Housing Sulfur in Polymer Composite Frameworks for Li–S Batteries
Corresponding Author: Shanqing Zhang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 17
Abstract
Extensive efforts have been devoted to the design of micro-, nano-, and/or molecular structures of sulfur hosts to address the challenges of lithium–sulfur (Li–S) batteries, yet comparatively little research has been carried out on the binders in Li–S batteries. Herein, we systematically review the polymer composite frameworks that confine the sulfur within the sulfur electrode, taking the roles of sulfur hosts and functions of binders into consideration. In particular, we investigate the binding mechanism between the binder and sulfur host (such as mechanical interlocking and interfacial interactions), the chemical interactions between the polymer binder and sulfur (such as covalent bonding, electrostatic bonding, etc.), as well as the beneficial functions that polymer binders can impart on Li–S cathodes, such as conductive binders, electrolyte intake, adhesion strength etc. This work could provide a more comprehensive strategy in designing sulfur electrodes for long-life, large-capacity and high-rate Li–S battery.
Highlights:
1 The roles of binders in both sulfur host-based and sulfur host-free systems are considered for polymer composite frameworks in lithium-sulfur batteries.
2 The applications of the existing and potential multifunctional polymer composite frameworks are summarized for manufacturing lithium-sulfur batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Core Writing Team, R.K. Pachauri, L.A. Meyer (eds.), Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, Geneva, 2014)
- Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577–3613 (2011). https://doi.org/10.1021/cr100290v
- C. Budischak, D. Sewell, H. Thomson, L. Mach, D.E. Veron, W. Kempton, Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time. J. Power Sources 225, 60–74 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.054
- P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11(1), 19–29 (2012). https://doi.org/10.1038/nmat3191
- Y. Yang, G. Zheng, Y. Cui, Nanostructured sulfur cathodes. Chem. Soc. Rev. 42(7), 3018–3032 (2013). https://doi.org/10.1039/C2CS35256G
- Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan, Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52(50), 13186–13200 (2013). https://doi.org/10.1002/anie.201304762
- X. Gu, C. Lai, Recent development of metal compound applications in lithium–sulphur batteries. J. Mater. Res. 33(1), 16–31 (2018). https://doi.org/10.1557/jmr.2017.282
- Y. Wang, E. Sahadeo, G. Rubloff, C.F. Lin, S.B. Lee, High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes. J. Mater. Sci. 54(5), 3671–3693 (2019). https://doi.org/10.1007/s10853-018-3093-7
- T. Cleaver, P. Kovacik, M. Marinescu, T. Zhang, G. Offer, Perspective-commercializing lithium sulfur batteries: are we doing the right research? J. Electrochem. Soc. 165(1), A6029–A6033 (2018). https://doi.org/10.1149/2.0071801jes
- H. Yuan, J.Q. Huang, H.J. Peng, M.M. Titirici, R. Xiang, R. Chen, Q. Liu, Q. Zhang, A review of functional binders in lithium–sulfur batteries. Adv. Energy Mater. 8(31), 1802107 (2018). https://doi.org/10.1002/aenm.201802107
- Y. Ma, J. Ma, G. Cui, Small things make big deal: powerful binders of lithium batteries and post-lithium batteries. Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.11.013
- J. Zhu, P. Zhu, C. Yan, X. Dong, X. Zhang, Recent progress in polymer materials for advanced lithium–sulfur batteries. Prog. Polym. Sci. 4, 5 (2018). https://doi.org/10.1016/j.progpolymsci.2018.12.002
- H. Chen, M. Ling, L. Hencz, H.Y. Ling, G. Li, Z. Lin, G. Liu, S. Zhang, Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 118(18), 8936–8982 (2018). https://doi.org/10.1021/acs.chemrev.8b00241
- D.E. Packham, The mechanical theory of adhesion-changing perceptions 1925–1991. J. Adhes. 39(2–3), 137–144 (1992). https://doi.org/10.1080/00218469208026545
- A.N. Gent, C.W. Lin, Model studies of the effect of surface roughness and mechanical interlocking on adhesion. J. Adhes. 32(2–3), 113–125 (1990). https://doi.org/10.1080/00218469008030185
- S.L.S. Nunes, R.D.S.G. Campilho, F.J.G. da Silva, C.C.R.G. de Sousa, T.A.B. Fernandes, M.D. Banea, L.F.M. da Silva, Comparative failure assessment of single and double lap joints with varying adhesive systems. J. Adhes. 92(7–9), 610–634 (2016). https://doi.org/10.1080/00218464.2015.1103227
- D.J. Gardner, M. Blumentritt, L. Wang, N. Yildirim, Adhesion Theories in Wood Adhesive Bonding (Scrivener Publishing, Beverly, 2015). https://doi.org/10.1002/9781119162346.ch5
- A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C.F. Huebner, T.F. Fuller, I. Luzinov, G. Yushin, Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl. Mater. Interfaces 2(11), 3004–3010 (2010). https://doi.org/10.1021/am100871y
- B.V. Derjaguin, I.N. Aleinikova, Y.P. Toporov, On the role of electrostatic forces in the adhesion of polymer particles to solid surfaces. Powder Technol. 2(3), 154–158 (1969). https://doi.org/10.1016/0032-5910(69)80003-3
- J. Song, M. Zhou, R. Yi, T. Xu, M.L. Gordin, D. Tang, Z. Yu, M. Regula, D. Wang, Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 24(37), 5904–5910 (2014). https://doi.org/10.1002/adfm.201401269
- C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44(21), 7484–7539 (2015). https://doi.org/10.1039/C5CS00303B
- B. Smitha, S. Sridhar, A. Khan, Solid polymer electrolyte membranes for fuel cell applications: a review. J. Membr. Sci. 259(1–2), 10–26 (2005). https://doi.org/10.1016/j.memsci.2005.01.035
- M. Yoshio, R.J. Brodd, A. Kozawa, Lithium-Ion Batteries (Springer, Berlin, 2009), pp. 155–179
- Z. Zhu, S. Tang, J. Yuan, X. Qin, Y. Deng, R. Qu, G.M. Haarberg, Effects of various binders on supercapacitor performances. Int. J. Electrochem. Sci. 11(10), 8270–8279 (2016). https://doi.org/10.20964/2016.10.04
- S.S. Zhang, T.R. Jow, Study of poly(acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of li-ion batteries. J. Power Sources 2(1), 422–426 (2002). https://doi.org/10.1016/S0378-7753(02)00107-6
- H. Maleki, G. Deng, A. Anani, J. Howard, Thermal stability studies of li-ion cells and components. J. Electrochem. Soc. 146(9), 3224–3229 (1999). https://doi.org/10.1149/1.1392458
- E. Markevich, G. Salitra, D. Aurbach, Influence of the PVDF binder on the stability of LiCoO2 electrodes. Electrochem. Commun. 7(12), 1298–1304 (2005). https://doi.org/10.1016/j.elecom.2005.09.010
- S. Kasap, P. Capper, Springer Handbook of Electronic and Photonic Materials (Springer, Berlin, 2017)
- W.-R. Liu, M.-H. Yang, H.-C. Wu, S.M. Chiao, N.-L. Wu, Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem. Solid State Lett. 8(2), 100–103 (2005). https://doi.org/10.1149/1.1847685
- S.F. Lux, F. Schappacher, A. Balducci, S. Passerini, M. Winter, Low cost, environmentally benign binders for lithium-ion batteries. J. Electrochem. Soc. 157(3), 320–325 (2010). https://doi.org/10.1149/1.3291976
- R. Fang, S. Zhao, Z. Sun, D.W. Wang, H.M. Cheng, F. Li, More reliable lithium–sulfur batteries: status, solutions and prospects. Adv. Mater. 29(48), 1606823 (2017). https://doi.org/10.1002/adma.201606823
- G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu, R. Zhang, Z.W. Seh, D. Zhuo, Y. Liu, J. Sun, Catalytic oxidation of Li2S on the surface of metal sulfides for Li–S batteries. Proc. Natl. Acad. Sci. 114(5), 840–845 (2017). https://doi.org/10.1073/pnas.1615837114
- K. Han, J. Shen, S. Hao, H. Ye, C. Wolverton, M.C. Kung, H.H. Kung, Free-standing nitrogen-doped graphene paper as electrodes for high-performance lithium/dissolved polysulfide batteries. Chemsuschem 7(9), 2545–2553 (2014). https://doi.org/10.1002/cssc.201402329
- B. Liu, R. Fang, D. Xie, W. Zhang, H. Huang, Y. Xia, X. Wang, X. Xia, J. Tu, Revisiting scientific issues for industrial applications of lithium–sulfur batteries. Energy Environ. Mater. 1(4), 196–208 (2018). https://doi.org/10.1002/eem2.12021
- Y. He, Z. Chang, S. Wu, H. Zhou, Effective strategies for long-cycle life lithium–sulfur batteries. J. Mater. Chem. A 6, 6155–6182 (2018). https://doi.org/10.1039/c8ta01115j
- G. Yoon, D.H. Kim, I. Park, D. Chang, B. Kim, B. Lee, K. Oh, K. Kang, Using first-principles calculations for the advancement of materials for rechargeable batteries. Adv. Funct. Mater. 27(40), 1702887 (2017). https://doi.org/10.1002/adfm.201702887
- L.F. Nazar, M. Cuisinier, Q. Pang, Lithium–sulfur batteries. MRS Bull. 39(5), 436–442 (2014). https://doi.org/10.1557/mrs.2014.86
- H.J. Peng, J.Q. Huang, X.B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7(24), 1700260 (2017). https://doi.org/10.1002/aenm.201700260
- C. Li, Z. Xi, D. Guo, X. Chen, L. Yin, Chemical immobilization effect on lithium polysulfides for lithium–sulfur batteries. Small 14(4), 1701986 (2018). https://doi.org/10.1002/smll.201701986
- Z. Lin, C. Liang, Lithium–sulfur batteries: from liquid to solid cells. J. Mater. Chem. A 3(3), 936–958 (2015). https://doi.org/10.1039/C4TA04727C
- M.K. Song, E.J. Cairns, Y. Zhang, Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale 5(6), 2186–2204 (2013). https://doi.org/10.1039/C2NR33044J
- S.Y. Li, W.P. Wang, H. Duan, Y.G. Guo, Recent progress on confinement of polysulfides through physical and chemical methods. J. Energy Chem. 27(6), 1555–1565 (2018). https://doi.org/10.1016/j.jechem.2018.04.014
- T.Z. Hou, W.T. Xu, X. Chen, H.J. Peng, J.Q. Huang, Q. Zhang, Lithium bond chemistry in lithium–sulfur batteries. Angew. Chem. Int. Ed. 56(28), 8178–8182 (2017). https://doi.org/10.1002/anie.201704324
- T.Z. Hou, X. Chen, H.J. Peng, J.Q. Huang, B.Q. Li, Q. Zhang, B. Li, Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries. Small 12(24), 3283–3291 (2016). https://doi.org/10.1002/smll.201600809
- X. Chen, H.J. Peng, R. Zhang, T.Z. Hou, J.Q. Huang, B. Li, Q. Zhang, An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides? ACS Energy Lett. 2(4), 795–801 (2017). https://doi.org/10.1021/acsenergylett.7b00164
- H. Wang, W. Zhang, J. Xu, Z. Guo, Advances in polar materials for lithium–sulfur batteries. Adv. Funct. Mater. 28(38), 1707520 (2018). https://doi.org/10.1002/adfm.201707520
- X. Liu, J.Q. Huang, Q. Zhang, L. Mai, Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 29(20), 1601759 (2017). https://doi.org/10.1002/adma.201601759
- J. Liu, M. Wang, N. Xu, T. Qian, C. Yan, Progress and perspective of organosulfur polymers as cathode materials for advanced lithium–sulfur batteries. Energy Storage Mater. 15, 53–64 (2018). https://doi.org/10.1016/j.ensm.2018.03.017
- Z. Cheng, H. Pan, H. Zhong, Z. Xiao, X. Li, R. Wang, Porous organic polymers for polysulfide trapping in lithium–sulfur batteries. Adv. Funct. Mater. 28(38), 1707597 (2018). https://doi.org/10.1002/adfm.201707597
- Z.W. Zhang, H.J. Peng, M. Zhao, J.Q. Huang, Heterogeneous/homogeneous mediators for high-energy-density lithium–sulfur batteries: progress and prospects. Adv. Funct. Mater. 28(38), 1707536 (2018). https://doi.org/10.1002/adfm.201707536
- H.J. Peng, J.Q. Huang, Q. Zhang, A review of flexible lithium–sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 46(17), 5237–5288 (2017). https://doi.org/10.1039/C7CS00139H
- C.Y. Chen, H.J. Peng, T.Z. Hou, P.Y. Zhai, B.Q. Li, C. Tang, W. Zhu, J.Q. Huang, Q. Zhang, A quinonoid-imine-enriched nanostructured polymer mediator for lithium–sulfur batteries. Adv. Mater. 29(23), 1606802 (2017). https://doi.org/10.1002/adma.201606802
- Z. Xiao, L. Li, Y. Tang, Z. Cheng, H. Pan, D. Tian, R. Wang, Covalent organic frameworks with lithiophilic and sulfiphilic dual linkages for cooperative affinity to polysulfides in lithium–sulfur batteries. Energy Storage Mater. 12, 252–259 (2018). https://doi.org/10.1016/j.ensm.2018.01.018
- B.Q. Li, S.Y. Zhang, L. Kong, H.J. Peng, Q. Zhang, Porphyrin organic framework hollow spheres and their applications in lithium–sulfur batteries. Adv. Mater. 30(23), 1707483 (2018). https://doi.org/10.1002/adma.201707483
- J. Liu, T. Qian, M. Wang, X. Liu, N. Xu, Y. You, C. Yan, Molecularly imprinted polymer enables high-efficiency recognition and trapping lithium polysulfides for stable lithium sulfur battery. Nano Lett. 17(8), 5064–5070 (2017). https://doi.org/10.1021/acs.nanolett.7b02332
- J.L. Shi, C. Tang, J.Q. Huang, W. Zhu, Q. Zhang, Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium–sulfur batteries. J. Energy Chem. 27(1), 167–175 (2018). https://doi.org/10.1016/j.jechem.2017.09.014
- G. Hu, Z. Sun, C. Shi, R. Fang, J. Chen, P. Hou, C. Liu, H.M. Cheng, F. Li, A sulfur-rich copolymer@CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium–sulfur batteries. Adv. Mater. 29(11), 1603835 (2017). https://doi.org/10.1002/adma.201603835
- W. Yang, W. Yang, J. Feng, X. Qin, A polypyrrole-coated acetylene black/sulfur composite cathode material for lithium–sulfur batteries. J. Energy Chem. 27(3), 813–819 (2018). https://doi.org/10.1016/j.jechem.2017.05.007
- H. Zhang, Z. Zhao, Y. Liu, J. Liang, Y. Hou, Z. Zhang, X. Wang, J. Qiu, Nitrogen-doped hierarchical porous carbon derived from metal–organic aerogel for high performance lithium–sulfur batteries. J. Energy Chem. 26(6), 1282–1290 (2017). https://doi.org/10.1016/j.jechem.2017.08.016
- X. Tao, J. Wang, C. Liu, H. Wang, H. Yao et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat. Commun. 7, 11203 (2016). https://doi.org/10.1038/ncomms11203
- W. Chen, T. Lei, W. Lv, Y. Hu, Y. Yan et al., Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium–sulfur battery. Adv. Mater. 30(40), 1804084 (2018). https://doi.org/10.1002/adma.201804084
- T. Lei, W. Chen, J. Huang, C. Yan, H. Sun et al., Multi-functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries. Adv. Energy Mater. 7(4), 1601843 (2017). https://doi.org/10.1002/aenm.201601843
- J.Q. Huang, Q. Zhang, F. Wei, Multi-functional separator/interlayer system for high-stable lithium–sulfur batteries: progress and prospects. Energy Storage Mater. 1, 127–145 (2015). https://doi.org/10.1016/j.ensm.2015.09.008
- T. Lei, W. Chen, W. Lv, J. Huang, J. Zhu et al., Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium–sulfur batteries. Joule 2(10), 2091–2104 (2018). https://doi.org/10.1016/j.joule.2018.07.022
- X. Fu, Y. Wang, L. Scudiero, W.H. Zhong, A polymeric nanocomposite interlayer as ion-transport-regulator for trapping polysulfides and stabilizing lithium metal. Energy Storage Mater. 15, 447–457 (2018). https://doi.org/10.1016/j.ensm.2018.06.025
- S. Tu, X. Chen, X. Zhao, M. Cheng, P. Xiong, Y. He, Q. Zhang, Y. Xu, A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium–sulfur batteries. Adv. Mater. 30(45), 1804581 (2018). https://doi.org/10.1002/adma.201804581
- J.Q. Huang, Q. Zhang, H.J. Peng, X.Y. Liu, W.Z. Qian, F. Wei, Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ. Sci. 7, 347–353 (2014). https://doi.org/10.1039/C3EE42223B
- J. Scheers, S. Fantini, P. Johansson, A review of electrolytes for lithium–sulphur batteries. J. Power Sources 255(1), 204–218 (2014). https://doi.org/10.1039/C3EE42223B
- W. Chen, T. Lei, C. Wu, M. Deng, C. Gong et al., Designing safe electrolyte systems for a high-stability lithium–sulfur battery. Adv. Energy Mater. 8(10), 1702348 (2018). https://doi.org/10.1002/aenm.201702348
- M. Hagen, D. Hanselmann, K. Ahlbrecht, R. Maça, D. Gerber, J. Tübke, Lithium-sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 5(16), 1401986 (2015). https://doi.org/10.1002/aenm.201401986
- S.H. Chung, A. Manthiram, Designing lithium–sulfur batteries with high-loading cathodes at a lean electrolyte condition. ACS Appl. Mater. Interfaces 10(50), 43749–43759 (2018). https://doi.org/10.1021/acsami.8b17393
- W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.G. Zhang, Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/C3EE40795K
- D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
- A. Manthiram, Y. Fu, S.H. Chung, C. Zu, Y.S. Su, Rechargeable lithium–sulfur batteries. Chem. Rev. 114(23), 11751–11787 (2014). https://doi.org/10.1021/cr500062v
- H. Dai, K. Xi, X. Liu, C. Lai, S. Zhang, Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms. J. Am. Chem. Soc. 140(50), 17515–17521 (2018). https://doi.org/10.1021/jacs.8b08963
- T. Lei, W. Chen, Y. Hu, W. Lv, X. Lv et al., A nonflammable and thermotolerant separator suppresses polysulfide dissolution for safe and long-cycle lithium–sulfur batteries. Adv. Energy Mater. 8(32), 1802441 (2018). https://doi.org/10.1002/aenm.201802441
- G. Zhou, K. Liu, Y. Fan, M. Yuan, B. Liu et al., An aqueous inorganic polymer binder for high performance lithium–sulfur batteries with flame-retardant properties. ACS Cent. Sci. 4(2), 260–267 (2018). https://doi.org/10.1021/acscentsci.7b00569
- J. Yang, S. Wang, Z. Ma, Z. Du, C. Li, J. Song, G. Wang, G. Shao, Novel nitrogen-doped hierarchically porous coralloid carbon materials as host matrixes for lithium–sulfur batteries. Electrochim. Acta 159(20), 8–15 (2015). https://doi.org/10.1016/j.electacta.2015.01.187
- S. Rehman, X. Gu, K. Khan, N. Mahmood, W. Yang, X. Huang, S. Guo, Y. Hou, 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium–sulfur batteries. Adv. Energy Mater. 6(12), 1502518 (2016). https://doi.org/10.1002/aenm.201502518
- L. Zhou, T. Huang, A. Yu, Three-dimensional flower-shaped activated porous carbon/sulfur composites as cathode materials for lithium–sulfur batteries. ACS Sustain. Chem. Eng. 2(10), 2442–2447 (2014). https://doi.org/10.1021/sc500459c
- B. He, W.C. Li, C. Yang, S.Q. Wang, A.H. Lu, Incorporating sulfur inside the pores of carbons for advanced lithium–sulfur batteries: an electrolysis approach. ACS Nano 10(1), 1633–1639 (2016). https://doi.org/10.1021/acsnano.5b07340
- L. Zhou, X. Lin, T. Huang, A. Yu, Nitrogen-doped porous carbon nanofiber webs/sulfur composites as cathode materials for lithium–sulfur batteries. Electrochim. Acta 116, 210–216 (2014). https://doi.org/10.1016/j.electacta.2013.11.041
- Q. Li, Z. Zhang, K. Zhang, J. Fang, Y. Lai, J. Li, A simple synthesis of hollow carbon nanofiber-sulfur composite via mixed-solvent process for lithium–sulfur batteries. J. Power Sources 256, 137–144 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.063
- S. Chen, B. Sun, X. Xie, A.K. Mondal, X. Huang, G. Wang, Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reservoirs for lithium–sulfur batteries with long cycle life. Nano Energy 16, 268–280 (2015). https://doi.org/10.1016/j.nanoen.2015.05.034
- S. Xiao, S. Liu, J. Zhang, Y. Wang, Polyurethane-derived N-doped porous carbon with interconnected sheet-like structure as polysulfide reservoir for lithium–sulfur batteries. J. Power Sources 293, 119–126 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.048
- S. Niu, W. Lv, C. Zhang, F. Li, L. Tang et al., A carbon sandwich electrode with graphene filling coated by N-doped porous carbon layers for lithium–sulfur batteries. J. Mater. Chem. A 3(40), 20218–20224 (2015). https://doi.org/10.1039/C5TA05324B
- J.G. Werner, S.S. Johnson, V. Vijay, U. Wiesner, Carbon-sulfur composites from cylindrical and gyroidal mesoporous carbons with tunable properties in lithium–sulfur batteries. Chem. Mater. 27(9), 3349–3357 (2015). https://doi.org/10.1021/acs.chemmater.5b00500
- J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee, T. Bein, L.F. Nazar, Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. 124(15), 3651–3655 (2012). https://doi.org/10.1002/ange.201107817
- X. Li, Y. Cao, W. Qi, L.V. Saraf, J. Xiao et al., Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J. Mater. Chem. 21(41), 16603–16610 (2011). https://doi.org/10.1039/c1jm12979a
- G. He, X. Ji, L. Nazar, High “C” rate Li–S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 4(8), 2878–2883 (2011). https://doi.org/10.1039/c1ee01219c
- X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8(6), 500–506 (2009). https://doi.org/10.1038/nmat2460
- J. Wang, J. Chen, K. Konstantinov, L. Zhao, S.H. Ng, G. Wang, Z. Guo, H.K. Liu, Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochim. Acta 51(22), 4634–4638 (2006). https://doi.org/10.1016/j.electacta.2005.12.046
- C.P. Yang, Y.X. Yin, Y.G. Guo, L.J. Wan, Electrochemical (de)lithiation of 1D sulfur chains in Li–S batteries: a model system study. J. Am. Chem. Soc. 137(6), 2215–2218 (2015). https://doi.org/10.1021/ja513009v
- S. Xin, L. Gu, N.H. Zhao, Y.X. Yin, L.J. Zhou, Y.G. Guo, L.J. Wan, Smaller sulfur molecules promise better lithium–sulfur batteries. J. Am. Chem. Soc. 134(45), 18510–18513 (2012). https://doi.org/10.1021/ja308170k
- X. Tao, J. Wang, Z. Ying, Q. Cai, G. Zheng et al., Strong sulfur binding with conducting magnéli-phase TinO2n–1 nanomaterials for improving lithium–sulfur batteries. Nano Lett. 14(9), 5288–5294 (2014). https://doi.org/10.1021/nl502331f
- X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682
- Q. Pang, D. Kundu, L.F. Nazar, A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries. Mater. Horiz. 3(2), 130–136 (2016). https://doi.org/10.1039/C5MH00246J
- Z. Zhang, Z. Li, F. Hao, X. Wang, Q. Li, Y. Qi, R. Fan, L. Yin, 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium–sulfur batteries with high rate capability and cycling stability. Adv. Funct. Mater. 24(17), 2500–2509 (2014). https://doi.org/10.1002/adfm.201303080
- X. Wang, X. Bi, S. Wang, Y. Zhang, H. Du, J. Lu, High-rate and long-term cycle stability of Li–S batteries enabled by Li2S/TiO2-impregnated hollow carbon nanofiber cathodes. ACS Appl. Mater. Interfaces 10(19), 16552–16560 (2018). https://doi.org/10.1021/acsami.8b03201
- X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 54(13), 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
- B. Zhang, X. Qin, G. Li, X. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 3(10), 1531–1537 (2010). https://doi.org/10.1039/c002639e
- Y. Qu, Z. Zhang, X. Wang, Y. Lai, Y. Liu, J. Li, A simple SDS-assisted self-assembly method for the synthesis of hollow carbon nanospheres to encapsulate sulfur for advanced lithium–sulfur batteries. J. Mater. Chem. A 1(45), 14306–14310 (2013). https://doi.org/10.1039/c3ta13306k
- Y. Zhao, W. Wu, J. Li, Z. Xu, L. Guan, Encapsulating MWNTs into hollow porous carbon nanotubes: tube-in-tube carbon nanostructure for high-performance lithium–sulfur batteries. Adv. Mater. 26(30), 5113–5118 (2014). https://doi.org/10.1002/adma.201401191
- H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11(7), 2644–2647 (2011). https://doi.org/10.1021/nl200658a
- C. Luo, S. Niu, G. Zhou, W. Lv, B. Li, F. Kang, Q.H. Yang, Dual-functional hard template directed one-step formation of a hierarchical porous carbon–carbon nanotube hybrid for lithium–sulfur batteries. Chem. Commun. 52(82), 12143–12146 (2016). https://doi.org/10.1039/C6CC06680A
- Y. Wang, X. Huang, S. Zhang, Y. Hou, Sulfur hosts against the shuttle effect. Small Methods 2, 17000345 (2018). https://doi.org/10.1002/smtd.201700345
- D.W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H.M. Cheng, I.R. Gentle, G.Q.M. Lu, Carbon–sulfur composites for Li–S batteries: status and prospects. J. Mater. Chem. A 1(33), 9382–9394 (2013). https://doi.org/10.1039/c3ta11045a
- H. Shi, W. Lv, C. Zhang, D.W. Wang, G. Ling, Y. He, F. Kang, Q.H. Yang, Functional carbons remedy the shuttling of polysulfides in lithium–sulfur batteries: confining, trapping, blocking, and breaking up. Adv. Funct. Mater. 28(38), 1800508 (2018). https://doi.org/10.1002/adfm.201800508
- T.O. Ely, D. Kamzabek, D. Chakraborty, M.F. Doherty, Lithium–sulfur batteries: state of the art and future directions. ACS Appl. Energy Mater. 1(5), 1783–1814 (2018). https://doi.org/10.1021/acsaem.7b00153
- L. Hencz, X. Gu, X. Zhou, W. Martens, S. Zhang, Highly porous nitrogen-doped seaweed carbon for high-performance lithium–sulfur batteries. J. Mater. Sci. 52(20), 12336–12347 (2017). https://doi.org/10.1007/s10853-017-1288-y
- Z. Li, Y. Jiang, L. Yuan, Z. Yi, C. Wu, Y. Liu, P. Strasser, Y. Huang, A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano 8(9), 9295–9303 (2014). https://doi.org/10.1021/nn503220h
- G. Ma, Z. Wen, J. Jin, Y. Lu, K. Rui, X. Wu, M. Wu, J. Zhang, Enhanced performance of lithium sulfur battery with polypyrrole warped mesoporous carbon/sulfur composite. J. Power Sources 254, 353–359 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.085
- Z. Li, J. Zhang, X.W. Lou, Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew. Chem. Int. Ed. 54(44), 12886–12890 (2015). https://doi.org/10.1002/anie.201506972
- M. Rao, X. Song, H. Liao, E.J. Cairns, Carbon nanofiber–sulfur composite cathode materials with different binders for secondary Li/S cells. Electrochim. Acta 65, 228–233 (2012). https://doi.org/10.1016/j.electacta.2012.01.051
- H. Schneider, A. Garsuch, A. Panchenko, O. Gronwald, N. Janssen, P. Novák, Influence of different electrode compositions and binder materials on the performance of lithium–sulfur batteries. J. Power Sources 205, 420–425 (2012). https://doi.org/10.1016/j.jpowsour.2011.12.061
- M. Li, Y. Zhang, X. Wang, W. Ahn, G. Jiang, K. Feng, G. Lui, Z. Chen, Gas pickering emulsion templated hollow carbon for high rate performance lithium sulfur batteries. Adv. Funct. Mater. 26(46), 8408–8417 (2016). https://doi.org/10.1002/adfm.201603241
- S. Chen, X. Huang, H. Liu, B. Sun, W. Yeoh, K. Li, J. Zhang, G. Wang, 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium–sulfur batteries. Adv. Energy Mater. 4(8), 1301761 (2014). https://doi.org/10.1002/aenm.201301761
- Y. Xu, Y. Wen, Y. Zhu, K. Gaskell, K.A. Cychosz, B. Eichhorn, K. Xu, C. Wang, Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries. Adv. Funct. Mater. 25(27), 4312–4320 (2015). https://doi.org/10.1002/adfm.201500983
- Z. Li, L. Yin, Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance. ACS Appl. Mater. Interfaces 7(7), 4029–4038 (2015). https://doi.org/10.1021/am507660y
- Q. Sun, B. He, X.Q. Zhang, A.H. Lu, Engineering of hollow core–shell interlinked carbon spheres for highly stable lithium–sulfur batteries. ACS Nano 9(8), 8504–8513 (2015). https://doi.org/10.1021/acsnano.5b03488
- S.S. Zhang, D.T. Tran, Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium–sulphur batteries. J. Mater. Chem. A 4(12), 4371–4374 (2016). https://doi.org/10.1039/C6TA01214K
- M.J. Lacey, V. Österlund, A. Bergfelt, F. Jeschull, T. Bowden, D. Brandell, A robust, water-based, functional binder framework for high-energy lithium–sulfur batteries. Chemsuschem 10(13), 2758–2766 (2017). https://doi.org/10.1002/cssc.201700743
- Q. Wang, N. Yan, M. Wang, C. Qu, X. Yang, H. Zhang, X. Li, H. Zhang, Layer-by-layer assembled C/S cathode with trace binder for Li–S battery application. ACS Appl. Mater. Interfaces 7(45), 25002–25006 (2015). https://doi.org/10.1021/acsami.5b08887
- C. Ye, L. Zhang, C. Guo, D. Li, A. Vasileff, H. Wang, S.-Z. Qiao, A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium–sulfur batteries. Adv. Funct. Mater. 27(33), 1702524 (2017). https://doi.org/10.1002/adfm.201702524
- H. Su, C. Fu, Y. Zhao, D. Long, L. Ling, B.M. Wong, J. Lu, J. Guo, Polycation binders: an effective approach toward lithium polysulfide sequestration in Li–S batteries. ACS Energy Lett. 2(11), 2591–2597 (2017). https://doi.org/10.1021/acsenergylett.7b00779
- W. Wahyudi, Z. Cao, P. Kumar, M. Li, Y. Wu et al., Phase inversion strategy to flexible freestanding electrode: critical coupling of binders and electrolytes for high performance Li–S battery. Adv. Funct. Mater. 18, 1802244 (2018). https://doi.org/10.1002/adfm.201802244
- L. Li, T.A. Pascal, J.G. Connell, F.Y. Fan, S.M. Meckler, L. Ma, Y.-M. Chiang, D. Prendergast, B.A. Helms, Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. Nat. Commun. 8(1), 2277 (2017). https://doi.org/10.1038/s41467-017-02410-6
- Q. Li, H. Yang, L. Xie, J. Yang, Y. Nuli, J. Wang, Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Chem. Commun. 52(92), 13479–13482 (2016). https://doi.org/10.1039/C6CC07250J
- J. Wang, Z. Yao, C.W. Monroe, J. Yang, Y. Nuli, Carbonyl-β-cyclodextrin as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Adv. Funct. Mater. 23(9), 1194–1201 (2013). https://doi.org/10.1002/adfm.201201847
- F. Zeng, W. Wang, A. Wang, K. Yuan, Z. Jin, Y.S. Yang, Multidimensional polycation β-cyclodextrin polymer as an effective aqueous binder for high sulfur loading cathode in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 7(47), 26257–26265 (2015). https://doi.org/10.1021/acsami.5b08537
- X. Liu, T. Qian, J. Liu, J. Tian, L. Zhang, C. Yan, Greatly improved conductivity of double-chain polymer network binder for high sulfur loading lithium–sulfur batteries with a low electrolyte/sulfur ratio. Small 14(33), 1801536 (2018). https://doi.org/10.1002/smll.201801536
- H.M. Kim, J.Y. Hwang, D. Aurbach, Y.K. Sun, Electrochemical properties of sulfurized-polyacrylonitrile cathode for lithium–sulfur batteries: effect of polyacrylic acid binder and fluoroethylene carbonate additive. J. Phys. Chem. Lett. 8(21), 5331–5337 (2017). https://doi.org/10.1021/acs.jpclett.7b02354
- P. Zhu, J. Zhu, C. Yan, M. Dirican, J. Zang, H. Jia, Y. Li, Y. Kiyak, H. Tan, X. Zhang, In situ polymerization of nanostructured conductive polymer on 3D sulfur/carbon nanofiber composite network as cathode for high-performance lithium–sulfur batteries. Adv. Mater. Interfaces 5(10), 1701598 (2018). https://doi.org/10.1002/admi.201701598
- Q. Wang, W. Wang, Y. Huang, F. Wang, H. Zhang, Z. Yu, A. Wang, K. Yuan, Improve rate capability of the sulfur cathode using a gelatin binder. J. Electrochem. Soc. 158(6), A775–A779 (2011). https://doi.org/10.1149/1.3583375
- W. Bao, Z. Zhang, Y. Gan, X. Wang, J. Lia, Enhanced cyclability of sulfur cathodes in lithium–sulfur batteries with Na-alginate as a binder. J. Energy Chem. 22(5), 790–794 (2013). https://doi.org/10.1016/S2095-4956(13)60105-9
- M. He, L.X. Yuan, W.X. Zhang, X.L. Hu, Y.H. Huang, Enhanced cyclability for sulfur cathode achieved by a water-soluble binder. J. Phys. Chem. C 115(31), 15703–15709 (2011). https://doi.org/10.1021/jp2043416
- Y. Chen, N. Liu, H. Shao, W. Wang, M. Gao, C. Li, H. Zhang, A. Wang, Y. Huang, Chitosan as a functional additive for high-performance lithium–sulfur batteries. J. Mater. Chem. A 3(29), 15235–15240 (2015). https://doi.org/10.1039/C5TA03032C
- Y. Cheng, L. Huang, X. Xiao, B. Yao, L. Yuan et al., Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 15, 66–74 (2015). https://doi.org/10.1016/j.nanoen.2015.04.007
- Y.Q. Lu, J.T. Li, X.X. Peng, T. Zhang, Y.P. Deng et al., Achieving high capacity retention in lithium–sulfur batteries with an aqueous binder. Electrochem. Commun. 72, 79–82 (2016). https://doi.org/10.1016/j.elecom.2016.09.004
- M. Ling, L. Zhang, T. Zheng, J. Feng, J. Guo, L. Mai, G. Liu, Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery. Nano Energy 38, 82–90 (2017). https://doi.org/10.1016/j.nanoen.2017.05.020
- X. Duan, Y. Han, Y. Li, Y. Chen, Improved capacity retention of low cost sulfur cathodes enabled by a novel starch binder derived from food. RSC Adv. 4(105), 60995–61000 (2014). https://doi.org/10.1039/C4RA10953H
- Z.W. Seh, Q. Zhang, W. Li, G. Zheng, H. Yao, Y. Cui, Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem. Sci. 4(9), 3673–3677 (2013). https://doi.org/10.1039/c3sc51476e
- M.J. Lacey, F. Jeschull, K. Edström, D. Brandell, Why PEO as a binder or polymer coating increases capacity in the Li–S system. Chem. Commun. 49(76), 8531–8533 (2013). https://doi.org/10.1039/c3cc44772c
- S.S. Zhang, Binder based on polyelectrolyte for high capacity density lithium/sulfur battery. J. Electrochem. Soc. 159(8), A1226–A1229 (2012). https://doi.org/10.1149/2.039208jes
- Z. Zhang, W. Bao, H. Lu, M. Jia, K. Xie, Y. Lai, J. Li, Water-soluble polyacrylic acid as a binder for sulfur cathode in lithium–sulfur battery. ECS Electrochem. Lett. 1(2), A34–A37 (2012). https://doi.org/10.1149/2.009202eel
- J. Pan, G. Xu, B. Ding, J. Han, H. Dou, X. Zhang, Enhanced electrochemical performance of sulfur cathodes with a water-soluble binder. RSC Adv. 5(18), 13709–13714 (2015). https://doi.org/10.1039/C4RA15303K
- P. Bhattacharya, M.I. Nandasiri, D. Lv, A.M. Schwarz, J.T. Darsell et al., Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes. Nano Energy 19, 176–186 (2016). https://doi.org/10.1016/j.nanoen.2015.11.012
- L. Zhang, M. Ling, J. Feng, G. Liu, J. Guo, Effective electrostatic confinement of polysulfides in lithium/sulfur batteries by a functional binder. Nano Energy 40, 559–565 (2017). https://doi.org/10.1016/j.nanoen.2017.09.003
- M. Ling, W. Yan, A. Kawase, H. Zhao, Y. Fu, V.S. Battaglia, G. Liu, Electrostatic polysulfides confinement to inhibit redox shuttle process in the lithium sulfur batteries. ACS Appl. Mater. Interfaces 9(37), 31741–31745 (2017). https://doi.org/10.1021/acsami.7b06485
- A. Vizintin, R. Guterman, J. Schmidt, M. Antonietti, R. Dominko, Linear and crosslinked ionic liquid polymers as binders in lithium–sulfur battery. Chem. Mater. 30(15), 5444–5450 (2018). https://doi.org/10.1021/acs.chemmater.8b02357
- B. Liu, S. Wang, Q. Yang, G.-H. Hu, C. Xiong, Thiokol with excellent restriction on the shuttle effect in lithium–sulfur batteries. Appl. Sci. 8(1), 79 (2018). https://doi.org/10.3390/app8010079
- M.J. Lacey, F. Jeschull, K. Edström, D. Brandell, Functional, water-soluble binders for improved capacity and stability of lithium–sulfur batteries. J. Power Sources 264, 8–14 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.090
- Y. Jung, S. Kim, New approaches to improve cycle life characteristics of lithium–sulfur cells. Electrochem. Commun. 9(2), 249–254 (2007). https://doi.org/10.1016/j.elecom.2006.09.013
- MathSciNet
- N. Akhtar, H.Y. Shao, F. Ai, Y. Guan, Q. Peng et al., Gelatin–polyethylenimine composite as a functional binder for highly stable lithium–sulfur batteries. Electrochim. Acta 282, 758–766 (2018). https://doi.org/10.1016/j.electacta.2018.06.101
- J. Liu, M. Sun, Q. Zhang, F. Dong, P. Kaghazchi, Y. Fang, S. Zhang, Z. Lin, A robust network binder with dual functions of Cu2+ ions as ionic crosslinking and chemical binding agents for highly stable Li–S batteries. J. Mater. Chem. A 6(17), 7382–7388 (2018). https://doi.org/10.1039/C8TA01138A
- J. Liu, D.G. Galpaya, L. Yan, M. Sun, Z. Lin, C. Yan, C. Liang, S. Zhang, Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li–S battery. Energy Environ. Sci. 10(3), 750–755 (2017). https://doi.org/10.1039/C6EE03033E
- W. Chen, T. Qian, J. Xiong, N. Xu, X. Liu et al., A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries. Adv. Mater. 29(12), 1605160 (2017). https://doi.org/10.1002/adma.201605160
- W. Chen, T. Lei, T. Qian, W. Lv, W. He et al., A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium–sulfur battery. Adv. Energy Mater. 8(12), 1702889 (2018). https://doi.org/10.1002/aenm.201702889
- L. Yan, X. Gao, F. Wahid-Pedro, J.T.E. Quinn, Y. Meng, Y. Li, A novel epoxy resin-based cathode binder for low cost, long cycling life, and high-energy lithium–sulfur batteries. J. Mater. Chem. A 6, 14315–14323 (2018). https://doi.org/10.1039/C8TA04450C
- I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334(6052), 75–79 (2011). https://doi.org/10.1126/science.1209150
- J. Sun, Y. Huang, W. Wang, Z. Yu, A. Wang, K. Yuan, Application of gelatin as a binder for the sulfur cathode in lithium–sulfur batteries. Electrochim. Acta 53(24), 7084–7088 (2008). https://doi.org/10.1016/j.electacta.2008.05.022
- Y. Huang, J. Sun, W. Wang, Y. Wang, Z. Yu, H. Zhang, A. Wang, K. Yuan, Discharge process of the sulfur cathode with a gelatin binder. J. Electrochem. Soc. 155(10), A764–A767 (2008). https://doi.org/10.1149/1.2967191
- Y. Wang, Y. Huang, W. Wang, C. Huang, Z. Yu, H. Zhang, J. Sun, A. Wang, K. Yuan, Structural change of the porous sulfur cathode using gelatin as a binder during discharge and charge. Electrochim. Acta 54(16), 4062–4066 (2009). https://doi.org/10.1016/j.electacta.2009.02.039
- W. Zhang, Y. Huang, W. Wang, C. Huang, Y. Wang, Z. Yu, H. Zhang, Influence of pH of gelatin solution on cycle performance of the sulfur cathode. J. Electrochem. Soc. 157(4), A443–A446 (2010). https://doi.org/10.1149/1.3299323
- S. Jiang, M. Gao, Y. Huang, W. Wang, H. Zhang, Z. Yu, A. Wang, K. Yuan, X. Chen, Enhanced performance of the sulfur cathode with l-cysteine-modified gelatin binder. J. Adhes. Sci. Technol. 27(9), 1006–1011 (2013). https://doi.org/10.1080/01694243.2012.727171
- S. Kamel, N. Ali, K. Jahangir, S. Shah, A. El-Gendy, Pharmaceutical significance of cellulose: a review. Express Polym. Lett. 2(11), 758–778 (2008). https://doi.org/10.3144/expresspolymlett.2008.90
- M.N.R. Kumar, A review of chitin and chitosan applications. React. Funct. Polym. 46(1), 1–27 (2000). https://doi.org/10.1016/S1381-5148(00)00038-9
- A. Islam, G. Phillips, A. Sljivo, M. Snowden, P. Williams, A review of recent developments on the regulatory, structural and functional aspects of gum arabic. Food Hydrocolloids 11(4), 493–505 (1997). https://doi.org/10.1016/S0268-005X(97)80048-3
- D. Renard, L. Lavenant-Gourgeon, M.C. Ralet, C. Sanchez, Acacia senegal gum: continuum of molecular species differing by their protein to sugar ratio, molecular weight, and charges. Biomacromolecules 7(9), 2637–2649 (2006). https://doi.org/10.1021/bm060145j
- D. Mudgil, S. Barak, B.S. Khatkar, Guar gum: processing, properties and food applications: a review. J. Food Sci. Technol. 51(3), 409–418 (2014). https://doi.org/10.1007/s13197-011-0522-x
- W.J. Cheng, C.S. Cho, C.C. Li, Communication-gelatinization of guar gum and its effects on the dispersion and electrochemistry of lithium–sulfur batteries. J. Electrochem. Soc. 165(10), A2058–A2060 (2018). https://doi.org/10.1149/2.0351810jes
- X. Fu, Y. Wang, J. Tuba, L. Scudiero, W.H. Zhong, Small molecules make a big difference: a solvent-controlled strategy for building robust conductive network structures in high-capacity electrode composites. Small Methods 2, 1800066 (2018). https://doi.org/10.1002/smtd.201800066
- S.E. Cheon, J.H. Cho, K.S. Ko, C.W. Kwon, D.R. Chang, H.T. Kim, S.W. Kim, Structural factors of sulfur cathodes with poly(ethylene oxide) binder for performance of rechargeable lithium sulfur batteries. J. Electrochem. Soc. 149(11), A1437–A1441 (2002). https://doi.org/10.1002/smtd.201800066
- J. Shim, K.A. Striebel, E.J. Cairns, The lithium/sulfur rechargeable cell effects of electrode composition and solvent on cell performance. J. Electrochem. Soc. 149(10), A1321–A1325 (2002). https://doi.org/10.1149/1.1503076
- X. Hong, J. Jin, Z. Wen, S. Zhang, Q. Wang, C. Shen, K. Rui, On the dispersion of lithium–sulfur battery cathode materials effected by electrostatic and stereo-chemical factors of binders. J. Power Sources 324, 455–461 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.114
- P. Bhattacharya, N.K. Geitner, S. Sarupria, P.C. Ke, Exploiting the physicochemical properties of dendritic polymers for environmental and biological applications. Phys. Chem. Chem. Phys. 15(13), 4477–4490 (2013). https://doi.org/10.1039/c3cp44591g
- L. Ma, H.L. Zhuang, S. Wei, K.E. Hendrickson, M.S. Kim, G. Cohn, R.G. Hennig, L.A. Archer, Enhanced Li–S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano 10(1), 1050–1059 (2015). https://doi.org/10.1021/acsnano.5b06373
- H. Wang, M. Ling, Y. Bai, S. Chen, Y. Yuan, G. Liu, C. Wu, F. Wu, Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries. J. Mater. Chem. A 6(16), 6959–6966 (2018). https://doi.org/10.1039/C7TA10239A
- J. Liao, Z. Ye, Quaternary ammonium cationic polymer as a superior bifunctional binder for lithium–sulfur batteries and effects of counter anion. Electrochim. Acta 259, 626–636 (2018). https://doi.org/10.1016/j.electacta.2017.10.194
- W. Hua, Z. Yang, H. Nie, Z. Li, J. Yang, Z. Guo, C. Ruan, X.A. Chen, S. Huang, Polysulfide-scission reagents for the suppression of the shuttle effect in lithium–sulfur batteries. ACS Nano 11(2), 2209–2218 (2017). https://doi.org/10.1021/acsnano.6b08627
- N.I. Kim, C.B. Lee, J.M. Seo, W.J. Lee, Y.B. Roh, Correlation between positive-electrode morphology and sulfur utilization in lithium–sulfur battery. J. Power Sources 132(1–2), 209–212 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.028
- F. Garcıa-Ochoa, V. Santos, J. Casas, E. Gomez, Xanthan gum: production, recovery, and properties. Biotechnol. Adv. 18(7), 549–579 (2000). https://doi.org/10.1016/S0734-9750(00)00050-1
- J. Pan, G. Xu, B. Ding, Z. Chang, A. Wang, H. Dou, X. Zhang, PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium–sulfur batteries. RSC Adv. 6(47), 40650–40655 (2016). https://doi.org/10.1039/C6RA04230A
- L. Yan, X. Gao, J.P. Thomas, J. Ngai, H. Altounian, K.T. Leung, Y. Meng, Y. Li, Ionically cross-linked PEDOT:PSS as a multi-functional conductive binder for high-performance lithium–sulfur batteries. Sustain. Energy Fuels 2, 1574–1581 (2018). https://doi.org/10.1039/C8SE00167G
- H. Gao, Q. Lu, Y. Yao, X. Wang, F. Wang, Significantly raising the cell performance of lithium sulfur battery via the multifunctional polyaniline binder. Electrochim. Acta 232, 414–421 (2017). https://doi.org/10.1016/j.electacta.2017.02.160
- C. Milroy, A. Manthiram, An elastic, conductive, electroactive nanocomposite binder for flexible sulfur cathodes in lithium–sulfur batteries. Adv. Mater. 28(44), 9744–9751 (2016). https://doi.org/10.1002/adma.201601665
- G. Ai, Y. Dai, Y. Ye, W. Mao, Z. Wang et al., Investigation of surface effects through the application of the functional binders in lithium sulfur batteries. Nano Energy 16, 28–37 (2015). https://doi.org/10.1016/j.nanoen.2015.05.036
- G. Li, W. Cai, B. Liu, Z. Li, A multi-functional binder with lithium ion conductive polymer and polysulfide absorbents to improve cyclability of lithium-sulfur batteries. J. Power Sources 294, 187–192 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.083
- M. Cheng, L. Li, Y. Chen, X. Guo, B. Zhong, A functional binder-sulfonated poly(ether ether ketone) for sulfur cathode of Li–S batteries. RSC Adv. 6(81), 77937–77943 (2016). https://doi.org/10.1039/C6RA16171E
- H. Zhang, X. Hu, Y. Zhang, S. Wang, F. Xin, X. Chen, D. Yu, 3D-crosslinked tannic acid/poly (ethylene oxide) complex as a three-in-one multifunctional binder for high-sulfur-loading and high-stability cathodes in lithium–sulfur batteries. Energy Storage Mater. 17, 293–299 (2019). https://doi.org/10.1016/j.ensm.2018.07.006
- P.D. Frischmann, Y. Hwa, E.J. Cairns, B.A. Helms, Redox-active supramolecular polymer binders for lithium–sulfur batteries that adapt their transport properties in operando. Chem. Mater. 28(20), 7414–7421 (2016). https://doi.org/10.1021/acs.chemmater.6b03013
- G. Hernández, N. Lago, D. Shanmukaraj, M. Armand, D. Mecerreyes, Polyimide–polyether binders-diminishing the carbon content in lithium sulfur batteries. Mater. Today Energy 6, 264–270 (2017). https://doi.org/10.1016/j.mtener.2017.11.001
- K. Sun, S. Zhang, P. Li, Y. Xia, X. Zhang, D. Du, F.H. Isikgor, J. Ouyang, Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J. Mater. Sci. Mater. Electron. 26(7), 4438–4462 (2015). https://doi.org/10.1007/s10854-015-2895-5
- Z. Wang, Y. Chen, V. Battaglia, G. Liu, Improving the performance of lithium–sulfur batteries using conductive polymer and micrometric sulfur powder. J. Mater. Res. 29(9), 1027–1033 (2014). https://doi.org/10.1557/jmr.2014.85
- K.A. Mauritz, R.B. Moore, State of understanding of nafion. Chem. Rev. 104(10), 4535–4586 (2004). https://doi.org/10.1021/cr0207123
- Z. Yang, R. Li, Z. Deng, Polyelectrolyte binder for sulfur cathode to improve the cycle performance and discharge property of lithium–sulfur battery. ACS Appl. Mater. Interfaces 10(16), 13519–13527 (2018). https://doi.org/10.1021/acsami.8b01163
- B. Trofimov, L. Morozova, M. Markova, A. Mikhaleva, G. Myachina, I. Tatarinova, T. Skotheim, Vinyl ethers with polysulfide and hydroxyl functions and polymers therefrom as binders for lithium–sulfur batteries. J. Appl. Polym. Sci. 101(6), 4051–4055 (2006). https://doi.org/10.1002/app.23222
- P.D. Frischmann, L.C. Gerber, S.E. Doris, E.Y. Tsai, F.Y. Fan et al., Supramolecular perylene bisimide-polysulfide gel networks as nanostructured redox mediators in dissolved polysulfide lithium–sulfur batteries. Chem. Mater. 27(19), 6765–6770 (2015). https://doi.org/10.1021/acs.chemmater.5b02955
- Y. Hwa, P.D. Frischmann, B. Helms, E.J. Cairns, Aqueous-processable redox-active supramolecular polymer binders for advanced lithium/sulfur cells. Chem. Mater. 30(3), 685–691 (2018). https://doi.org/10.1021/acs.chemmater.7b03870
References
Core Writing Team, R.K. Pachauri, L.A. Meyer (eds.), Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, Geneva, 2014)
Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577–3613 (2011). https://doi.org/10.1021/cr100290v
C. Budischak, D. Sewell, H. Thomson, L. Mach, D.E. Veron, W. Kempton, Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time. J. Power Sources 225, 60–74 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.054
P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11(1), 19–29 (2012). https://doi.org/10.1038/nmat3191
Y. Yang, G. Zheng, Y. Cui, Nanostructured sulfur cathodes. Chem. Soc. Rev. 42(7), 3018–3032 (2013). https://doi.org/10.1039/C2CS35256G
Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan, Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52(50), 13186–13200 (2013). https://doi.org/10.1002/anie.201304762
X. Gu, C. Lai, Recent development of metal compound applications in lithium–sulphur batteries. J. Mater. Res. 33(1), 16–31 (2018). https://doi.org/10.1557/jmr.2017.282
Y. Wang, E. Sahadeo, G. Rubloff, C.F. Lin, S.B. Lee, High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes. J. Mater. Sci. 54(5), 3671–3693 (2019). https://doi.org/10.1007/s10853-018-3093-7
T. Cleaver, P. Kovacik, M. Marinescu, T. Zhang, G. Offer, Perspective-commercializing lithium sulfur batteries: are we doing the right research? J. Electrochem. Soc. 165(1), A6029–A6033 (2018). https://doi.org/10.1149/2.0071801jes
H. Yuan, J.Q. Huang, H.J. Peng, M.M. Titirici, R. Xiang, R. Chen, Q. Liu, Q. Zhang, A review of functional binders in lithium–sulfur batteries. Adv. Energy Mater. 8(31), 1802107 (2018). https://doi.org/10.1002/aenm.201802107
Y. Ma, J. Ma, G. Cui, Small things make big deal: powerful binders of lithium batteries and post-lithium batteries. Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.11.013
J. Zhu, P. Zhu, C. Yan, X. Dong, X. Zhang, Recent progress in polymer materials for advanced lithium–sulfur batteries. Prog. Polym. Sci. 4, 5 (2018). https://doi.org/10.1016/j.progpolymsci.2018.12.002
H. Chen, M. Ling, L. Hencz, H.Y. Ling, G. Li, Z. Lin, G. Liu, S. Zhang, Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 118(18), 8936–8982 (2018). https://doi.org/10.1021/acs.chemrev.8b00241
D.E. Packham, The mechanical theory of adhesion-changing perceptions 1925–1991. J. Adhes. 39(2–3), 137–144 (1992). https://doi.org/10.1080/00218469208026545
A.N. Gent, C.W. Lin, Model studies of the effect of surface roughness and mechanical interlocking on adhesion. J. Adhes. 32(2–3), 113–125 (1990). https://doi.org/10.1080/00218469008030185
S.L.S. Nunes, R.D.S.G. Campilho, F.J.G. da Silva, C.C.R.G. de Sousa, T.A.B. Fernandes, M.D. Banea, L.F.M. da Silva, Comparative failure assessment of single and double lap joints with varying adhesive systems. J. Adhes. 92(7–9), 610–634 (2016). https://doi.org/10.1080/00218464.2015.1103227
D.J. Gardner, M. Blumentritt, L. Wang, N. Yildirim, Adhesion Theories in Wood Adhesive Bonding (Scrivener Publishing, Beverly, 2015). https://doi.org/10.1002/9781119162346.ch5
A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C.F. Huebner, T.F. Fuller, I. Luzinov, G. Yushin, Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl. Mater. Interfaces 2(11), 3004–3010 (2010). https://doi.org/10.1021/am100871y
B.V. Derjaguin, I.N. Aleinikova, Y.P. Toporov, On the role of electrostatic forces in the adhesion of polymer particles to solid surfaces. Powder Technol. 2(3), 154–158 (1969). https://doi.org/10.1016/0032-5910(69)80003-3
J. Song, M. Zhou, R. Yi, T. Xu, M.L. Gordin, D. Tang, Z. Yu, M. Regula, D. Wang, Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 24(37), 5904–5910 (2014). https://doi.org/10.1002/adfm.201401269
C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44(21), 7484–7539 (2015). https://doi.org/10.1039/C5CS00303B
B. Smitha, S. Sridhar, A. Khan, Solid polymer electrolyte membranes for fuel cell applications: a review. J. Membr. Sci. 259(1–2), 10–26 (2005). https://doi.org/10.1016/j.memsci.2005.01.035
M. Yoshio, R.J. Brodd, A. Kozawa, Lithium-Ion Batteries (Springer, Berlin, 2009), pp. 155–179
Z. Zhu, S. Tang, J. Yuan, X. Qin, Y. Deng, R. Qu, G.M. Haarberg, Effects of various binders on supercapacitor performances. Int. J. Electrochem. Sci. 11(10), 8270–8279 (2016). https://doi.org/10.20964/2016.10.04
S.S. Zhang, T.R. Jow, Study of poly(acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of li-ion batteries. J. Power Sources 2(1), 422–426 (2002). https://doi.org/10.1016/S0378-7753(02)00107-6
H. Maleki, G. Deng, A. Anani, J. Howard, Thermal stability studies of li-ion cells and components. J. Electrochem. Soc. 146(9), 3224–3229 (1999). https://doi.org/10.1149/1.1392458
E. Markevich, G. Salitra, D. Aurbach, Influence of the PVDF binder on the stability of LiCoO2 electrodes. Electrochem. Commun. 7(12), 1298–1304 (2005). https://doi.org/10.1016/j.elecom.2005.09.010
S. Kasap, P. Capper, Springer Handbook of Electronic and Photonic Materials (Springer, Berlin, 2017)
W.-R. Liu, M.-H. Yang, H.-C. Wu, S.M. Chiao, N.-L. Wu, Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem. Solid State Lett. 8(2), 100–103 (2005). https://doi.org/10.1149/1.1847685
S.F. Lux, F. Schappacher, A. Balducci, S. Passerini, M. Winter, Low cost, environmentally benign binders for lithium-ion batteries. J. Electrochem. Soc. 157(3), 320–325 (2010). https://doi.org/10.1149/1.3291976
R. Fang, S. Zhao, Z. Sun, D.W. Wang, H.M. Cheng, F. Li, More reliable lithium–sulfur batteries: status, solutions and prospects. Adv. Mater. 29(48), 1606823 (2017). https://doi.org/10.1002/adma.201606823
G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu, R. Zhang, Z.W. Seh, D. Zhuo, Y. Liu, J. Sun, Catalytic oxidation of Li2S on the surface of metal sulfides for Li–S batteries. Proc. Natl. Acad. Sci. 114(5), 840–845 (2017). https://doi.org/10.1073/pnas.1615837114
K. Han, J. Shen, S. Hao, H. Ye, C. Wolverton, M.C. Kung, H.H. Kung, Free-standing nitrogen-doped graphene paper as electrodes for high-performance lithium/dissolved polysulfide batteries. Chemsuschem 7(9), 2545–2553 (2014). https://doi.org/10.1002/cssc.201402329
B. Liu, R. Fang, D. Xie, W. Zhang, H. Huang, Y. Xia, X. Wang, X. Xia, J. Tu, Revisiting scientific issues for industrial applications of lithium–sulfur batteries. Energy Environ. Mater. 1(4), 196–208 (2018). https://doi.org/10.1002/eem2.12021
Y. He, Z. Chang, S. Wu, H. Zhou, Effective strategies for long-cycle life lithium–sulfur batteries. J. Mater. Chem. A 6, 6155–6182 (2018). https://doi.org/10.1039/c8ta01115j
G. Yoon, D.H. Kim, I. Park, D. Chang, B. Kim, B. Lee, K. Oh, K. Kang, Using first-principles calculations for the advancement of materials for rechargeable batteries. Adv. Funct. Mater. 27(40), 1702887 (2017). https://doi.org/10.1002/adfm.201702887
L.F. Nazar, M. Cuisinier, Q. Pang, Lithium–sulfur batteries. MRS Bull. 39(5), 436–442 (2014). https://doi.org/10.1557/mrs.2014.86
H.J. Peng, J.Q. Huang, X.B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7(24), 1700260 (2017). https://doi.org/10.1002/aenm.201700260
C. Li, Z. Xi, D. Guo, X. Chen, L. Yin, Chemical immobilization effect on lithium polysulfides for lithium–sulfur batteries. Small 14(4), 1701986 (2018). https://doi.org/10.1002/smll.201701986
Z. Lin, C. Liang, Lithium–sulfur batteries: from liquid to solid cells. J. Mater. Chem. A 3(3), 936–958 (2015). https://doi.org/10.1039/C4TA04727C
M.K. Song, E.J. Cairns, Y. Zhang, Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale 5(6), 2186–2204 (2013). https://doi.org/10.1039/C2NR33044J
S.Y. Li, W.P. Wang, H. Duan, Y.G. Guo, Recent progress on confinement of polysulfides through physical and chemical methods. J. Energy Chem. 27(6), 1555–1565 (2018). https://doi.org/10.1016/j.jechem.2018.04.014
T.Z. Hou, W.T. Xu, X. Chen, H.J. Peng, J.Q. Huang, Q. Zhang, Lithium bond chemistry in lithium–sulfur batteries. Angew. Chem. Int. Ed. 56(28), 8178–8182 (2017). https://doi.org/10.1002/anie.201704324
T.Z. Hou, X. Chen, H.J. Peng, J.Q. Huang, B.Q. Li, Q. Zhang, B. Li, Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries. Small 12(24), 3283–3291 (2016). https://doi.org/10.1002/smll.201600809
X. Chen, H.J. Peng, R. Zhang, T.Z. Hou, J.Q. Huang, B. Li, Q. Zhang, An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides? ACS Energy Lett. 2(4), 795–801 (2017). https://doi.org/10.1021/acsenergylett.7b00164
H. Wang, W. Zhang, J. Xu, Z. Guo, Advances in polar materials for lithium–sulfur batteries. Adv. Funct. Mater. 28(38), 1707520 (2018). https://doi.org/10.1002/adfm.201707520
X. Liu, J.Q. Huang, Q. Zhang, L. Mai, Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 29(20), 1601759 (2017). https://doi.org/10.1002/adma.201601759
J. Liu, M. Wang, N. Xu, T. Qian, C. Yan, Progress and perspective of organosulfur polymers as cathode materials for advanced lithium–sulfur batteries. Energy Storage Mater. 15, 53–64 (2018). https://doi.org/10.1016/j.ensm.2018.03.017
Z. Cheng, H. Pan, H. Zhong, Z. Xiao, X. Li, R. Wang, Porous organic polymers for polysulfide trapping in lithium–sulfur batteries. Adv. Funct. Mater. 28(38), 1707597 (2018). https://doi.org/10.1002/adfm.201707597
Z.W. Zhang, H.J. Peng, M. Zhao, J.Q. Huang, Heterogeneous/homogeneous mediators for high-energy-density lithium–sulfur batteries: progress and prospects. Adv. Funct. Mater. 28(38), 1707536 (2018). https://doi.org/10.1002/adfm.201707536
H.J. Peng, J.Q. Huang, Q. Zhang, A review of flexible lithium–sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 46(17), 5237–5288 (2017). https://doi.org/10.1039/C7CS00139H
C.Y. Chen, H.J. Peng, T.Z. Hou, P.Y. Zhai, B.Q. Li, C. Tang, W. Zhu, J.Q. Huang, Q. Zhang, A quinonoid-imine-enriched nanostructured polymer mediator for lithium–sulfur batteries. Adv. Mater. 29(23), 1606802 (2017). https://doi.org/10.1002/adma.201606802
Z. Xiao, L. Li, Y. Tang, Z. Cheng, H. Pan, D. Tian, R. Wang, Covalent organic frameworks with lithiophilic and sulfiphilic dual linkages for cooperative affinity to polysulfides in lithium–sulfur batteries. Energy Storage Mater. 12, 252–259 (2018). https://doi.org/10.1016/j.ensm.2018.01.018
B.Q. Li, S.Y. Zhang, L. Kong, H.J. Peng, Q. Zhang, Porphyrin organic framework hollow spheres and their applications in lithium–sulfur batteries. Adv. Mater. 30(23), 1707483 (2018). https://doi.org/10.1002/adma.201707483
J. Liu, T. Qian, M. Wang, X. Liu, N. Xu, Y. You, C. Yan, Molecularly imprinted polymer enables high-efficiency recognition and trapping lithium polysulfides for stable lithium sulfur battery. Nano Lett. 17(8), 5064–5070 (2017). https://doi.org/10.1021/acs.nanolett.7b02332
J.L. Shi, C. Tang, J.Q. Huang, W. Zhu, Q. Zhang, Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium–sulfur batteries. J. Energy Chem. 27(1), 167–175 (2018). https://doi.org/10.1016/j.jechem.2017.09.014
G. Hu, Z. Sun, C. Shi, R. Fang, J. Chen, P. Hou, C. Liu, H.M. Cheng, F. Li, A sulfur-rich copolymer@CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium–sulfur batteries. Adv. Mater. 29(11), 1603835 (2017). https://doi.org/10.1002/adma.201603835
W. Yang, W. Yang, J. Feng, X. Qin, A polypyrrole-coated acetylene black/sulfur composite cathode material for lithium–sulfur batteries. J. Energy Chem. 27(3), 813–819 (2018). https://doi.org/10.1016/j.jechem.2017.05.007
H. Zhang, Z. Zhao, Y. Liu, J. Liang, Y. Hou, Z. Zhang, X. Wang, J. Qiu, Nitrogen-doped hierarchical porous carbon derived from metal–organic aerogel for high performance lithium–sulfur batteries. J. Energy Chem. 26(6), 1282–1290 (2017). https://doi.org/10.1016/j.jechem.2017.08.016
X. Tao, J. Wang, C. Liu, H. Wang, H. Yao et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat. Commun. 7, 11203 (2016). https://doi.org/10.1038/ncomms11203
W. Chen, T. Lei, W. Lv, Y. Hu, Y. Yan et al., Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium–sulfur battery. Adv. Mater. 30(40), 1804084 (2018). https://doi.org/10.1002/adma.201804084
T. Lei, W. Chen, J. Huang, C. Yan, H. Sun et al., Multi-functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries. Adv. Energy Mater. 7(4), 1601843 (2017). https://doi.org/10.1002/aenm.201601843
J.Q. Huang, Q. Zhang, F. Wei, Multi-functional separator/interlayer system for high-stable lithium–sulfur batteries: progress and prospects. Energy Storage Mater. 1, 127–145 (2015). https://doi.org/10.1016/j.ensm.2015.09.008
T. Lei, W. Chen, W. Lv, J. Huang, J. Zhu et al., Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium–sulfur batteries. Joule 2(10), 2091–2104 (2018). https://doi.org/10.1016/j.joule.2018.07.022
X. Fu, Y. Wang, L. Scudiero, W.H. Zhong, A polymeric nanocomposite interlayer as ion-transport-regulator for trapping polysulfides and stabilizing lithium metal. Energy Storage Mater. 15, 447–457 (2018). https://doi.org/10.1016/j.ensm.2018.06.025
S. Tu, X. Chen, X. Zhao, M. Cheng, P. Xiong, Y. He, Q. Zhang, Y. Xu, A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium–sulfur batteries. Adv. Mater. 30(45), 1804581 (2018). https://doi.org/10.1002/adma.201804581
J.Q. Huang, Q. Zhang, H.J. Peng, X.Y. Liu, W.Z. Qian, F. Wei, Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ. Sci. 7, 347–353 (2014). https://doi.org/10.1039/C3EE42223B
J. Scheers, S. Fantini, P. Johansson, A review of electrolytes for lithium–sulphur batteries. J. Power Sources 255(1), 204–218 (2014). https://doi.org/10.1039/C3EE42223B
W. Chen, T. Lei, C. Wu, M. Deng, C. Gong et al., Designing safe electrolyte systems for a high-stability lithium–sulfur battery. Adv. Energy Mater. 8(10), 1702348 (2018). https://doi.org/10.1002/aenm.201702348
M. Hagen, D. Hanselmann, K. Ahlbrecht, R. Maça, D. Gerber, J. Tübke, Lithium-sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 5(16), 1401986 (2015). https://doi.org/10.1002/aenm.201401986
S.H. Chung, A. Manthiram, Designing lithium–sulfur batteries with high-loading cathodes at a lean electrolyte condition. ACS Appl. Mater. Interfaces 10(50), 43749–43759 (2018). https://doi.org/10.1021/acsami.8b17393
W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.G. Zhang, Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/C3EE40795K
D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
A. Manthiram, Y. Fu, S.H. Chung, C. Zu, Y.S. Su, Rechargeable lithium–sulfur batteries. Chem. Rev. 114(23), 11751–11787 (2014). https://doi.org/10.1021/cr500062v
H. Dai, K. Xi, X. Liu, C. Lai, S. Zhang, Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms. J. Am. Chem. Soc. 140(50), 17515–17521 (2018). https://doi.org/10.1021/jacs.8b08963
T. Lei, W. Chen, Y. Hu, W. Lv, X. Lv et al., A nonflammable and thermotolerant separator suppresses polysulfide dissolution for safe and long-cycle lithium–sulfur batteries. Adv. Energy Mater. 8(32), 1802441 (2018). https://doi.org/10.1002/aenm.201802441
G. Zhou, K. Liu, Y. Fan, M. Yuan, B. Liu et al., An aqueous inorganic polymer binder for high performance lithium–sulfur batteries with flame-retardant properties. ACS Cent. Sci. 4(2), 260–267 (2018). https://doi.org/10.1021/acscentsci.7b00569
J. Yang, S. Wang, Z. Ma, Z. Du, C. Li, J. Song, G. Wang, G. Shao, Novel nitrogen-doped hierarchically porous coralloid carbon materials as host matrixes for lithium–sulfur batteries. Electrochim. Acta 159(20), 8–15 (2015). https://doi.org/10.1016/j.electacta.2015.01.187
S. Rehman, X. Gu, K. Khan, N. Mahmood, W. Yang, X. Huang, S. Guo, Y. Hou, 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium–sulfur batteries. Adv. Energy Mater. 6(12), 1502518 (2016). https://doi.org/10.1002/aenm.201502518
L. Zhou, T. Huang, A. Yu, Three-dimensional flower-shaped activated porous carbon/sulfur composites as cathode materials for lithium–sulfur batteries. ACS Sustain. Chem. Eng. 2(10), 2442–2447 (2014). https://doi.org/10.1021/sc500459c
B. He, W.C. Li, C. Yang, S.Q. Wang, A.H. Lu, Incorporating sulfur inside the pores of carbons for advanced lithium–sulfur batteries: an electrolysis approach. ACS Nano 10(1), 1633–1639 (2016). https://doi.org/10.1021/acsnano.5b07340
L. Zhou, X. Lin, T. Huang, A. Yu, Nitrogen-doped porous carbon nanofiber webs/sulfur composites as cathode materials for lithium–sulfur batteries. Electrochim. Acta 116, 210–216 (2014). https://doi.org/10.1016/j.electacta.2013.11.041
Q. Li, Z. Zhang, K. Zhang, J. Fang, Y. Lai, J. Li, A simple synthesis of hollow carbon nanofiber-sulfur composite via mixed-solvent process for lithium–sulfur batteries. J. Power Sources 256, 137–144 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.063
S. Chen, B. Sun, X. Xie, A.K. Mondal, X. Huang, G. Wang, Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reservoirs for lithium–sulfur batteries with long cycle life. Nano Energy 16, 268–280 (2015). https://doi.org/10.1016/j.nanoen.2015.05.034
S. Xiao, S. Liu, J. Zhang, Y. Wang, Polyurethane-derived N-doped porous carbon with interconnected sheet-like structure as polysulfide reservoir for lithium–sulfur batteries. J. Power Sources 293, 119–126 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.048
S. Niu, W. Lv, C. Zhang, F. Li, L. Tang et al., A carbon sandwich electrode with graphene filling coated by N-doped porous carbon layers for lithium–sulfur batteries. J. Mater. Chem. A 3(40), 20218–20224 (2015). https://doi.org/10.1039/C5TA05324B
J.G. Werner, S.S. Johnson, V. Vijay, U. Wiesner, Carbon-sulfur composites from cylindrical and gyroidal mesoporous carbons with tunable properties in lithium–sulfur batteries. Chem. Mater. 27(9), 3349–3357 (2015). https://doi.org/10.1021/acs.chemmater.5b00500
J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee, T. Bein, L.F. Nazar, Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. 124(15), 3651–3655 (2012). https://doi.org/10.1002/ange.201107817
X. Li, Y. Cao, W. Qi, L.V. Saraf, J. Xiao et al., Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J. Mater. Chem. 21(41), 16603–16610 (2011). https://doi.org/10.1039/c1jm12979a
G. He, X. Ji, L. Nazar, High “C” rate Li–S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 4(8), 2878–2883 (2011). https://doi.org/10.1039/c1ee01219c
X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8(6), 500–506 (2009). https://doi.org/10.1038/nmat2460
J. Wang, J. Chen, K. Konstantinov, L. Zhao, S.H. Ng, G. Wang, Z. Guo, H.K. Liu, Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochim. Acta 51(22), 4634–4638 (2006). https://doi.org/10.1016/j.electacta.2005.12.046
C.P. Yang, Y.X. Yin, Y.G. Guo, L.J. Wan, Electrochemical (de)lithiation of 1D sulfur chains in Li–S batteries: a model system study. J. Am. Chem. Soc. 137(6), 2215–2218 (2015). https://doi.org/10.1021/ja513009v
S. Xin, L. Gu, N.H. Zhao, Y.X. Yin, L.J. Zhou, Y.G. Guo, L.J. Wan, Smaller sulfur molecules promise better lithium–sulfur batteries. J. Am. Chem. Soc. 134(45), 18510–18513 (2012). https://doi.org/10.1021/ja308170k
X. Tao, J. Wang, Z. Ying, Q. Cai, G. Zheng et al., Strong sulfur binding with conducting magnéli-phase TinO2n–1 nanomaterials for improving lithium–sulfur batteries. Nano Lett. 14(9), 5288–5294 (2014). https://doi.org/10.1021/nl502331f
X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682
Q. Pang, D. Kundu, L.F. Nazar, A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries. Mater. Horiz. 3(2), 130–136 (2016). https://doi.org/10.1039/C5MH00246J
Z. Zhang, Z. Li, F. Hao, X. Wang, Q. Li, Y. Qi, R. Fan, L. Yin, 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium–sulfur batteries with high rate capability and cycling stability. Adv. Funct. Mater. 24(17), 2500–2509 (2014). https://doi.org/10.1002/adfm.201303080
X. Wang, X. Bi, S. Wang, Y. Zhang, H. Du, J. Lu, High-rate and long-term cycle stability of Li–S batteries enabled by Li2S/TiO2-impregnated hollow carbon nanofiber cathodes. ACS Appl. Mater. Interfaces 10(19), 16552–16560 (2018). https://doi.org/10.1021/acsami.8b03201
X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 54(13), 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
B. Zhang, X. Qin, G. Li, X. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 3(10), 1531–1537 (2010). https://doi.org/10.1039/c002639e
Y. Qu, Z. Zhang, X. Wang, Y. Lai, Y. Liu, J. Li, A simple SDS-assisted self-assembly method for the synthesis of hollow carbon nanospheres to encapsulate sulfur for advanced lithium–sulfur batteries. J. Mater. Chem. A 1(45), 14306–14310 (2013). https://doi.org/10.1039/c3ta13306k
Y. Zhao, W. Wu, J. Li, Z. Xu, L. Guan, Encapsulating MWNTs into hollow porous carbon nanotubes: tube-in-tube carbon nanostructure for high-performance lithium–sulfur batteries. Adv. Mater. 26(30), 5113–5118 (2014). https://doi.org/10.1002/adma.201401191
H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11(7), 2644–2647 (2011). https://doi.org/10.1021/nl200658a
C. Luo, S. Niu, G. Zhou, W. Lv, B. Li, F. Kang, Q.H. Yang, Dual-functional hard template directed one-step formation of a hierarchical porous carbon–carbon nanotube hybrid for lithium–sulfur batteries. Chem. Commun. 52(82), 12143–12146 (2016). https://doi.org/10.1039/C6CC06680A
Y. Wang, X. Huang, S. Zhang, Y. Hou, Sulfur hosts against the shuttle effect. Small Methods 2, 17000345 (2018). https://doi.org/10.1002/smtd.201700345
D.W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H.M. Cheng, I.R. Gentle, G.Q.M. Lu, Carbon–sulfur composites for Li–S batteries: status and prospects. J. Mater. Chem. A 1(33), 9382–9394 (2013). https://doi.org/10.1039/c3ta11045a
H. Shi, W. Lv, C. Zhang, D.W. Wang, G. Ling, Y. He, F. Kang, Q.H. Yang, Functional carbons remedy the shuttling of polysulfides in lithium–sulfur batteries: confining, trapping, blocking, and breaking up. Adv. Funct. Mater. 28(38), 1800508 (2018). https://doi.org/10.1002/adfm.201800508
T.O. Ely, D. Kamzabek, D. Chakraborty, M.F. Doherty, Lithium–sulfur batteries: state of the art and future directions. ACS Appl. Energy Mater. 1(5), 1783–1814 (2018). https://doi.org/10.1021/acsaem.7b00153
L. Hencz, X. Gu, X. Zhou, W. Martens, S. Zhang, Highly porous nitrogen-doped seaweed carbon for high-performance lithium–sulfur batteries. J. Mater. Sci. 52(20), 12336–12347 (2017). https://doi.org/10.1007/s10853-017-1288-y
Z. Li, Y. Jiang, L. Yuan, Z. Yi, C. Wu, Y. Liu, P. Strasser, Y. Huang, A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano 8(9), 9295–9303 (2014). https://doi.org/10.1021/nn503220h
G. Ma, Z. Wen, J. Jin, Y. Lu, K. Rui, X. Wu, M. Wu, J. Zhang, Enhanced performance of lithium sulfur battery with polypyrrole warped mesoporous carbon/sulfur composite. J. Power Sources 254, 353–359 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.085
Z. Li, J. Zhang, X.W. Lou, Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew. Chem. Int. Ed. 54(44), 12886–12890 (2015). https://doi.org/10.1002/anie.201506972
M. Rao, X. Song, H. Liao, E.J. Cairns, Carbon nanofiber–sulfur composite cathode materials with different binders for secondary Li/S cells. Electrochim. Acta 65, 228–233 (2012). https://doi.org/10.1016/j.electacta.2012.01.051
H. Schneider, A. Garsuch, A. Panchenko, O. Gronwald, N. Janssen, P. Novák, Influence of different electrode compositions and binder materials on the performance of lithium–sulfur batteries. J. Power Sources 205, 420–425 (2012). https://doi.org/10.1016/j.jpowsour.2011.12.061
M. Li, Y. Zhang, X. Wang, W. Ahn, G. Jiang, K. Feng, G. Lui, Z. Chen, Gas pickering emulsion templated hollow carbon for high rate performance lithium sulfur batteries. Adv. Funct. Mater. 26(46), 8408–8417 (2016). https://doi.org/10.1002/adfm.201603241
S. Chen, X. Huang, H. Liu, B. Sun, W. Yeoh, K. Li, J. Zhang, G. Wang, 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium–sulfur batteries. Adv. Energy Mater. 4(8), 1301761 (2014). https://doi.org/10.1002/aenm.201301761
Y. Xu, Y. Wen, Y. Zhu, K. Gaskell, K.A. Cychosz, B. Eichhorn, K. Xu, C. Wang, Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries. Adv. Funct. Mater. 25(27), 4312–4320 (2015). https://doi.org/10.1002/adfm.201500983
Z. Li, L. Yin, Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance. ACS Appl. Mater. Interfaces 7(7), 4029–4038 (2015). https://doi.org/10.1021/am507660y
Q. Sun, B. He, X.Q. Zhang, A.H. Lu, Engineering of hollow core–shell interlinked carbon spheres for highly stable lithium–sulfur batteries. ACS Nano 9(8), 8504–8513 (2015). https://doi.org/10.1021/acsnano.5b03488
S.S. Zhang, D.T. Tran, Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium–sulphur batteries. J. Mater. Chem. A 4(12), 4371–4374 (2016). https://doi.org/10.1039/C6TA01214K
M.J. Lacey, V. Österlund, A. Bergfelt, F. Jeschull, T. Bowden, D. Brandell, A robust, water-based, functional binder framework for high-energy lithium–sulfur batteries. Chemsuschem 10(13), 2758–2766 (2017). https://doi.org/10.1002/cssc.201700743
Q. Wang, N. Yan, M. Wang, C. Qu, X. Yang, H. Zhang, X. Li, H. Zhang, Layer-by-layer assembled C/S cathode with trace binder for Li–S battery application. ACS Appl. Mater. Interfaces 7(45), 25002–25006 (2015). https://doi.org/10.1021/acsami.5b08887
C. Ye, L. Zhang, C. Guo, D. Li, A. Vasileff, H. Wang, S.-Z. Qiao, A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium–sulfur batteries. Adv. Funct. Mater. 27(33), 1702524 (2017). https://doi.org/10.1002/adfm.201702524
H. Su, C. Fu, Y. Zhao, D. Long, L. Ling, B.M. Wong, J. Lu, J. Guo, Polycation binders: an effective approach toward lithium polysulfide sequestration in Li–S batteries. ACS Energy Lett. 2(11), 2591–2597 (2017). https://doi.org/10.1021/acsenergylett.7b00779
W. Wahyudi, Z. Cao, P. Kumar, M. Li, Y. Wu et al., Phase inversion strategy to flexible freestanding electrode: critical coupling of binders and electrolytes for high performance Li–S battery. Adv. Funct. Mater. 18, 1802244 (2018). https://doi.org/10.1002/adfm.201802244
L. Li, T.A. Pascal, J.G. Connell, F.Y. Fan, S.M. Meckler, L. Ma, Y.-M. Chiang, D. Prendergast, B.A. Helms, Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. Nat. Commun. 8(1), 2277 (2017). https://doi.org/10.1038/s41467-017-02410-6
Q. Li, H. Yang, L. Xie, J. Yang, Y. Nuli, J. Wang, Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Chem. Commun. 52(92), 13479–13482 (2016). https://doi.org/10.1039/C6CC07250J
J. Wang, Z. Yao, C.W. Monroe, J. Yang, Y. Nuli, Carbonyl-β-cyclodextrin as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Adv. Funct. Mater. 23(9), 1194–1201 (2013). https://doi.org/10.1002/adfm.201201847
F. Zeng, W. Wang, A. Wang, K. Yuan, Z. Jin, Y.S. Yang, Multidimensional polycation β-cyclodextrin polymer as an effective aqueous binder for high sulfur loading cathode in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 7(47), 26257–26265 (2015). https://doi.org/10.1021/acsami.5b08537
X. Liu, T. Qian, J. Liu, J. Tian, L. Zhang, C. Yan, Greatly improved conductivity of double-chain polymer network binder for high sulfur loading lithium–sulfur batteries with a low electrolyte/sulfur ratio. Small 14(33), 1801536 (2018). https://doi.org/10.1002/smll.201801536
H.M. Kim, J.Y. Hwang, D. Aurbach, Y.K. Sun, Electrochemical properties of sulfurized-polyacrylonitrile cathode for lithium–sulfur batteries: effect of polyacrylic acid binder and fluoroethylene carbonate additive. J. Phys. Chem. Lett. 8(21), 5331–5337 (2017). https://doi.org/10.1021/acs.jpclett.7b02354
P. Zhu, J. Zhu, C. Yan, M. Dirican, J. Zang, H. Jia, Y. Li, Y. Kiyak, H. Tan, X. Zhang, In situ polymerization of nanostructured conductive polymer on 3D sulfur/carbon nanofiber composite network as cathode for high-performance lithium–sulfur batteries. Adv. Mater. Interfaces 5(10), 1701598 (2018). https://doi.org/10.1002/admi.201701598
Q. Wang, W. Wang, Y. Huang, F. Wang, H. Zhang, Z. Yu, A. Wang, K. Yuan, Improve rate capability of the sulfur cathode using a gelatin binder. J. Electrochem. Soc. 158(6), A775–A779 (2011). https://doi.org/10.1149/1.3583375
W. Bao, Z. Zhang, Y. Gan, X. Wang, J. Lia, Enhanced cyclability of sulfur cathodes in lithium–sulfur batteries with Na-alginate as a binder. J. Energy Chem. 22(5), 790–794 (2013). https://doi.org/10.1016/S2095-4956(13)60105-9
M. He, L.X. Yuan, W.X. Zhang, X.L. Hu, Y.H. Huang, Enhanced cyclability for sulfur cathode achieved by a water-soluble binder. J. Phys. Chem. C 115(31), 15703–15709 (2011). https://doi.org/10.1021/jp2043416
Y. Chen, N. Liu, H. Shao, W. Wang, M. Gao, C. Li, H. Zhang, A. Wang, Y. Huang, Chitosan as a functional additive for high-performance lithium–sulfur batteries. J. Mater. Chem. A 3(29), 15235–15240 (2015). https://doi.org/10.1039/C5TA03032C
Y. Cheng, L. Huang, X. Xiao, B. Yao, L. Yuan et al., Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 15, 66–74 (2015). https://doi.org/10.1016/j.nanoen.2015.04.007
Y.Q. Lu, J.T. Li, X.X. Peng, T. Zhang, Y.P. Deng et al., Achieving high capacity retention in lithium–sulfur batteries with an aqueous binder. Electrochem. Commun. 72, 79–82 (2016). https://doi.org/10.1016/j.elecom.2016.09.004
M. Ling, L. Zhang, T. Zheng, J. Feng, J. Guo, L. Mai, G. Liu, Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery. Nano Energy 38, 82–90 (2017). https://doi.org/10.1016/j.nanoen.2017.05.020
X. Duan, Y. Han, Y. Li, Y. Chen, Improved capacity retention of low cost sulfur cathodes enabled by a novel starch binder derived from food. RSC Adv. 4(105), 60995–61000 (2014). https://doi.org/10.1039/C4RA10953H
Z.W. Seh, Q. Zhang, W. Li, G. Zheng, H. Yao, Y. Cui, Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem. Sci. 4(9), 3673–3677 (2013). https://doi.org/10.1039/c3sc51476e
M.J. Lacey, F. Jeschull, K. Edström, D. Brandell, Why PEO as a binder or polymer coating increases capacity in the Li–S system. Chem. Commun. 49(76), 8531–8533 (2013). https://doi.org/10.1039/c3cc44772c
S.S. Zhang, Binder based on polyelectrolyte for high capacity density lithium/sulfur battery. J. Electrochem. Soc. 159(8), A1226–A1229 (2012). https://doi.org/10.1149/2.039208jes
Z. Zhang, W. Bao, H. Lu, M. Jia, K. Xie, Y. Lai, J. Li, Water-soluble polyacrylic acid as a binder for sulfur cathode in lithium–sulfur battery. ECS Electrochem. Lett. 1(2), A34–A37 (2012). https://doi.org/10.1149/2.009202eel
J. Pan, G. Xu, B. Ding, J. Han, H. Dou, X. Zhang, Enhanced electrochemical performance of sulfur cathodes with a water-soluble binder. RSC Adv. 5(18), 13709–13714 (2015). https://doi.org/10.1039/C4RA15303K
P. Bhattacharya, M.I. Nandasiri, D. Lv, A.M. Schwarz, J.T. Darsell et al., Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes. Nano Energy 19, 176–186 (2016). https://doi.org/10.1016/j.nanoen.2015.11.012
L. Zhang, M. Ling, J. Feng, G. Liu, J. Guo, Effective electrostatic confinement of polysulfides in lithium/sulfur batteries by a functional binder. Nano Energy 40, 559–565 (2017). https://doi.org/10.1016/j.nanoen.2017.09.003
M. Ling, W. Yan, A. Kawase, H. Zhao, Y. Fu, V.S. Battaglia, G. Liu, Electrostatic polysulfides confinement to inhibit redox shuttle process in the lithium sulfur batteries. ACS Appl. Mater. Interfaces 9(37), 31741–31745 (2017). https://doi.org/10.1021/acsami.7b06485
A. Vizintin, R. Guterman, J. Schmidt, M. Antonietti, R. Dominko, Linear and crosslinked ionic liquid polymers as binders in lithium–sulfur battery. Chem. Mater. 30(15), 5444–5450 (2018). https://doi.org/10.1021/acs.chemmater.8b02357
B. Liu, S. Wang, Q. Yang, G.-H. Hu, C. Xiong, Thiokol with excellent restriction on the shuttle effect in lithium–sulfur batteries. Appl. Sci. 8(1), 79 (2018). https://doi.org/10.3390/app8010079
M.J. Lacey, F. Jeschull, K. Edström, D. Brandell, Functional, water-soluble binders for improved capacity and stability of lithium–sulfur batteries. J. Power Sources 264, 8–14 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.090
Y. Jung, S. Kim, New approaches to improve cycle life characteristics of lithium–sulfur cells. Electrochem. Commun. 9(2), 249–254 (2007). https://doi.org/10.1016/j.elecom.2006.09.013
MathSciNet
N. Akhtar, H.Y. Shao, F. Ai, Y. Guan, Q. Peng et al., Gelatin–polyethylenimine composite as a functional binder for highly stable lithium–sulfur batteries. Electrochim. Acta 282, 758–766 (2018). https://doi.org/10.1016/j.electacta.2018.06.101
J. Liu, M. Sun, Q. Zhang, F. Dong, P. Kaghazchi, Y. Fang, S. Zhang, Z. Lin, A robust network binder with dual functions of Cu2+ ions as ionic crosslinking and chemical binding agents for highly stable Li–S batteries. J. Mater. Chem. A 6(17), 7382–7388 (2018). https://doi.org/10.1039/C8TA01138A
J. Liu, D.G. Galpaya, L. Yan, M. Sun, Z. Lin, C. Yan, C. Liang, S. Zhang, Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li–S battery. Energy Environ. Sci. 10(3), 750–755 (2017). https://doi.org/10.1039/C6EE03033E
W. Chen, T. Qian, J. Xiong, N. Xu, X. Liu et al., A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries. Adv. Mater. 29(12), 1605160 (2017). https://doi.org/10.1002/adma.201605160
W. Chen, T. Lei, T. Qian, W. Lv, W. He et al., A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium–sulfur battery. Adv. Energy Mater. 8(12), 1702889 (2018). https://doi.org/10.1002/aenm.201702889
L. Yan, X. Gao, F. Wahid-Pedro, J.T.E. Quinn, Y. Meng, Y. Li, A novel epoxy resin-based cathode binder for low cost, long cycling life, and high-energy lithium–sulfur batteries. J. Mater. Chem. A 6, 14315–14323 (2018). https://doi.org/10.1039/C8TA04450C
I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334(6052), 75–79 (2011). https://doi.org/10.1126/science.1209150
J. Sun, Y. Huang, W. Wang, Z. Yu, A. Wang, K. Yuan, Application of gelatin as a binder for the sulfur cathode in lithium–sulfur batteries. Electrochim. Acta 53(24), 7084–7088 (2008). https://doi.org/10.1016/j.electacta.2008.05.022
Y. Huang, J. Sun, W. Wang, Y. Wang, Z. Yu, H. Zhang, A. Wang, K. Yuan, Discharge process of the sulfur cathode with a gelatin binder. J. Electrochem. Soc. 155(10), A764–A767 (2008). https://doi.org/10.1149/1.2967191
Y. Wang, Y. Huang, W. Wang, C. Huang, Z. Yu, H. Zhang, J. Sun, A. Wang, K. Yuan, Structural change of the porous sulfur cathode using gelatin as a binder during discharge and charge. Electrochim. Acta 54(16), 4062–4066 (2009). https://doi.org/10.1016/j.electacta.2009.02.039
W. Zhang, Y. Huang, W. Wang, C. Huang, Y. Wang, Z. Yu, H. Zhang, Influence of pH of gelatin solution on cycle performance of the sulfur cathode. J. Electrochem. Soc. 157(4), A443–A446 (2010). https://doi.org/10.1149/1.3299323
S. Jiang, M. Gao, Y. Huang, W. Wang, H. Zhang, Z. Yu, A. Wang, K. Yuan, X. Chen, Enhanced performance of the sulfur cathode with l-cysteine-modified gelatin binder. J. Adhes. Sci. Technol. 27(9), 1006–1011 (2013). https://doi.org/10.1080/01694243.2012.727171
S. Kamel, N. Ali, K. Jahangir, S. Shah, A. El-Gendy, Pharmaceutical significance of cellulose: a review. Express Polym. Lett. 2(11), 758–778 (2008). https://doi.org/10.3144/expresspolymlett.2008.90
M.N.R. Kumar, A review of chitin and chitosan applications. React. Funct. Polym. 46(1), 1–27 (2000). https://doi.org/10.1016/S1381-5148(00)00038-9
A. Islam, G. Phillips, A. Sljivo, M. Snowden, P. Williams, A review of recent developments on the regulatory, structural and functional aspects of gum arabic. Food Hydrocolloids 11(4), 493–505 (1997). https://doi.org/10.1016/S0268-005X(97)80048-3
D. Renard, L. Lavenant-Gourgeon, M.C. Ralet, C. Sanchez, Acacia senegal gum: continuum of molecular species differing by their protein to sugar ratio, molecular weight, and charges. Biomacromolecules 7(9), 2637–2649 (2006). https://doi.org/10.1021/bm060145j
D. Mudgil, S. Barak, B.S. Khatkar, Guar gum: processing, properties and food applications: a review. J. Food Sci. Technol. 51(3), 409–418 (2014). https://doi.org/10.1007/s13197-011-0522-x
W.J. Cheng, C.S. Cho, C.C. Li, Communication-gelatinization of guar gum and its effects on the dispersion and electrochemistry of lithium–sulfur batteries. J. Electrochem. Soc. 165(10), A2058–A2060 (2018). https://doi.org/10.1149/2.0351810jes
X. Fu, Y. Wang, J. Tuba, L. Scudiero, W.H. Zhong, Small molecules make a big difference: a solvent-controlled strategy for building robust conductive network structures in high-capacity electrode composites. Small Methods 2, 1800066 (2018). https://doi.org/10.1002/smtd.201800066
S.E. Cheon, J.H. Cho, K.S. Ko, C.W. Kwon, D.R. Chang, H.T. Kim, S.W. Kim, Structural factors of sulfur cathodes with poly(ethylene oxide) binder for performance of rechargeable lithium sulfur batteries. J. Electrochem. Soc. 149(11), A1437–A1441 (2002). https://doi.org/10.1002/smtd.201800066
J. Shim, K.A. Striebel, E.J. Cairns, The lithium/sulfur rechargeable cell effects of electrode composition and solvent on cell performance. J. Electrochem. Soc. 149(10), A1321–A1325 (2002). https://doi.org/10.1149/1.1503076
X. Hong, J. Jin, Z. Wen, S. Zhang, Q. Wang, C. Shen, K. Rui, On the dispersion of lithium–sulfur battery cathode materials effected by electrostatic and stereo-chemical factors of binders. J. Power Sources 324, 455–461 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.114
P. Bhattacharya, N.K. Geitner, S. Sarupria, P.C. Ke, Exploiting the physicochemical properties of dendritic polymers for environmental and biological applications. Phys. Chem. Chem. Phys. 15(13), 4477–4490 (2013). https://doi.org/10.1039/c3cp44591g
L. Ma, H.L. Zhuang, S. Wei, K.E. Hendrickson, M.S. Kim, G. Cohn, R.G. Hennig, L.A. Archer, Enhanced Li–S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano 10(1), 1050–1059 (2015). https://doi.org/10.1021/acsnano.5b06373
H. Wang, M. Ling, Y. Bai, S. Chen, Y. Yuan, G. Liu, C. Wu, F. Wu, Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries. J. Mater. Chem. A 6(16), 6959–6966 (2018). https://doi.org/10.1039/C7TA10239A
J. Liao, Z. Ye, Quaternary ammonium cationic polymer as a superior bifunctional binder for lithium–sulfur batteries and effects of counter anion. Electrochim. Acta 259, 626–636 (2018). https://doi.org/10.1016/j.electacta.2017.10.194
W. Hua, Z. Yang, H. Nie, Z. Li, J. Yang, Z. Guo, C. Ruan, X.A. Chen, S. Huang, Polysulfide-scission reagents for the suppression of the shuttle effect in lithium–sulfur batteries. ACS Nano 11(2), 2209–2218 (2017). https://doi.org/10.1021/acsnano.6b08627
N.I. Kim, C.B. Lee, J.M. Seo, W.J. Lee, Y.B. Roh, Correlation between positive-electrode morphology and sulfur utilization in lithium–sulfur battery. J. Power Sources 132(1–2), 209–212 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.028
F. Garcıa-Ochoa, V. Santos, J. Casas, E. Gomez, Xanthan gum: production, recovery, and properties. Biotechnol. Adv. 18(7), 549–579 (2000). https://doi.org/10.1016/S0734-9750(00)00050-1
J. Pan, G. Xu, B. Ding, Z. Chang, A. Wang, H. Dou, X. Zhang, PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium–sulfur batteries. RSC Adv. 6(47), 40650–40655 (2016). https://doi.org/10.1039/C6RA04230A
L. Yan, X. Gao, J.P. Thomas, J. Ngai, H. Altounian, K.T. Leung, Y. Meng, Y. Li, Ionically cross-linked PEDOT:PSS as a multi-functional conductive binder for high-performance lithium–sulfur batteries. Sustain. Energy Fuels 2, 1574–1581 (2018). https://doi.org/10.1039/C8SE00167G
H. Gao, Q. Lu, Y. Yao, X. Wang, F. Wang, Significantly raising the cell performance of lithium sulfur battery via the multifunctional polyaniline binder. Electrochim. Acta 232, 414–421 (2017). https://doi.org/10.1016/j.electacta.2017.02.160
C. Milroy, A. Manthiram, An elastic, conductive, electroactive nanocomposite binder for flexible sulfur cathodes in lithium–sulfur batteries. Adv. Mater. 28(44), 9744–9751 (2016). https://doi.org/10.1002/adma.201601665
G. Ai, Y. Dai, Y. Ye, W. Mao, Z. Wang et al., Investigation of surface effects through the application of the functional binders in lithium sulfur batteries. Nano Energy 16, 28–37 (2015). https://doi.org/10.1016/j.nanoen.2015.05.036
G. Li, W. Cai, B. Liu, Z. Li, A multi-functional binder with lithium ion conductive polymer and polysulfide absorbents to improve cyclability of lithium-sulfur batteries. J. Power Sources 294, 187–192 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.083
M. Cheng, L. Li, Y. Chen, X. Guo, B. Zhong, A functional binder-sulfonated poly(ether ether ketone) for sulfur cathode of Li–S batteries. RSC Adv. 6(81), 77937–77943 (2016). https://doi.org/10.1039/C6RA16171E
H. Zhang, X. Hu, Y. Zhang, S. Wang, F. Xin, X. Chen, D. Yu, 3D-crosslinked tannic acid/poly (ethylene oxide) complex as a three-in-one multifunctional binder for high-sulfur-loading and high-stability cathodes in lithium–sulfur batteries. Energy Storage Mater. 17, 293–299 (2019). https://doi.org/10.1016/j.ensm.2018.07.006
P.D. Frischmann, Y. Hwa, E.J. Cairns, B.A. Helms, Redox-active supramolecular polymer binders for lithium–sulfur batteries that adapt their transport properties in operando. Chem. Mater. 28(20), 7414–7421 (2016). https://doi.org/10.1021/acs.chemmater.6b03013
G. Hernández, N. Lago, D. Shanmukaraj, M. Armand, D. Mecerreyes, Polyimide–polyether binders-diminishing the carbon content in lithium sulfur batteries. Mater. Today Energy 6, 264–270 (2017). https://doi.org/10.1016/j.mtener.2017.11.001
K. Sun, S. Zhang, P. Li, Y. Xia, X. Zhang, D. Du, F.H. Isikgor, J. Ouyang, Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J. Mater. Sci. Mater. Electron. 26(7), 4438–4462 (2015). https://doi.org/10.1007/s10854-015-2895-5
Z. Wang, Y. Chen, V. Battaglia, G. Liu, Improving the performance of lithium–sulfur batteries using conductive polymer and micrometric sulfur powder. J. Mater. Res. 29(9), 1027–1033 (2014). https://doi.org/10.1557/jmr.2014.85
K.A. Mauritz, R.B. Moore, State of understanding of nafion. Chem. Rev. 104(10), 4535–4586 (2004). https://doi.org/10.1021/cr0207123
Z. Yang, R. Li, Z. Deng, Polyelectrolyte binder for sulfur cathode to improve the cycle performance and discharge property of lithium–sulfur battery. ACS Appl. Mater. Interfaces 10(16), 13519–13527 (2018). https://doi.org/10.1021/acsami.8b01163
B. Trofimov, L. Morozova, M. Markova, A. Mikhaleva, G. Myachina, I. Tatarinova, T. Skotheim, Vinyl ethers with polysulfide and hydroxyl functions and polymers therefrom as binders for lithium–sulfur batteries. J. Appl. Polym. Sci. 101(6), 4051–4055 (2006). https://doi.org/10.1002/app.23222
P.D. Frischmann, L.C. Gerber, S.E. Doris, E.Y. Tsai, F.Y. Fan et al., Supramolecular perylene bisimide-polysulfide gel networks as nanostructured redox mediators in dissolved polysulfide lithium–sulfur batteries. Chem. Mater. 27(19), 6765–6770 (2015). https://doi.org/10.1021/acs.chemmater.5b02955
Y. Hwa, P.D. Frischmann, B. Helms, E.J. Cairns, Aqueous-processable redox-active supramolecular polymer binders for advanced lithium/sulfur cells. Chem. Mater. 30(3), 685–691 (2018). https://doi.org/10.1021/acs.chemmater.7b03870