549
- Y. Nikodimos, C.-J. Huang, B.W. Taklu, W.-N. Su, B.J. Hwang, Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy Environ. Sci. 15(3), 991–1033 (2022). https://doi.org/10.1039/D1EE03032A
- S. Sun, J. Wang, S. Zong, Q. Ma, H. Li et al., Integration plasma strategy controlled interfacial chemistry regulation enabling planar lithium growth in solid-state lithium metal batteries. Adv. Funct. Mater. 33, 2304929 (2023). https://doi.org/10.1002/adfm.202304929
- S. Guo, Y. Li, B. Li, N.S. Grundish, A.-M. Cao et al., Coordination-assisted precise construction of metal oxide nanofilms for high-performance solid-state batteries. J. Am. Chem. Soc. 144(5), 2179–2188 (2022). https://doi.org/10.1021/jacs.1c10872
- A. Cheng, X. He, R. Wang, B. Shan, K. Wang et al., Low-cost molten salt coating enabling robust Li/garnet interface for dendrite-free all-solid-state lithium batteries. Chem. Eng. J. 450, 138236 (2022). https://doi.org/10.1016/j.cej.2022.138236
- X. Han, Y. Gong, K.K. Fu, X. He, G.T. Hitz et al., Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017). https://doi.org/10.1038/nmat4821
- C. Shi, T. Hamann, S. Takeuchi, G.V. Alexander, A.M. Nolan et al., 3D asymmetric bilayer garnet-hybridized high-energy-density lithium-sulfur batteries. ACS Appl. Mater. Interfaces 15(1), 751–760 (2023). https://doi.org/10.1021/acsami.2c14087
- Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31, e1902029 (2019). https://doi.org/10.1002/adma.201902029
- Y. An, X. Han, Y. Liu, A. Azhar, J. Na et al., Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 18, 2103617 (2022). https://doi.org/10.1002/smll.202103617
- S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35, e2110423 (2023). https://doi.org/10.1002/adma.202110423
- K.S. Oh, J.E. Lee, Y.H. Lee, Y.S. Jeong, I. Kristanto et al., Elucidating ion transport phenomena in sulfide/polymer composite electrolytes for practical solid-state batteries. Nano-Micro Lett. 15, 179 (2023). https://doi.org/10.1007/s40820-023-01139-w
- Z. Lin, X. Guo, R. Zhang, M. Tang, P. Ding et al., Molecular structure adjustment enhanced anti-oxidation ability of polymer electrolyte for solid-state lithium metal battery. Nano Energy 98, 107330 (2022). https://doi.org/10.1016/j.nanoen.2022.107330
- P. Zhai, Z. Yang, Y. Wei, X. Guo, Y. Gong, Two-dimensional fluorinated graphene reinforced solid polymer electrolytes for high-performance solid-state lithium batteries. Adv. Energy Mater. 12, 2200967 (2022). https://doi.org/10.1002/aenm.202200967
- G.G. Eshetu, X. Judez, C. Li, O. Bondarchuk, L.M. Rodriguez-Martinez et al., Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries. Angew. Chem. Int. Ed. 56(48), 15368–15372 (2017). https://doi.org/10.1002/anie.201709305
- Y. He, Y. Qiao, Z. Chang, X. Cao, M. Jia et al., Developing a polysulfide-phobic strategy to restrain shuttle effect in lithium-sulfur batteries. Angew. Chem. Int. Ed. 58(34), 11774–11778 (2019). https://doi.org/10.1002/anie.201906055
- Q. Pang, A. Shyamsunder, B. Narayanan, C.Y. Kwok, L.A. Curtiss et al., Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 3, 783–791 (2018). https://doi.org/10.1038/s41560-018-0214-0
- Q. Zheng, Y. Yamada, R. Shang, S. Ko, Y.-Y. Lee et al., A cyclic phosphate-based battery electrolyte for high voltage and safe operation. Nat. Energy 5, 291–298 (2020). https://doi.org/10.1038/s41560-020-0567-z
- H. Wu, B. Tang, X. Du, J. Zhang, X. Yu et al., LiDFOB initiated in situ polymerization of novel eutectic solution enables room-temperature solid lithium metal batteries. Adv. Sci. 7, 2003370 (2020). https://doi.org/10.1002/advs.202003370
- W. Liu, C. Yi, L. Li, S. Liu, Q. Gui et al., Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. 60(23), 12931–12940 (2021). https://doi.org/10.1002/anie.202101537
- M.J. Lee, J. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601, 217–222 (2022). https://doi.org/10.1038/s41586-021-04209-4
- Y.-Z. Sun, J.-Q. Huang, C.-Z. Zhao, Q. Zhang, A review of solid electrolytes for safe lithium-sulfur batteries. Sci. China Chem. 60, 1508–1526 (2017). https://doi.org/10.1007/s11426-017-9164-2
- J. Yue, M. Yan, Y.-X. Yin, Y.-G. Guo, Progress of the interface design in all-solid-state Li–S batteries. Adv. Funct. Mater. 28, 1707533 (2018). https://doi.org/10.1002/adfm.201707533
- X. Yu, A. Manthiram, Electrode-electrolyte interfaces in lithium-sulfur batteries with liquid or inorganic solid electrolytes. Acc. Chem. Res. 50(11), 2653–2660 (2017). https://doi.org/10.1021/acs.accounts.7b00460
- E. Umeshbabu, B. Zheng, Y. Yang, Recent progress in all-solid-state lithium−sulfur batteries using high Li-ion conductive solid electrolytes. Electrochem. Energy Rev. 2, 199–230 (2019). https://doi.org/10.1007/s41918-019-00029-3
- Z. Lin, Z. Liu, W. Fu, N.J. Dudney, C. Liang, Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew. Chem. Int. Ed. 52(29), 7460–7463 (2013). https://doi.org/10.1002/anie.201300680
- T. Hakari, A. Hayashi, M. Tatsumisago, Li2S-based solid solutions as positive electrodes with full utilization and superlong cycle life in all-solid-state Li/S batteries. Adv. Sustain. Syst. 1, 1700017 (2017). https://doi.org/10.1002/adsu.201700017
- K. Suzuki, N. Mashimo, Y. Ikeda, T. Yokoi, M. Hirayama et al., High cycle capability of all-solid-state lithium–sulfur batteries using composite electrodes by liquid-phase and mechanical mixing. ACS Appl. Energy Mater. 1(6), 2373–2377 (2018). https://doi.org/10.1021/acsaem.8b00227
- B.-S. Zhao, L. Wang, P. Chen, S. Liu, G.-R. Li et al., Congener substitution reinforced Li7P2.9Sb0.1S10.75O0.25 glass-ceramic electrolytes for all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 13(29), 34477–34485 (2021). https://doi.org/10.1021/acsami.1c10238
- D. Wang, L.-J. Jhang, R. Kou, M. Liao, S. Zheng et al., Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte. Nat. Commun. 14, 1895 (2023). https://doi.org/10.1038/s41467-023-37564-z
- H. Pan, M. Zhang, Z. Cheng, H. Jiang, J. Yang et al., Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Sci. Adv. 8, eabn4372 (2022). https://doi.org/10.1126/sciadv.abn4372
- M. Nagao, A. Hayashi, M. Tatsumisago, Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery. Electrochem. Commun. 22, 177–180 (2012). https://doi.org/10.1016/j.elecom.2012.06.015
- K.K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu et al., Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 3, e1601659 (2017). https://doi.org/10.1126/sciadv.1601659
- Y. Lu, X. Huang, Z. Song, K. Rui, Q. Wang et al., Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces. Energy Storage Mater. 15, 282–290 (2018). https://doi.org/10.1016/j.ensm.2018.05.018
- K. Fu, Y. Gong, G.T. Hitz, D.W. McOwen, Y. Li et al., Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10(7), 1568–1575 (2017). https://doi.org/10.1039/C7EE01004D
- W. Li, Q. Wang, J. Jin, Y. Li, M. Wu et al., Constructing dual interfacial modification by synergetic electronic and ionic conductors: toward high-performance LAGP-based Li-S batteries. Energy Storage Mater. 23, 299–305 (2019). https://doi.org/10.1016/j.ensm.2019.04.044
- A. Hayashi, T. Ohtomo, F. Mizuno, K. Tadanaga, M. Tatsumisago, All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochem. Commun. 5(8), 701–705 (2003). https://doi.org/10.1016/s1388-2481(03)00167-x
- T. Kobayashi, Y. Imade, D. Shishihara, K. Homma, M. Nagao et al., All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power. Sources 182(2), 621–625 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.030
- Z. Chen, Z. Liang, H. Zhong, Y. Su, K. Wang et al., Bulk/interfacial synergetic approaches enable the stable anode for high energy density all-solid-state lithium–sulfur batteries. ACS Energy Lett. 7(8), 2761–2770 (2022). https://doi.org/10.1021/acsenergylett.2c01334
- M. Chen, S. Adams, High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte. J. Solid State Electrochem. 19, 697–702 (2015). https://doi.org/10.1007/s10008-014-2654-1
- F. Han, J. Yue, X. Fan, T. Gao, C. Luo et al., High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett. 16(7), 4521–4527 (2016). https://doi.org/10.1021/acs.nanolett.6b01754
- A. Unemoto, S. Yasaku, G. Nogami, M. Tazawa, M. Taniguchi et al., Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte. Appl. Phys. Lett. 105, 083901 (2014). https://doi.org/10.1063/1.4893666
- X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan et al., High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7, 1602923 (2017). https://doi.org/10.1002/aenm.201602923
- R. Xu, J. Yue, S. Liu, J. Tu, F. Han et al., Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density. ACS Energy Lett. 4(5), 1073–1079 (2019). https://doi.org/10.1021/acsenergylett.9b00430
- X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao et al., Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 17(5), 2967–2972 (2017). https://doi.org/10.1021/acs.nanolett.7b00221
- J. Wang, X. Yan, Z. Zhang, R. Guo, H. Ying et al., Rational design of an electron/ion dual-conductive cathode framework for high-performance all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 12(37), 41323–41332 (2020). https://doi.org/10.1021/acsami.0c10463
- L. Wang, X. Yin, C. Jin, C. Lai, G. Qu et al., Cathode-supported-electrolyte configuration for high-performance all-solid-state lithium-sulfur batteries. ACS Appl. Energ. Mater. 3(12), 11540–11547 (2020). https://doi.org/10.1021/acsaem.0c02347
- Q. Zhao, X. Liu, S. Stalin, K. Khan, L.A. Archer, Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019). https://doi.org/10.1038/s41560-019-0349-7
- G. Xu, A. Kushima, J. Yuan, H. Dou, W. Xue et al., Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium-sulfur batteries. Energ. Environ. Sci. 10(12), 2544–2551 (2017). https://doi.org/10.1039/c7ee01898c
- F.-Q. Liu, W.-P. Wang, Y.-X. Yin, S.-F. Zhang, J.-L. Shi et al., Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 4, eaat5383 (2018). https://doi.org/10.1126/sciadv.aat5383
- M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin et al., Novel gel polymer electrolyte for high-performance lithium-sulfur batteries. Nano Energy 22, 278–289 (2016). https://doi.org/10.1016/j.nanoen.2016.02.008
- M. Liu, H.R. Jiang, Y.X. Ren, D. Zhou, F.Y. Kang et al., In-situ fabrication of a freestanding acrylate-based hierarchical electrolyte for lithium-sulfur batteries. Electrochim. Acta 213, 871–878 (2016). https://doi.org/10.1016/j.electacta.2016.08.015
- C. Monroe, J. Newman, The effect of interfacial deformation on electrodeposition kinetics. J. Electrochem. Soc. 151, A880 (2004). https://doi.org/10.1149/1.1710893
- L. Porz, T. Swamy, B.W. Sheldon, D. Rettenwander, T. Frömling et al., Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017). https://doi.org/10.1002/aenm.201701003
- Z. Ning, G. Li, D.L.R. Melvin, Y. Chen, J. Bu et al., Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618, 287–293 (2023). https://doi.org/10.1038/s41586-023-05970-4
- X. Zhang, Q. Xiang, S. Tang, A. Wang, X. Liu et al., Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface. Nano Lett. 20(4), 2871–2878 (2020). https://doi.org/10.1021/acs.nanolett.0c00693
- J.-M. Doux, Y. Yang, D.H.S. Tan, H. Nguyen, E.A. Wu et al., Pressure effects on sulfide electrolytes for all solid-state batteries. J. Mater. Chem. A 8(10), 5049–5055 (2020). https://doi.org/10.1039/C9TA12889A
- J. Lee, T. Lee, K. Char, K.J. Kim, J.W. Choi, Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 54(17), 3390–3402 (2021). https://doi.org/10.1021/acs.accounts.1c00333
- X. Zhu, W. Jiang, S. Zhao, R. Huang, M. Ling et al., Exploring the concordant solid-state electrolytes for all-solid-state lithium-sulfur batteries. Nano Energy 96, 107093 (2022). https://doi.org/10.1016/j.nanoen.2022.107093
- X. Liang, L. Wang, X. Wu, X. Feng, Q. Wu et al., Solid-state electrolytes for solid-state lithium-sulfur batteries: comparisons, advances and prospects. J. Energy Chem. 73, 370–386 (2022). https://doi.org/10.1016/j.jechem.2022.06.035
- M. Nagao, K. Suzuki, Y. Imade, M. Tateishi, R. Watanabe et al., All-solid-state lithium–sulfur batteries with three-dimensional mesoporous electrode structures. J. Power. Sources 330, 120–126 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.009
- M. Sakuma, K. Suzuki, M. Hirayama, R. Kanno, Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li–M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ion. 285, 101–105 (2016). https://doi.org/10.1016/j.ssi.2015.07.010
- S. Luo, Z. Wang, X. Li, X. Liu, H. Wang et al., Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun. 12, 6968 (2021). https://doi.org/10.1038/s41467-021-27311-7
- A. Kato, A. Hayashi, M. Tatsumisago, Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films. J. Power. Sources 309, 27–32 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.068
- W. Luo, Y. Gong, Y. Zhu, K.K. Fu, J. Dai et al., Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc. 138(37), 12258–12262 (2016). https://doi.org/10.1021/jacs.6b06777
- F. Zhang, Y. Guo, L. Zhang, P. Jia, X. Liu et al., A review of the effect of external pressure on all-solid-state batteries. Etransportation 15, 100220 (2023). https://doi.org/10.1016/j.etran.2022.100220
- C. Cui, Q. Ye, C. Zeng, S. Wang, X. Xu et al., One-step fabrication of garnet solid electrolyte with integrated lithiophilic surface. Energy Storage Mater. 45, 814–820 (2022). https://doi.org/10.1016/j.ensm.2021.12.027
- M. Balaish, J.C. Gonzalez-Rosillo, K.J. Kim, Y. Zhu, Z.D. Hood et al., Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 6, 227–239 (2021). https://doi.org/10.1038/s41560-020-00759-5
- Y. Zhao, L. Zhang, J. Liu, K. Adair, F. Zhao et al., Atomic/molecular layer deposition for energy storage and conversion. Chem. Soc. Rev. 50, 3889–3956 (2021). https://doi.org/10.1039/d0cs00156b
- S. Lobe, A. Bauer, S. Uhlenbruck, D. Fattakhova-Rohlfing, Physical vapor deposition in solid-state battery development: from materials to devices. Adv. Sci. 8, e2002044 (2021). https://doi.org/10.1002/advs.202002044
- M. Nagao, A. Hayashi, M. Tatsumisago, Bulk-type lithium metal secondary battery with indium thin layer at interface between Li electrode and Li2S-P2S5 solid electrolyte. Electrochemistry 80(10), 734–736 (2012). https://doi.org/10.5796/electrochemistry.80.734
- H.T. Kim, T. Mun, C. Park, S.W. Jin, H.Y. Park, Characteristics of lithium phosphorous oxynitride thin films deposited by metal-organic chemical vapor deposition technique. J. Power. Sources 244, 641–645 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.109
- A. Sharafi, H.M. Meyer, J. Nanda, J. Wolfenstine, J. Sakamoto, Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J. Power. Sources 302, 135–139 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.053
- S.-H. Wang, J. Yue, W. Dong, T.-T. Zuo, J.-Y. Li et al., Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 10, 4930 (2019). https://doi.org/10.1038/s41467-019-12938-4
- Z. Huang, W. Pang, P. Liang, Z. Jin, N. Grundish et al., A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. J. Mater. Chem. A 7(27), 16425–16436 (2019). https://doi.org/10.1039/C9TA03395E
- K. Nie, Y. Hong, J. Qiu, Q. Li, X. Yu et al., Interfaces between cathode and electrolyte in solid state lithium batteries: challenges and perspectives. Front. Chem. 6, 616 (2018). https://doi.org/10.3389/fchem.2018.00616
- K. Suzuki, D. Kato, K. Hara, T.-A. Yano, M. Hirayama et al., Composite sulfur electrode prepared by high-temperature mechanical milling for use in an all-solid-state lithium–sulfur battery with a Li3.25Ge0.25P0.75S4 electrolyte. Electrochim. Acta 258, 110–115 (2017). https://doi.org/10.1016/j.electacta.2017.09.156
- M. Sun, Z. Zeng, W. Zhong, Z. Han, L. Peng et al., In-situ polymerization methods for polymer-based solid-state lithium batteries. Batter. Supercaps 5(12), e202200338 (2022). https://doi.org/10.1002/batt.202200338
- V. Vijayakumar, B. Anothumakkool, S. Kurungot, M. Winter, J.R. Nair, In situ polymerization process: an essential design tool for lithium polymer batteries. Energy Environ. Sci. 14(5), 2708–2788 (2021). https://doi.org/10.1039/d0ee03527k
- Q. Yang, N. Deng, J. Chen, B. Cheng, W. Kang, The recent research progress and prospect of gel polymer electrolytes in lithium-sulfur batteries. Chem. Eng. J. 413, 127427 (2021). https://doi.org/10.1016/j.cej.2020.127427
- M. Okada, Y. Yamashita, Y. Ishii, Polymerization of 1,3-dioxolane. Die Makromolekulare Chemie 80(1), 196–207 (1964). https://doi.org/10.1002/macp.1964.020800117
- L. Kong, H. Zhan, Y. Li, Y. Zhou, In situ fabrication of lithium polymer battery basing on a novel electro-polymerization technique. Electrochem. Commun. 9(10), 2557–2563 (2007). https://doi.org/10.1016/j.elecom.2007.08.001
- J. Zhou, T. Qian, J. Liu, M. Wang, L. Zhang et al., High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte. Nano Lett. 19, 3066–3073 (2019). https://doi.org/10.1021/acs.nanolett.9b00450
- W.-P. Wang, J. Zhang, Y.-X. Yin, H. Duan, J. Chou et al., A rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries. Adv. Mater. 32, 2000302 (2020). https://doi.org/10.1002/adma.202000302
- T. Liu, J. Zhang, W. Han, J. Zhang, G. Ding et al., Review-in situ polymerization for integration and interfacial protection towards solid state lithium batteries. J. Electrochem. Soc. 167, 070527 (2020). https://doi.org/10.1149/1945-7111/ab76a4
- X.-B. Cheng, C. Yan, J.-Q. Huang, P. Li, L. Zhu et al., The gap between long lifespan Li-S coin and pouch cells: the importance of lithium metal anode protection. Energy Storage Mater. 6, 18–25 (2017). https://doi.org/10.1016/j.ensm.2016.09.003
- C. Yan, X.-Q. Zhang, J.-Q. Huang, Q. Liu, Q. Zhang, Lithium-anode protection in lithium-sulfur batteries. Trends Chem. 1(7), 693–704 (2019). https://doi.org/10.1016/j.trechm.2019.06.007
- Y. Liang, H. Liu, G. Wang, C. Wang, Y. Ni et al., Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries. InfoMat (2022). https://doi.org/10.1002/inf2.12292
- X. Yang, X. Li, K. Adair, H. Zhang, X. Sun, Structural design of lithium-sulfur batteries: from fundamental research to practical application. Electrochem. Energy Rev. 1, 239–293 (2018). https://doi.org/10.1007/s41918-018-0010-3
- H. Yuan, H.-X. Nan, C.-Z. Zhao, G.-L. Zhu, Y. Lu et al., Slurry-coated sulfur/sulfide cathode with Li metal anode for all-solid-state lithium-sulfur pouch cells. Batter. Supercaps 3(7), 596–603 (2020). https://doi.org/10.1002/batt.202000051
- J.-K. Hu, H. Yuan, S.-J. Yang, Y. Lu, S. Sun et al., Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries. J. Energy Chem. 71, 612–618 (2022). https://doi.org/10.1016/j.jechem.2022.04.048
- Q. Wang, Z. Wen, J. Jin, J. Guo, X. Huang et al., A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries. Chem. Commun. 52(8), 1637–1640 (2016). https://doi.org/10.1039/c5cc08279j
- S. Xu, D.W. McOwen, L. Zhang, G.T. Hitz, C. Wang et al., All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Mater. 15, 458–464 (2018). https://doi.org/10.1016/j.ensm.2018.08.009
- S. Ohno, W.G. Zeier, Toward practical solid-state lithium-sulfur batteries: challenges and perspectives. Acc. Mater. Res. 2(10), 869–880 (2021). https://doi.org/10.1021/accountsmr.1c00116
- H. Chen, M. Zheng, S. Qian, H.Y. Ling, Z. Wu et al., Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy 3(6), 929–956 (2021). https://doi.org/10.1002/cey2.146
References
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
C.-X. Bi, M. Zhao, L.-P. Hou, Z.-X. Chen, X.-Q. Zhang et al., Anode material options toward 500 wh kg−1 lithium-sulfur batteries. Adv. Sci. 9, e2103910 (2022). https://doi.org/10.1002/advs.202103910
Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016). https://doi.org/10.1038/nenergy.2016.132
A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 46(5), 1125–1134 (2013). https://doi.org/10.1021/ar300179v
Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016). https://doi.org/10.1039/c5cs00410a
T. Liu, H. Hu, X. Ding, H. Yuan, C. Jin et al., 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Mater. 30, 346–366 (2020). https://doi.org/10.1016/j.ensm.2020.05.023
X. Zhang, Y. Yang, Z. Zhou, Towards practical lithium-metal anodes. Chem. Soc. Rev. 49(20), 3040–3071 (2020). https://doi.org/10.1039/c9cs00838a
Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang et al., Advances in lithium-sulfur batteries: From academic research to commercial viability. Adv. Mater. 33, e2003666 (2021). https://doi.org/10.1002/adma.202003666
F. Zhao, J. Xue, W. Shao, H. Yu, W. Huang et al., Toward high-sulfur-content, high-performance lithium-sulfur batteries: review of materials and technologies. J. Energy Chem. 80, 625–657 (2023). https://doi.org/10.1016/j.jechem.2023.02.009
W. Yan, J. Wei, T. Chen, L. Duan, L. Wang et al., Superstretchable, thermostable and ultrahigh-loading lithium–sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy 80, 105510 (2021). https://doi.org/10.1016/j.nanoen.2020.105510
W. Yan, K.-Y. Yan, G.-C. Kuang, Z. Jin, Fluorinated quinone derived organosulfur copolymer cathodes for long-cycling, thermostable and flexible lithium–sulfur batteries. Chem. Eng. J. 424, 130316 (2021). https://doi.org/10.1016/j.cej.2021.130316
L. Fan, M. Li, X. Li, W. Xiao, Z. Chen et al., Interlayer material selection for lithium-sulfur batteries. Joule 3(2), 361–386 (2019). https://doi.org/10.1016/j.joule.2019.01.003
M. Zhao, B.-Q. Li, H.-J. Peng, H. Yuan, J.-Y. Wei et al., Lithium-sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. 59, 12636–12652 (2020). https://doi.org/10.1002/anie.201909339
Y. Zhong, P. Huang, W. Yan, Z. Su, C. Sun et al., Ion-conductive polytitanosiloxane networks enable a robust solid-electrolyte interface for long-cycling lithium metal anodes. Adv. Funct. Mater. 32(9), 2110347 (2022). https://doi.org/10.1002/adfm.202110347
M. Jiang, Z. Zhang, B. Tang, T. Dong, H. Xu et al., Polymer electrolytes for Li-S batteries: polymeric fundamentals and performance optimization. J. Energy Chem. 58, 300–317 (2021). https://doi.org/10.1016/j.jechem.2020.10.009
W.-J. Chen, B.-Q. Li, C.-X. Zhao, M. Zhao, T.-Q. Yuan et al., Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes. Angew. Chem. Int. Ed. 59(27), 10732–10745 (2020). https://doi.org/10.1002/anie.201912701
X. Yang, J. Luo, X. Sun, Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design. Chem. Soc. Rev. 49(7), 2140–2195 (2020). https://doi.org/10.1039/c9cs00635d
H. Li, S. Ma, J. Li, F. Liu, H. Zhou et al., Altering the reaction mechanism to eliminate the shuttle effect in lithium-sulfur batteries. Energy Storage Mater. 26, 203–212 (2020). https://doi.org/10.1016/j.ensm.2020.01.002
H. Li, S. Ma, H. Cai, H. Zhou, Z. Huang et al., Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries. Energy Storage Mater. 18, 338–348 (2019). https://doi.org/10.1016/j.ensm.2018.08.016
H. Pan, Z. Cheng, Z. Zhou, S. Xie, W. Zhang et al., Boosting lean electrolyte lithium-sulfur battery performance with transition metals: a comprehensive review. Nano-Micro Lett. 15, 165 (2023). https://doi.org/10.1007/s40820-023-01137-y
B. Ding, J. Wang, Z. Fan, S. Chen, Q. Lin et al., Solid-state lithium–sulfur batteries: advances, challenges and perspectives. Mater. Today 40, 114–131 (2020). https://doi.org/10.1016/j.mattod.2020.05.020
Y. Gong, J. Li, K. Yang, S. Li, M. Xu et al., Towards practical application of Li–S battery with high sulfur loading and lean electrolyte: Will carbon-based hosts win this race? Nano-Micro Lett. 15, 150 (2023). https://doi.org/10.1007/s40820-023-01120-7
Y. Wang, Y. Zhao, K. Liu, S. Wang, N. Li et al., Li intercalation in an MoSe2 electrocatalyst: in situ observation and modulation of its precisely controllable phase engineering for a high-performance flexible Li-S battery. Carbon Energy 5(2), e255 (2023). https://doi.org/10.1002/cey2.255
A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
J. Gu, Z. Liang, J. Shi, Y. Yang, Electrochemo-mechanical stresses and their measurements in sulfide-based all-solid-state batteries: a review. Adv. Energy Mater. 13, 2203153 (2023). https://doi.org/10.1002/aenm.202203153
Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang et al., Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, e1705702 (2018). https://doi.org/10.1002/adma.201705702
T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3
M. Liu, S. Ganapathy, M. Wagemaker, A direct view on Li-ion transport and Li-metal plating in inorganic and hybrid solid-state electrolytes. Acc. Chem. Res. 55(3), 333–344 (2022). https://doi.org/10.1021/acs.accounts.1c00618
M.L. Holekevi Chandrappa, J. Qi, C. Chen, S. Banerjee, S.P. Ong, Thermodynamics and kinetics of the cathode-electrolyte interface in all-solid-state Li-S batteries. J. Am. Chem. Soc. 144(39), 18009–18022 (2022). https://doi.org/10.1021/jacs.2c07482
X. Zhu, L. Wang, Z. Bai, J. Lu, T. Wu, Sulfide-based all-solid-state lithium-sulfur batteries: challenges and perspectives. Nano-Micro Lett. 15, 75 (2023). https://doi.org/10.1007/s40820-023-01053-1
W.D. Jung, J.S. Kim, S. Choi, S. Kim, M. Jeon et al., Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal growth. Nano Lett. 20(4), 2303–2309 (2020). https://doi.org/10.1021/acs.nanolett.9b04597
N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno et al., A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). https://doi.org/10.1038/nmat3066
L. Zhou, A. Assoud, Q. Zhang, X. Wu, L.F. Nazar, New family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc. 141(48), 19002–19013 (2019). https://doi.org/10.1021/jacs.9b08357
P. Adeli, J.D. Bazak, A. Huq, G.R. Goward, L.F. Nazar, Influence of aliovalent cation substitution and mechanical compression on Li-ion conductivity and diffusivity in argyrodite solid electrolytes. Chem. Mater. 33(1), 146–157 (2021). https://doi.org/10.1021/acs.chemmater.0c03090
Y. Lee, J. Jeong, H.-D. Lim, S.-O. Kim, H.-G. Jung et al., Superionic Si-substituted lithium argyrodite sulfide electrolyte Li6+xSb1–xSixS5I for all-solid-state batteries. ACS Sustain. Chem. Eng. 9(1), 120–128 (2021). https://doi.org/10.1021/acssuschemeng.0c05549
Y. Nikodimos, C.-J. Huang, B.W. Taklu, W.-N. Su, B.J. Hwang, Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy Environ. Sci. 15(3), 991–1033 (2022). https://doi.org/10.1039/D1EE03032A
S. Sun, J. Wang, S. Zong, Q. Ma, H. Li et al., Integration plasma strategy controlled interfacial chemistry regulation enabling planar lithium growth in solid-state lithium metal batteries. Adv. Funct. Mater. 33, 2304929 (2023). https://doi.org/10.1002/adfm.202304929
S. Guo, Y. Li, B. Li, N.S. Grundish, A.-M. Cao et al., Coordination-assisted precise construction of metal oxide nanofilms for high-performance solid-state batteries. J. Am. Chem. Soc. 144(5), 2179–2188 (2022). https://doi.org/10.1021/jacs.1c10872
A. Cheng, X. He, R. Wang, B. Shan, K. Wang et al., Low-cost molten salt coating enabling robust Li/garnet interface for dendrite-free all-solid-state lithium batteries. Chem. Eng. J. 450, 138236 (2022). https://doi.org/10.1016/j.cej.2022.138236
X. Han, Y. Gong, K.K. Fu, X. He, G.T. Hitz et al., Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017). https://doi.org/10.1038/nmat4821
C. Shi, T. Hamann, S. Takeuchi, G.V. Alexander, A.M. Nolan et al., 3D asymmetric bilayer garnet-hybridized high-energy-density lithium-sulfur batteries. ACS Appl. Mater. Interfaces 15(1), 751–760 (2023). https://doi.org/10.1021/acsami.2c14087
Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31, e1902029 (2019). https://doi.org/10.1002/adma.201902029
Y. An, X. Han, Y. Liu, A. Azhar, J. Na et al., Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 18, 2103617 (2022). https://doi.org/10.1002/smll.202103617
S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35, e2110423 (2023). https://doi.org/10.1002/adma.202110423
K.S. Oh, J.E. Lee, Y.H. Lee, Y.S. Jeong, I. Kristanto et al., Elucidating ion transport phenomena in sulfide/polymer composite electrolytes for practical solid-state batteries. Nano-Micro Lett. 15, 179 (2023). https://doi.org/10.1007/s40820-023-01139-w
Z. Lin, X. Guo, R. Zhang, M. Tang, P. Ding et al., Molecular structure adjustment enhanced anti-oxidation ability of polymer electrolyte for solid-state lithium metal battery. Nano Energy 98, 107330 (2022). https://doi.org/10.1016/j.nanoen.2022.107330
P. Zhai, Z. Yang, Y. Wei, X. Guo, Y. Gong, Two-dimensional fluorinated graphene reinforced solid polymer electrolytes for high-performance solid-state lithium batteries. Adv. Energy Mater. 12, 2200967 (2022). https://doi.org/10.1002/aenm.202200967
G.G. Eshetu, X. Judez, C. Li, O. Bondarchuk, L.M. Rodriguez-Martinez et al., Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries. Angew. Chem. Int. Ed. 56(48), 15368–15372 (2017). https://doi.org/10.1002/anie.201709305
Y. He, Y. Qiao, Z. Chang, X. Cao, M. Jia et al., Developing a polysulfide-phobic strategy to restrain shuttle effect in lithium-sulfur batteries. Angew. Chem. Int. Ed. 58(34), 11774–11778 (2019). https://doi.org/10.1002/anie.201906055
Q. Pang, A. Shyamsunder, B. Narayanan, C.Y. Kwok, L.A. Curtiss et al., Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 3, 783–791 (2018). https://doi.org/10.1038/s41560-018-0214-0
Q. Zheng, Y. Yamada, R. Shang, S. Ko, Y.-Y. Lee et al., A cyclic phosphate-based battery electrolyte for high voltage and safe operation. Nat. Energy 5, 291–298 (2020). https://doi.org/10.1038/s41560-020-0567-z
H. Wu, B. Tang, X. Du, J. Zhang, X. Yu et al., LiDFOB initiated in situ polymerization of novel eutectic solution enables room-temperature solid lithium metal batteries. Adv. Sci. 7, 2003370 (2020). https://doi.org/10.1002/advs.202003370
W. Liu, C. Yi, L. Li, S. Liu, Q. Gui et al., Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. 60(23), 12931–12940 (2021). https://doi.org/10.1002/anie.202101537
M.J. Lee, J. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601, 217–222 (2022). https://doi.org/10.1038/s41586-021-04209-4
Y.-Z. Sun, J.-Q. Huang, C.-Z. Zhao, Q. Zhang, A review of solid electrolytes for safe lithium-sulfur batteries. Sci. China Chem. 60, 1508–1526 (2017). https://doi.org/10.1007/s11426-017-9164-2
J. Yue, M. Yan, Y.-X. Yin, Y.-G. Guo, Progress of the interface design in all-solid-state Li–S batteries. Adv. Funct. Mater. 28, 1707533 (2018). https://doi.org/10.1002/adfm.201707533
X. Yu, A. Manthiram, Electrode-electrolyte interfaces in lithium-sulfur batteries with liquid or inorganic solid electrolytes. Acc. Chem. Res. 50(11), 2653–2660 (2017). https://doi.org/10.1021/acs.accounts.7b00460
E. Umeshbabu, B. Zheng, Y. Yang, Recent progress in all-solid-state lithium−sulfur batteries using high Li-ion conductive solid electrolytes. Electrochem. Energy Rev. 2, 199–230 (2019). https://doi.org/10.1007/s41918-019-00029-3
Z. Lin, Z. Liu, W. Fu, N.J. Dudney, C. Liang, Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew. Chem. Int. Ed. 52(29), 7460–7463 (2013). https://doi.org/10.1002/anie.201300680
T. Hakari, A. Hayashi, M. Tatsumisago, Li2S-based solid solutions as positive electrodes with full utilization and superlong cycle life in all-solid-state Li/S batteries. Adv. Sustain. Syst. 1, 1700017 (2017). https://doi.org/10.1002/adsu.201700017
K. Suzuki, N. Mashimo, Y. Ikeda, T. Yokoi, M. Hirayama et al., High cycle capability of all-solid-state lithium–sulfur batteries using composite electrodes by liquid-phase and mechanical mixing. ACS Appl. Energy Mater. 1(6), 2373–2377 (2018). https://doi.org/10.1021/acsaem.8b00227
B.-S. Zhao, L. Wang, P. Chen, S. Liu, G.-R. Li et al., Congener substitution reinforced Li7P2.9Sb0.1S10.75O0.25 glass-ceramic electrolytes for all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 13(29), 34477–34485 (2021). https://doi.org/10.1021/acsami.1c10238
D. Wang, L.-J. Jhang, R. Kou, M. Liao, S. Zheng et al., Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte. Nat. Commun. 14, 1895 (2023). https://doi.org/10.1038/s41467-023-37564-z
H. Pan, M. Zhang, Z. Cheng, H. Jiang, J. Yang et al., Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Sci. Adv. 8, eabn4372 (2022). https://doi.org/10.1126/sciadv.abn4372
M. Nagao, A. Hayashi, M. Tatsumisago, Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery. Electrochem. Commun. 22, 177–180 (2012). https://doi.org/10.1016/j.elecom.2012.06.015
K.K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu et al., Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 3, e1601659 (2017). https://doi.org/10.1126/sciadv.1601659
Y. Lu, X. Huang, Z. Song, K. Rui, Q. Wang et al., Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces. Energy Storage Mater. 15, 282–290 (2018). https://doi.org/10.1016/j.ensm.2018.05.018
K. Fu, Y. Gong, G.T. Hitz, D.W. McOwen, Y. Li et al., Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10(7), 1568–1575 (2017). https://doi.org/10.1039/C7EE01004D
W. Li, Q. Wang, J. Jin, Y. Li, M. Wu et al., Constructing dual interfacial modification by synergetic electronic and ionic conductors: toward high-performance LAGP-based Li-S batteries. Energy Storage Mater. 23, 299–305 (2019). https://doi.org/10.1016/j.ensm.2019.04.044
A. Hayashi, T. Ohtomo, F. Mizuno, K. Tadanaga, M. Tatsumisago, All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochem. Commun. 5(8), 701–705 (2003). https://doi.org/10.1016/s1388-2481(03)00167-x
T. Kobayashi, Y. Imade, D. Shishihara, K. Homma, M. Nagao et al., All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power. Sources 182(2), 621–625 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.030
Z. Chen, Z. Liang, H. Zhong, Y. Su, K. Wang et al., Bulk/interfacial synergetic approaches enable the stable anode for high energy density all-solid-state lithium–sulfur batteries. ACS Energy Lett. 7(8), 2761–2770 (2022). https://doi.org/10.1021/acsenergylett.2c01334
M. Chen, S. Adams, High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte. J. Solid State Electrochem. 19, 697–702 (2015). https://doi.org/10.1007/s10008-014-2654-1
F. Han, J. Yue, X. Fan, T. Gao, C. Luo et al., High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett. 16(7), 4521–4527 (2016). https://doi.org/10.1021/acs.nanolett.6b01754
A. Unemoto, S. Yasaku, G. Nogami, M. Tazawa, M. Taniguchi et al., Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte. Appl. Phys. Lett. 105, 083901 (2014). https://doi.org/10.1063/1.4893666
X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan et al., High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7, 1602923 (2017). https://doi.org/10.1002/aenm.201602923
R. Xu, J. Yue, S. Liu, J. Tu, F. Han et al., Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density. ACS Energy Lett. 4(5), 1073–1079 (2019). https://doi.org/10.1021/acsenergylett.9b00430
X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao et al., Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 17(5), 2967–2972 (2017). https://doi.org/10.1021/acs.nanolett.7b00221
J. Wang, X. Yan, Z. Zhang, R. Guo, H. Ying et al., Rational design of an electron/ion dual-conductive cathode framework for high-performance all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 12(37), 41323–41332 (2020). https://doi.org/10.1021/acsami.0c10463
L. Wang, X. Yin, C. Jin, C. Lai, G. Qu et al., Cathode-supported-electrolyte configuration for high-performance all-solid-state lithium-sulfur batteries. ACS Appl. Energ. Mater. 3(12), 11540–11547 (2020). https://doi.org/10.1021/acsaem.0c02347
Q. Zhao, X. Liu, S. Stalin, K. Khan, L.A. Archer, Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019). https://doi.org/10.1038/s41560-019-0349-7
G. Xu, A. Kushima, J. Yuan, H. Dou, W. Xue et al., Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium-sulfur batteries. Energ. Environ. Sci. 10(12), 2544–2551 (2017). https://doi.org/10.1039/c7ee01898c
F.-Q. Liu, W.-P. Wang, Y.-X. Yin, S.-F. Zhang, J.-L. Shi et al., Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 4, eaat5383 (2018). https://doi.org/10.1126/sciadv.aat5383
M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin et al., Novel gel polymer electrolyte for high-performance lithium-sulfur batteries. Nano Energy 22, 278–289 (2016). https://doi.org/10.1016/j.nanoen.2016.02.008
M. Liu, H.R. Jiang, Y.X. Ren, D. Zhou, F.Y. Kang et al., In-situ fabrication of a freestanding acrylate-based hierarchical electrolyte for lithium-sulfur batteries. Electrochim. Acta 213, 871–878 (2016). https://doi.org/10.1016/j.electacta.2016.08.015
C. Monroe, J. Newman, The effect of interfacial deformation on electrodeposition kinetics. J. Electrochem. Soc. 151, A880 (2004). https://doi.org/10.1149/1.1710893
L. Porz, T. Swamy, B.W. Sheldon, D. Rettenwander, T. Frömling et al., Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017). https://doi.org/10.1002/aenm.201701003
Z. Ning, G. Li, D.L.R. Melvin, Y. Chen, J. Bu et al., Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618, 287–293 (2023). https://doi.org/10.1038/s41586-023-05970-4
X. Zhang, Q. Xiang, S. Tang, A. Wang, X. Liu et al., Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface. Nano Lett. 20(4), 2871–2878 (2020). https://doi.org/10.1021/acs.nanolett.0c00693
J.-M. Doux, Y. Yang, D.H.S. Tan, H. Nguyen, E.A. Wu et al., Pressure effects on sulfide electrolytes for all solid-state batteries. J. Mater. Chem. A 8(10), 5049–5055 (2020). https://doi.org/10.1039/C9TA12889A
J. Lee, T. Lee, K. Char, K.J. Kim, J.W. Choi, Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 54(17), 3390–3402 (2021). https://doi.org/10.1021/acs.accounts.1c00333
X. Zhu, W. Jiang, S. Zhao, R. Huang, M. Ling et al., Exploring the concordant solid-state electrolytes for all-solid-state lithium-sulfur batteries. Nano Energy 96, 107093 (2022). https://doi.org/10.1016/j.nanoen.2022.107093
X. Liang, L. Wang, X. Wu, X. Feng, Q. Wu et al., Solid-state electrolytes for solid-state lithium-sulfur batteries: comparisons, advances and prospects. J. Energy Chem. 73, 370–386 (2022). https://doi.org/10.1016/j.jechem.2022.06.035
M. Nagao, K. Suzuki, Y. Imade, M. Tateishi, R. Watanabe et al., All-solid-state lithium–sulfur batteries with three-dimensional mesoporous electrode structures. J. Power. Sources 330, 120–126 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.009
M. Sakuma, K. Suzuki, M. Hirayama, R. Kanno, Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li–M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ion. 285, 101–105 (2016). https://doi.org/10.1016/j.ssi.2015.07.010
S. Luo, Z. Wang, X. Li, X. Liu, H. Wang et al., Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun. 12, 6968 (2021). https://doi.org/10.1038/s41467-021-27311-7
A. Kato, A. Hayashi, M. Tatsumisago, Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films. J. Power. Sources 309, 27–32 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.068
W. Luo, Y. Gong, Y. Zhu, K.K. Fu, J. Dai et al., Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc. 138(37), 12258–12262 (2016). https://doi.org/10.1021/jacs.6b06777
F. Zhang, Y. Guo, L. Zhang, P. Jia, X. Liu et al., A review of the effect of external pressure on all-solid-state batteries. Etransportation 15, 100220 (2023). https://doi.org/10.1016/j.etran.2022.100220
C. Cui, Q. Ye, C. Zeng, S. Wang, X. Xu et al., One-step fabrication of garnet solid electrolyte with integrated lithiophilic surface. Energy Storage Mater. 45, 814–820 (2022). https://doi.org/10.1016/j.ensm.2021.12.027
M. Balaish, J.C. Gonzalez-Rosillo, K.J. Kim, Y. Zhu, Z.D. Hood et al., Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 6, 227–239 (2021). https://doi.org/10.1038/s41560-020-00759-5
Y. Zhao, L. Zhang, J. Liu, K. Adair, F. Zhao et al., Atomic/molecular layer deposition for energy storage and conversion. Chem. Soc. Rev. 50, 3889–3956 (2021). https://doi.org/10.1039/d0cs00156b
S. Lobe, A. Bauer, S. Uhlenbruck, D. Fattakhova-Rohlfing, Physical vapor deposition in solid-state battery development: from materials to devices. Adv. Sci. 8, e2002044 (2021). https://doi.org/10.1002/advs.202002044
M. Nagao, A. Hayashi, M. Tatsumisago, Bulk-type lithium metal secondary battery with indium thin layer at interface between Li electrode and Li2S-P2S5 solid electrolyte. Electrochemistry 80(10), 734–736 (2012). https://doi.org/10.5796/electrochemistry.80.734
H.T. Kim, T. Mun, C. Park, S.W. Jin, H.Y. Park, Characteristics of lithium phosphorous oxynitride thin films deposited by metal-organic chemical vapor deposition technique. J. Power. Sources 244, 641–645 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.109
A. Sharafi, H.M. Meyer, J. Nanda, J. Wolfenstine, J. Sakamoto, Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J. Power. Sources 302, 135–139 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.053
S.-H. Wang, J. Yue, W. Dong, T.-T. Zuo, J.-Y. Li et al., Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 10, 4930 (2019). https://doi.org/10.1038/s41467-019-12938-4
Z. Huang, W. Pang, P. Liang, Z. Jin, N. Grundish et al., A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. J. Mater. Chem. A 7(27), 16425–16436 (2019). https://doi.org/10.1039/C9TA03395E
K. Nie, Y. Hong, J. Qiu, Q. Li, X. Yu et al., Interfaces between cathode and electrolyte in solid state lithium batteries: challenges and perspectives. Front. Chem. 6, 616 (2018). https://doi.org/10.3389/fchem.2018.00616
K. Suzuki, D. Kato, K. Hara, T.-A. Yano, M. Hirayama et al., Composite sulfur electrode prepared by high-temperature mechanical milling for use in an all-solid-state lithium–sulfur battery with a Li3.25Ge0.25P0.75S4 electrolyte. Electrochim. Acta 258, 110–115 (2017). https://doi.org/10.1016/j.electacta.2017.09.156
M. Sun, Z. Zeng, W. Zhong, Z. Han, L. Peng et al., In-situ polymerization methods for polymer-based solid-state lithium batteries. Batter. Supercaps 5(12), e202200338 (2022). https://doi.org/10.1002/batt.202200338
V. Vijayakumar, B. Anothumakkool, S. Kurungot, M. Winter, J.R. Nair, In situ polymerization process: an essential design tool for lithium polymer batteries. Energy Environ. Sci. 14(5), 2708–2788 (2021). https://doi.org/10.1039/d0ee03527k
Q. Yang, N. Deng, J. Chen, B. Cheng, W. Kang, The recent research progress and prospect of gel polymer electrolytes in lithium-sulfur batteries. Chem. Eng. J. 413, 127427 (2021). https://doi.org/10.1016/j.cej.2020.127427
M. Okada, Y. Yamashita, Y. Ishii, Polymerization of 1,3-dioxolane. Die Makromolekulare Chemie 80(1), 196–207 (1964). https://doi.org/10.1002/macp.1964.020800117
L. Kong, H. Zhan, Y. Li, Y. Zhou, In situ fabrication of lithium polymer battery basing on a novel electro-polymerization technique. Electrochem. Commun. 9(10), 2557–2563 (2007). https://doi.org/10.1016/j.elecom.2007.08.001
J. Zhou, T. Qian, J. Liu, M. Wang, L. Zhang et al., High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte. Nano Lett. 19, 3066–3073 (2019). https://doi.org/10.1021/acs.nanolett.9b00450
W.-P. Wang, J. Zhang, Y.-X. Yin, H. Duan, J. Chou et al., A rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries. Adv. Mater. 32, 2000302 (2020). https://doi.org/10.1002/adma.202000302
T. Liu, J. Zhang, W. Han, J. Zhang, G. Ding et al., Review-in situ polymerization for integration and interfacial protection towards solid state lithium batteries. J. Electrochem. Soc. 167, 070527 (2020). https://doi.org/10.1149/1945-7111/ab76a4
X.-B. Cheng, C. Yan, J.-Q. Huang, P. Li, L. Zhu et al., The gap between long lifespan Li-S coin and pouch cells: the importance of lithium metal anode protection. Energy Storage Mater. 6, 18–25 (2017). https://doi.org/10.1016/j.ensm.2016.09.003
C. Yan, X.-Q. Zhang, J.-Q. Huang, Q. Liu, Q. Zhang, Lithium-anode protection in lithium-sulfur batteries. Trends Chem. 1(7), 693–704 (2019). https://doi.org/10.1016/j.trechm.2019.06.007
Y. Liang, H. Liu, G. Wang, C. Wang, Y. Ni et al., Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries. InfoMat (2022). https://doi.org/10.1002/inf2.12292
X. Yang, X. Li, K. Adair, H. Zhang, X. Sun, Structural design of lithium-sulfur batteries: from fundamental research to practical application. Electrochem. Energy Rev. 1, 239–293 (2018). https://doi.org/10.1007/s41918-018-0010-3
H. Yuan, H.-X. Nan, C.-Z. Zhao, G.-L. Zhu, Y. Lu et al., Slurry-coated sulfur/sulfide cathode with Li metal anode for all-solid-state lithium-sulfur pouch cells. Batter. Supercaps 3(7), 596–603 (2020). https://doi.org/10.1002/batt.202000051
J.-K. Hu, H. Yuan, S.-J. Yang, Y. Lu, S. Sun et al., Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries. J. Energy Chem. 71, 612–618 (2022). https://doi.org/10.1016/j.jechem.2022.04.048
Q. Wang, Z. Wen, J. Jin, J. Guo, X. Huang et al., A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries. Chem. Commun. 52(8), 1637–1640 (2016). https://doi.org/10.1039/c5cc08279j
S. Xu, D.W. McOwen, L. Zhang, G.T. Hitz, C. Wang et al., All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Mater. 15, 458–464 (2018). https://doi.org/10.1016/j.ensm.2018.08.009
S. Ohno, W.G. Zeier, Toward practical solid-state lithium-sulfur batteries: challenges and perspectives. Acc. Mater. Res. 2(10), 869–880 (2021). https://doi.org/10.1021/accountsmr.1c00116
H. Chen, M. Zheng, S. Qian, H.Y. Ling, Z. Wu et al., Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy 3(6), 929–956 (2021). https://doi.org/10.1002/cey2.146