Flexible and Waterproof 2D/1D/0D Construction of MXene-Based Nanocomposites for Electromagnetic Wave Absorption, EMI Shielding, and Photothermal Conversion
Corresponding Author: Wei Lu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 150
Abstract
High-performance electromagnetic wave absorption and electromagnetic interference (EMI) shielding materials with multifunctional characters have attracted extensive scientific and technological interest, but they remain a huge challenge. Here, we reported an electrostatic assembly approach for fabricating 2D/1D/0D construction of Ti3C2Tx/carbon nanotubes/Co nanoparticles (Ti3C2Tx/CNTs/Co) nanocomposites with an excellent electromagnetic wave absorption, EMI shielding efficiency, flexibility, hydrophobicity, and photothermal conversion performance. As expected, a strong reflection loss of -85.8 dB and an ultrathin thickness of 1.4 mm were achieved. Meanwhile, the high EMI shielding efficiency reached 110.1 dB. The excellent electromagnetic wave absorption and shielding performances were originated from the charge carriers, electric/magnetic dipole polarization, interfacial polarization, natural resonance, and multiple internal reflections. Moreover, a thin layer of polydimethylsiloxane rendered the hydrophilic hierarchical Ti3C2Tx/CNTs/Co hydrophobic, which can prevent the degradation/oxidation of the MXene in high humidity condition. Interestingly, the Ti3C2Tx/CNTs/Co film exhibited a remarkable photothermal conversion performance with high thermal cycle stability and tenability. Thus, the multifunctional Ti3C2Tx/CNTs/Co nanocomposites possessing a unique blend of outstanding electromagnetic wave absorption and EMI shielding, light-driven heating performance, and flexible water-resistant features were highly promising for the next-generation intelligent electromagnetic attenuation system.
Highlights:
1 The 2D/1D/0D Ti3C2Tx/carbon nanotubes/Co nanocomposite is successfully synthesized via an electrostatic assembly.
2 Nanocomposites exhibit an excellent electromagnetic wave absorption and a remarkable electromagnetic interference shielding efficiency.
3 The flexible, waterproof, and photothermal conversion performances are achieved.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
- X. Zhang, Z. Liu, B. Deng, L. Cai, Y. Dong, X. Zhu, W. Lu, Honeycomb-like NiCo2O4@MnO2 nanosheets array/3D porous expanded graphite hybrids for high-performance microwave absorber with hydrophobic and flame-retardant functions. Chem. Eng. J. 419, 129547 (2021). https://doi.org/10.1016/j.cej.2021.129547
- X. Zhu, Y. Dong, Z. Xiang, L. Cai, F. Pan, X. Zhang, Z. Shi, W. Lu, Morphology-controllable synthesis of polyurethane-derived highly cross-linked 3D networks for multifunctional and efficient electromagnetic wave absorption. Carbon 182, 254–264 (2021). https://doi.org/10.1016/j.carbon.2021.06.028
- G.-M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
- M.-S. Cao, X.-X. Wang, M. Zhang, J.-C. Shu, W.-Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- S. Gao, G.-S. Wang, L. Guo, S.-H. Yu, Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16(19), 1906668 (2020). https://doi.org/10.1002/smll.201906668
- S. Gao, S.-H. Yang, H.-Y. Wang, G.-S. Wang, P.-G. Yin, Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C. Carbon 162, 438–444 (2020). https://doi.org/10.1016/j.Carbon2020.02.031
- D. Zhang, T. Liu, J. Cheng, Q. Cao, G. Zheng et al., Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett. 11(1), 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.-K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- F. Pan, L. Yu, Z. Xiang, Z. Liu, B. Deng, E. Cui, Z. Shi, X. Li, W. Lu, Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite. Carbon 172, 506–515 (2021). https://doi.org/10.1016/j.carbon.2020.10.039
- M.-S. Cao, Y.-Z. Cai, P. He, J.-C. Shu, W.-Q. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
- Z. Wang, Z. Cheng, L. Xie, X. Hou, C. Fang, Flexible and lightweight Ti3C2Tx MXene/Fe3O4@PANI composite films for high-performance electromagnetic interference shielding. Ceram. Int. 47(4), 5747–5757 (2021). https://doi.org/10.1016/j.ceramint.2020.10.161
- S. Wang, D. Li, Y. Zhou, L. Jiang, Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 14(7), 8634–8645 (2020). https://doi.org/10.1021/acsnano.0c03013
- J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30, 2002595 (2020). https://doi.org/10.1002/adfm.202002595
- Y. Li, F. Meng, Y. Mei, H. Wang, Y. Guo et al., Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 391, 123512 (2020). https://doi.org/10.1016/j.cej.2019.123512
- P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.-K. Kim et al., Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11(41), 38046–38054 (2019). https://doi.org/10.1021/acsami.9b12550
- R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13(1), 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
- X. Li, X. Yin, M. Han, C. Song, H. Xu et al., Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 5(16), 4068–4074 (2017). https://doi.org/10.1039/c6tc05226f
- F. Wang, Y. Sun, D. Li, B. Zhong, Z. Wu et al., Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon 134, 264–273 (2018). https://doi.org/10.1016/j.Carbon2018.03.081
- X. Zhang, Y. Li, R. Liu, Y. Rao, H. Rong et al., High-magnetization FeCo nanochains with ultrathin interfacial gaps for broadband electromagnetic wave absorption at gigahertz. ACS Appl. Mater. Interfaces 8(5), 3494–3498 (2016). https://doi.org/10.1021/acsami.5b12203
- J. Xiang, J. Li, X. Zhang, Q. Ye, J. Xu et al., Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J. Mater. Chem. A 2(40), 16905–16914 (2014). https://doi.org/10.1039/c4ta03732d
- D. Li, H. Liao, H. Kikuchi, T. Liu, Microporous Co@C nanoparticles prepared by dealloying coal@C precursors: Achieving strong wideband microwave absorption via controlling carbon shell thickness. ACS Appl. Mater. Interfaces 9(51), 44704–44714 (2017). https://doi.org/10.1021/acsami.7b13538
- Q. Liu, X. Liu, H. Feng, H. Shui, R. Yu, Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem. Eng. J. 314, 320–327 (2017). https://doi.org/10.1016/j.cej.2016.11.089
- B. Deng, Z. Liu, F. Pan, Z. Xiang, X. Zhang et al., Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching. J. Mater. Chem. A 9(6), 3500–3510 (2021). https://doi.org/10.1039/d0ta10551a
- P. Liu, Z. Yao, V.M.H. Ng, J. Zhou, L.B. Kong et al., Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. A 115, 371–382 (2018). https://doi.org/10.1016/j.compositesa.2018.10.014
- L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
- T. Hou, B. Wang, M. Ma, A. Feng, Z. Huang et al., Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties. Compos. B 180, 107577 (2020). https://doi.org/10.1016/j.compositesb.2019.107577
- N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112(2), 933–969 (2012). https://doi.org/10.1021/cr200304e
- Y.V. Kaneti, J. Tang, R.R. Salunkhe, X. Jiang, A. Yu et al., Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 29(12), 1604898 (2017). https://doi.org/10.1002/adma.201604898
- C. Xu, L. Wang, X. Li, X. Qian, Z. Wu et al., Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 13(1), 47 (2021). https://doi.org/10.1007/s40820-020-00572-5
- X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
- H. Zhao, X. Xu, Y. Wang, D. Fan, D. Liu et al., Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 16(43), 2003407 (2020). https://doi.org/10.1002/smll.202003407
- F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu, C. Huang, Z. SHi, W. Lu, Magnetic Fe3S4 LTMCs micro-flowers@ wax gourd aerogel-derived carbon hybrids as efficient and sustainable electromagnetic absorber. Carbon 179, 554–565 (2021). https://doi.org/10.1016/j.Carbon2021.04.053
- P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202102812
- X. Li, X. Yin, H. Xu, M. Han, M. Li et al., Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band. ACS Appl. Mater. Interfaces 10(40), 34524–34533 (2018). https://doi.org/10.1021/acsami.8b13658
- J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- M. Li, M. Han, J. Zhou, Q. Deng, X. Zhou et al., Novel scale-like structures of graphite/TiC/Ti3C2 hybrids for electromagnetic absorption. Adv. Electron. Mater. 4(5), 1700617 (2018). https://doi.org/10.1002/aelm.201700617s
- X. Gao, B. Wang, K. Wang, S. Xu, S. Liu et al., Design of Ti3C2Tx/TiO2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. J. Colloid. Interface Sci. 583, 510–521 (2021). https://doi.org/10.1016/j.jcis.2020.09.094
- B. Quan, X. Liang, G. Ji, J. Lv, S. Dai et al., Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon 129, 310–320 (2018). https://doi.org/10.1016/j.Carbon2017.12.026
- Z. Fan, D. Wang, Y. Yuan, Y. Wang, Z. Cheng et al., A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). https://doi.org/10.1016/j.cej.2019.122696
- Z. Xiang, C. Huang, Y. Song, B. Deng, X. Zhang et al., Rational construction of hierarchical accordion-like Ni@porous carbon nanocomposites derived from metal-organic frameworks with enhanced microwave absorption. Carbon 167, 364–377 (2020). https://doi.org/10.1016/j.Carbon2020.06.015
- M.-S. Cao, X.-X. Wang, M. Zhang, W.-Q. Cao, X.-Y. Fang et al., Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32(10), 1907156 (2020). https://doi.org/10.1002/adma.201907156
- Q.C. Song, B.X. Chen, Z.H. Zhou, C.H. Lu, Flexible, stretchable and magnetic Fe3O4@Ti3C2Tx/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance. Sci. China Mater. 64(6), 1437–1448 (2021). https://doi.org/10.1007/s40843-020-1539-2
- Q.-W. Wang, H.-B. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29(7), 1806819 (2019). https://doi.org/10.1002/adfm.201806819
- B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
- B. Zhou, M. Su, D. Yang, G. Han, Y. Feng et al., Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl. Mater. Interfaces 12(36), 40859–40869 (2020). https://doi.org/10.1021/acsami.0c09020
- R.D. Jackson, C.H. Van Bavel, Solar distillation of water from soil and plant materials: a simple desert survival technique. Science 149(3690), 1377–1379 (1965). https://doi.org/10.1126/science.149.3690.1377
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516(7529), 78-U171 (2014). https://doi.org/10.1038/nature13970
- B. Deng, Z. Xiang, J. Xiong, Z. Liu, L. Yu et al., Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 12(1), 55 (2020). https://doi.org/10.1007/s40820-020-0398-2
- H. Sun, R. Che, X. You, Y. Jiang, Z. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
- Z. Liu, F. Pan, B. Deng, Z. Xiang, W. Lu, Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption. Carbon 174, 59–69 (2021). https://doi.org/10.1016/j.Carbon2020.12.019
- W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng et al., Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
- D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu et al., Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.Carbon2016.10.059
- X. Zhang, Y. Dong, F. Pan, Z. Xiang, X. Zhu, W. Lu, Electrostatic self-assembly construction of 2D MoS2 wrapped hollow Fe3O4 nanoflowers@1D carbon tube hybrids for self-cleaning high performance microwave absorbers. Carbon 177(23), 332–343 (2021). https://doi.org/10.1016/j.Carbon2021.02.092
- Y. Cao, J.-H. Dou, N.-J. Zhao, S. Zhang, Y.-Q. Zheng et al., Highly efficient NIR-II photothermal conversion based on an organic conjugated polymer. Chem. Mater. 29(2), 718–725 (2017). https://doi.org/10.1021/acs.chemmater.6b04405
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu et al., Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018). https://doi.org/10.1016/j.cej.2017.09.174
- K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38–49 (2013). https://doi.org/10.1016/j.Carbon2012.10.013
- P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
- M. Ghidiu, J. Halim, S. Kota, D. Bish, Y. Gogotsi et al., Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 28(10), 3507–3514 (2016). https://doi.org/10.1021/acs.chemmater.6b01275
- Z. Xiang, J. Xiong, B. Deng, E. Cui, L. Yu et al., Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C 8(6), 2123–2134 (2020). https://doi.org/10.1039/c9tc06526a
- H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11(1), 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
- F. Zhang, W. Cui, B. Wang, B. Xu, X. Liu et al., Morphology-control synthesis of polyaniline decorative porous carbon with remarkable electromagnetic wave absorption capabilities. Compos. B 204, 108491 (2021). https://doi.org/10.1016/j.compositesb.2020.108491
- H.-B. Zhao, Z.-B. Fu, H.-B. Chen, M.-L. Zhong, C.-Y. Wang, Excellent electromagnetic absorption capability of Ni/carbon based conductive and magnetic foams synthesized via a green one pot route. ACS Appl. Mater. Interfaces 8(2), 1468–1477 (2016). https://doi.org/10.1021/acsami.5b10805
- X. Zhu, Y. Dong, F. Pan, Z. Xiang, W. Lu, Covalent organic framework-derived hollow core-shell Fe/Fe3O4@porous carbon composites with corrosion resistance for lightweight and efficient microwave absorption. Compos. Commun. 25, 100731 (2021). https://doi.org/10.1016/j.coco.2021.100731
- M.P. Morales, C.J. Serna, F. Bodker, S. Morup, Spin canting due to structural disorder in maghemite. J. Phys: Condens Matter. 9(25), 5461–5467 (1997). https://doi.org/10.1088/0953-8984/9/25/013
- H. Kronmuller, H. Kronmüller, M. Fähnle, Micromagnetism and the Microstructure of Ferromagnetic Solids (Cambridge University Press, Cambridge, 2003)
- T. Wang, R. Han, G. Tan, J. Wei, L. Qiao et al., Reflection loss mechanism of single layer absorber for flake-shaped carbonyl-iron particle composite. J. Appl. Phys. 112(10), 104903 (2012). https://doi.org/10.1063/1.4767365
- Z. Gao, B. Xu, M. Ma, A. Feng, Y. Zhang et al., Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption. Compos. B 179, 107417 (2019). https://doi.org/10.1016/j.compositesb.2019.107417
- W. Xu, G.-S. Wang, P.-G. Yin, Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding. Carbon 139, 759–767 (2018). https://doi.org/10.1016/j.Carbon2018.07.044
- Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji, A flexible and lightweight biomass—reinforced microwave absorber. Nano-Micro Lett. 12(1), 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
- Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12(1), 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
- F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu, C. Huang, W. Lu, Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13(1), 43 (2021). https://doi.org/10.1007/s40820-020-00568-1
- X. Li, J. Feng, Y. Du, J. Bai, H. Fan et al., One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3(10), 5535–5546 (2015). https://doi.org/10.1039/c4ta05718j
- P. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang et al., Core-shell CoNi@graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces 11(28), 25624–25635 (2019). https://doi.org/10.1021/acsami.9b08525
- Y. Liu, Z. Chen, Y. Zhang, R. Feng, X. Chen et al., Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/reduced graphene oxide porous nanocomposites. ACS Appl. Mater. Interfaces 10(16), 13860–13868 (2018). https://doi.org/10.1021/acsami.8b02137
- H. Wang, F. Meng, F. Huang, C. Jing, Y. Li et al., Interface modulating CNTs@PANI hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 11(12), 12142–12153 (2019). https://doi.org/10.1021/acsami.9b01122
- M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010). https://doi.org/10.1016/j.Carbon2009.10.028
- B. Wen, M.-S. Cao, Z.-L. Hou, W.-L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.Carbon2013.07.110
- P. Liu, S. Gao, Y. Wang, Y. Huang, W. He et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653
- P. Fang, Cole-cole diagram and the distribution of relaxation times. J. Chem. Phys. 42(10), 3411–3413 (1965). https://doi.org/10.1063/1.1695743
- Y.-F. Pan, G.-S. Wang, L. Liu, L. Guo, S.-H. Yu, Binary synergistic enhancement of dielectric and microwave absorption properties: a composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 10(1), 284–294 (2017). https://doi.org/10.1007/s12274-016-1290-8
- Z. Gao, Z. Jia, K. Wang, X. Liu, L. Bi et al., Simultaneous enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. Chem. Eng. J. 402, 125951 (2020). https://doi.org/10.1016/j.cej.2020.125951
- T. Hou, Z. Jia, A. Feng, Z. Zhou, X. Liu et al., Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity. J. Mater. Sci. Technol. 68, 61–69 (2021). https://doi.org/10.1016/j.jmst.2020.06.046
- Y. Lin, J. Dai, H. Yang, L. Wang, F. Wang, Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties. Chem. Eng. J. 334, 1740–1748 (2018). https://doi.org/10.1016/j.cej.2017.11.150
- X. Xu, F. Ran, H. Lai, Z. Cheng, T. Lv et al., In situ confined bimetallic metal-organic framework derived nanostructure within 3D interconnected bamboo-like carbon nanotube networks for boosting electromagnetic wave absorbing performances. ACS Appl. Mater. Interfaces 11(39), 35999–36009 (2019). https://doi.org/10.1021/acsami.9b14754
- P. Liu, S. Gao, W. Huang, J. Ren, D. Yu et al., Hybrid zeolite imidazolate framework derived N-implanted carbon polyhedrons with tunable heterogeneous interfaces for strong wideband microwave attenuation. Carbon 159, 83–93 (2020). https://doi.org/10.1016/j.Carbon2019.12.021
- P. Liu, S. Gao, X. Liu, Y. Huang, W. He et al., Rational construction of hierarchical hollow CuS@CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials. Compos. B 192, 107992 (2020). https://doi.org/10.1016/j.compositesb.2020.107992
- J. Xiong, Z. Xiang, J. Zhao, L. Yu, E. Cui et al., Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance. Carbon 154, 391–401 (2019). https://doi.org/10.1016/j.Carbon2019.07.096
- B. Lu, H. Huang, X.L. Dong, X.F. Zhang, J.P. Lei et al., Influence of alloy components on electromagnetic characteristics of core/shell-type Fe-Ni nanoparticles. J. Appl. Phys. 104(11), 114313 (2008). https://doi.org/10.1063/1.3040006
- X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei et al., Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.Carbon2019.10.030
- Z. Xiang, B. Deng, C. Huang, Z. Liu, Y. Song et al., Rational design of hollow nanosphere γ-Fe2O3/MWCNTs composites with enhanced electromagnetic wave absorption. J. Alloys Compd. 822, 153570 (2020). https://doi.org/10.1016/j.jallcom.2019.153570
- Y.-L. Wang, S.-H. Yang, H.-Y. Wang, G.-S. Wang, X.-B. Sun et al., Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon 167, 485–494 (2020). https://doi.org/10.1016/j.Carbon2020.06.014
- N. Gao, W.-P. Li, W.-S. Wang, P. Liu, Y.-M. Cui et al., Balancing dielectric loss and magnetic loss in Fe-NiS2/NiS/PVDF composites toward strong microwave reflection loss. ACS Appl. Mater. Interfaces 12(12), 14416–14424 (2020). https://doi.org/10.1021/acsami.9b23379
- C. Wang, X. Han, P. Xu, J. Wang, Y. Du et al., Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties. J. Phys. Chem. C 114(7), 3196–3203 (2010). https://doi.org/10.1021/jp908839r
- X. Li, B. Zhang, C. Ju, X. Han, Y. Du et al., Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors. J. Phys. Chem. C 115(25), 12350–12357 (2011). https://doi.org/10.1021/jp203147q
- Y. Wang, X. Han, P. Xu, D. Liu, L. Cui et al., Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. Chem. Eng. J. 372, 312–320 (2019). https://doi.org/10.1016/j.cej.2019.04.153
- X.-J. Zhang, J.-Q. Zhu, P.-G. Yin, A.-P. Guo, A.-P. Huang et al., Tunable high-performance microwave absorption of Co1-xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 28(49), 1800761 (2018). https://doi.org/10.1002/adfm.201800761
- Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang et al., Enhanced electromagnetic wave absorption of nanoporous Fe3O4 @ carbon composites derived from metal-organic frameworks. Carbon 142, 20–31 (2019). https://doi.org/10.1016/j.Carbon2018.10.014
- F. Shahzad, A. Iqbal, H. Kim, C.M. Koo, 2D transition metal carbides (MXenes): applications as an electrically conducting material. Adv. Mater. 32(51), 2002159 (2020). https://doi.org/10.1002/adma.202002159
- J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
- M. Zhang, C. Han, W.-Q. Cao, M.-S. Cao, H.-J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13(1), 27 (2020). https://doi.org/10.1007/s40820-020-00552-9
- Y.-W. Cai, X.-N. Zhang, G.-G. Wang, G.-Z. Li, D.-Q. Zhao et al., A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin. Nano Energy 81, 105663 (2021). https://doi.org/10.1016/j.nanoen.2020.105663
- W. He, M. Sohn, R. Ma, D.J. Kang, Flexible single-electrode triboelectric nanogenerators with MXene/PDMS composite film for biomechanical motion sensors. Nano Energy 78, 105383 (2020). https://doi.org/10.1016/j.nanoen.2020.105383
- W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15(4), 7668–7681 (2021). https://doi.org/10.1021/acsnano.1c01277
- R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 11(4), 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
- K. Li, T.-H. Chang, Z. Li, H. Yang, F. Fu et al., Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 9(34), 1901687 (2019). https://doi.org/10.1002/aenm.201901687
- W.-T. Cao, W. Feng, Y.-Y. Jiang, C. Ma, Z.-F. Zhou et al., Two-dimensional MXene-reinforced robust surface superhydrophobicity with self-cleaning and photothermal-actuating binary effects. Mater. Horiz. 6(5), 1057–1065 (2019). https://doi.org/10.1039/c8mh01566j
- H. Lin, Y. Wang, S. Gao, Y. Chen, J. Shi, Theranostic 2D tantalum carbide (MXene). Adv. Mater. 30(4), 1703284 (2018). https://doi.org/10.1002/adma.201703284
- Q. Ren, B. Li, Z. Peng, G. He, W. Zhang et al., SnS nanosheets for efficient photothermal therapy. New J. Chem. 40(5), 4464–4467 (2016). https://doi.org/10.1039/c5nj03263f
- T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng et al., Drug delivery with pegylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 26(21), 3433–3440 (2014). https://doi.org/10.1002/adma.201305256
- P. Zijlstra, P.M.R. Paulo, M. Orrit, Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 7(6), 379–382 (2012). https://doi.org/10.1038/nnano.2012.51
- Q.L. Zou, M. Abbas, L.Y. Zhao, S.K. Li, G.Z. Shen et al., Biological photothermal nanodots based on self-assembly of peptide porphyrin conjugates for antitumor therapy. J. Am. Chem. Soc. 139(5), 1921–1927 (2017). https://doi.org/10.1021/jacs.6b11382
- D. Xu, Z. Li, L. Li, J. Wang, Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv. Funct. Mater. 30(47), 2000712 (2020). https://doi.org/10.1002/adfm.202000712
References
H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
X. Zhang, Z. Liu, B. Deng, L. Cai, Y. Dong, X. Zhu, W. Lu, Honeycomb-like NiCo2O4@MnO2 nanosheets array/3D porous expanded graphite hybrids for high-performance microwave absorber with hydrophobic and flame-retardant functions. Chem. Eng. J. 419, 129547 (2021). https://doi.org/10.1016/j.cej.2021.129547
X. Zhu, Y. Dong, Z. Xiang, L. Cai, F. Pan, X. Zhang, Z. Shi, W. Lu, Morphology-controllable synthesis of polyurethane-derived highly cross-linked 3D networks for multifunctional and efficient electromagnetic wave absorption. Carbon 182, 254–264 (2021). https://doi.org/10.1016/j.carbon.2021.06.028
G.-M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
M.-S. Cao, X.-X. Wang, M. Zhang, J.-C. Shu, W.-Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
S. Gao, G.-S. Wang, L. Guo, S.-H. Yu, Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16(19), 1906668 (2020). https://doi.org/10.1002/smll.201906668
S. Gao, S.-H. Yang, H.-Y. Wang, G.-S. Wang, P.-G. Yin, Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C. Carbon 162, 438–444 (2020). https://doi.org/10.1016/j.Carbon2020.02.031
D. Zhang, T. Liu, J. Cheng, Q. Cao, G. Zheng et al., Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett. 11(1), 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.-K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
F. Pan, L. Yu, Z. Xiang, Z. Liu, B. Deng, E. Cui, Z. Shi, X. Li, W. Lu, Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite. Carbon 172, 506–515 (2021). https://doi.org/10.1016/j.carbon.2020.10.039
M.-S. Cao, Y.-Z. Cai, P. He, J.-C. Shu, W.-Q. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
Z. Wang, Z. Cheng, L. Xie, X. Hou, C. Fang, Flexible and lightweight Ti3C2Tx MXene/Fe3O4@PANI composite films for high-performance electromagnetic interference shielding. Ceram. Int. 47(4), 5747–5757 (2021). https://doi.org/10.1016/j.ceramint.2020.10.161
S. Wang, D. Li, Y. Zhou, L. Jiang, Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 14(7), 8634–8645 (2020). https://doi.org/10.1021/acsnano.0c03013
J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30, 2002595 (2020). https://doi.org/10.1002/adfm.202002595
Y. Li, F. Meng, Y. Mei, H. Wang, Y. Guo et al., Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 391, 123512 (2020). https://doi.org/10.1016/j.cej.2019.123512
P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.-K. Kim et al., Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11(41), 38046–38054 (2019). https://doi.org/10.1021/acsami.9b12550
R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13(1), 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
X. Li, X. Yin, M. Han, C. Song, H. Xu et al., Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 5(16), 4068–4074 (2017). https://doi.org/10.1039/c6tc05226f
F. Wang, Y. Sun, D. Li, B. Zhong, Z. Wu et al., Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon 134, 264–273 (2018). https://doi.org/10.1016/j.Carbon2018.03.081
X. Zhang, Y. Li, R. Liu, Y. Rao, H. Rong et al., High-magnetization FeCo nanochains with ultrathin interfacial gaps for broadband electromagnetic wave absorption at gigahertz. ACS Appl. Mater. Interfaces 8(5), 3494–3498 (2016). https://doi.org/10.1021/acsami.5b12203
J. Xiang, J. Li, X. Zhang, Q. Ye, J. Xu et al., Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J. Mater. Chem. A 2(40), 16905–16914 (2014). https://doi.org/10.1039/c4ta03732d
D. Li, H. Liao, H. Kikuchi, T. Liu, Microporous Co@C nanoparticles prepared by dealloying coal@C precursors: Achieving strong wideband microwave absorption via controlling carbon shell thickness. ACS Appl. Mater. Interfaces 9(51), 44704–44714 (2017). https://doi.org/10.1021/acsami.7b13538
Q. Liu, X. Liu, H. Feng, H. Shui, R. Yu, Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem. Eng. J. 314, 320–327 (2017). https://doi.org/10.1016/j.cej.2016.11.089
B. Deng, Z. Liu, F. Pan, Z. Xiang, X. Zhang et al., Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching. J. Mater. Chem. A 9(6), 3500–3510 (2021). https://doi.org/10.1039/d0ta10551a
P. Liu, Z. Yao, V.M.H. Ng, J. Zhou, L.B. Kong et al., Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. A 115, 371–382 (2018). https://doi.org/10.1016/j.compositesa.2018.10.014
L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
T. Hou, B. Wang, M. Ma, A. Feng, Z. Huang et al., Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties. Compos. B 180, 107577 (2020). https://doi.org/10.1016/j.compositesb.2019.107577
N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112(2), 933–969 (2012). https://doi.org/10.1021/cr200304e
Y.V. Kaneti, J. Tang, R.R. Salunkhe, X. Jiang, A. Yu et al., Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 29(12), 1604898 (2017). https://doi.org/10.1002/adma.201604898
C. Xu, L. Wang, X. Li, X. Qian, Z. Wu et al., Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 13(1), 47 (2021). https://doi.org/10.1007/s40820-020-00572-5
X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
H. Zhao, X. Xu, Y. Wang, D. Fan, D. Liu et al., Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 16(43), 2003407 (2020). https://doi.org/10.1002/smll.202003407
F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu, C. Huang, Z. SHi, W. Lu, Magnetic Fe3S4 LTMCs micro-flowers@ wax gourd aerogel-derived carbon hybrids as efficient and sustainable electromagnetic absorber. Carbon 179, 554–565 (2021). https://doi.org/10.1016/j.Carbon2021.04.053
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202102812
X. Li, X. Yin, H. Xu, M. Han, M. Li et al., Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band. ACS Appl. Mater. Interfaces 10(40), 34524–34533 (2018). https://doi.org/10.1021/acsami.8b13658
J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
M. Li, M. Han, J. Zhou, Q. Deng, X. Zhou et al., Novel scale-like structures of graphite/TiC/Ti3C2 hybrids for electromagnetic absorption. Adv. Electron. Mater. 4(5), 1700617 (2018). https://doi.org/10.1002/aelm.201700617s
X. Gao, B. Wang, K. Wang, S. Xu, S. Liu et al., Design of Ti3C2Tx/TiO2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. J. Colloid. Interface Sci. 583, 510–521 (2021). https://doi.org/10.1016/j.jcis.2020.09.094
B. Quan, X. Liang, G. Ji, J. Lv, S. Dai et al., Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon 129, 310–320 (2018). https://doi.org/10.1016/j.Carbon2017.12.026
Z. Fan, D. Wang, Y. Yuan, Y. Wang, Z. Cheng et al., A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). https://doi.org/10.1016/j.cej.2019.122696
Z. Xiang, C. Huang, Y. Song, B. Deng, X. Zhang et al., Rational construction of hierarchical accordion-like Ni@porous carbon nanocomposites derived from metal-organic frameworks with enhanced microwave absorption. Carbon 167, 364–377 (2020). https://doi.org/10.1016/j.Carbon2020.06.015
M.-S. Cao, X.-X. Wang, M. Zhang, W.-Q. Cao, X.-Y. Fang et al., Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32(10), 1907156 (2020). https://doi.org/10.1002/adma.201907156
Q.C. Song, B.X. Chen, Z.H. Zhou, C.H. Lu, Flexible, stretchable and magnetic Fe3O4@Ti3C2Tx/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance. Sci. China Mater. 64(6), 1437–1448 (2021). https://doi.org/10.1007/s40843-020-1539-2
Q.-W. Wang, H.-B. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29(7), 1806819 (2019). https://doi.org/10.1002/adfm.201806819
B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
B. Zhou, M. Su, D. Yang, G. Han, Y. Feng et al., Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl. Mater. Interfaces 12(36), 40859–40869 (2020). https://doi.org/10.1021/acsami.0c09020
R.D. Jackson, C.H. Van Bavel, Solar distillation of water from soil and plant materials: a simple desert survival technique. Science 149(3690), 1377–1379 (1965). https://doi.org/10.1126/science.149.3690.1377
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516(7529), 78-U171 (2014). https://doi.org/10.1038/nature13970
B. Deng, Z. Xiang, J. Xiong, Z. Liu, L. Yu et al., Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 12(1), 55 (2020). https://doi.org/10.1007/s40820-020-0398-2
H. Sun, R. Che, X. You, Y. Jiang, Z. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
Z. Liu, F. Pan, B. Deng, Z. Xiang, W. Lu, Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption. Carbon 174, 59–69 (2021). https://doi.org/10.1016/j.Carbon2020.12.019
W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng et al., Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu et al., Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.Carbon2016.10.059
X. Zhang, Y. Dong, F. Pan, Z. Xiang, X. Zhu, W. Lu, Electrostatic self-assembly construction of 2D MoS2 wrapped hollow Fe3O4 nanoflowers@1D carbon tube hybrids for self-cleaning high performance microwave absorbers. Carbon 177(23), 332–343 (2021). https://doi.org/10.1016/j.Carbon2021.02.092
Y. Cao, J.-H. Dou, N.-J. Zhao, S. Zhang, Y.-Q. Zheng et al., Highly efficient NIR-II photothermal conversion based on an organic conjugated polymer. Chem. Mater. 29(2), 718–725 (2017). https://doi.org/10.1021/acs.chemmater.6b04405
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu et al., Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018). https://doi.org/10.1016/j.cej.2017.09.174
K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38–49 (2013). https://doi.org/10.1016/j.Carbon2012.10.013
P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
M. Ghidiu, J. Halim, S. Kota, D. Bish, Y. Gogotsi et al., Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 28(10), 3507–3514 (2016). https://doi.org/10.1021/acs.chemmater.6b01275
Z. Xiang, J. Xiong, B. Deng, E. Cui, L. Yu et al., Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C 8(6), 2123–2134 (2020). https://doi.org/10.1039/c9tc06526a
H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11(1), 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
F. Zhang, W. Cui, B. Wang, B. Xu, X. Liu et al., Morphology-control synthesis of polyaniline decorative porous carbon with remarkable electromagnetic wave absorption capabilities. Compos. B 204, 108491 (2021). https://doi.org/10.1016/j.compositesb.2020.108491
H.-B. Zhao, Z.-B. Fu, H.-B. Chen, M.-L. Zhong, C.-Y. Wang, Excellent electromagnetic absorption capability of Ni/carbon based conductive and magnetic foams synthesized via a green one pot route. ACS Appl. Mater. Interfaces 8(2), 1468–1477 (2016). https://doi.org/10.1021/acsami.5b10805
X. Zhu, Y. Dong, F. Pan, Z. Xiang, W. Lu, Covalent organic framework-derived hollow core-shell Fe/Fe3O4@porous carbon composites with corrosion resistance for lightweight and efficient microwave absorption. Compos. Commun. 25, 100731 (2021). https://doi.org/10.1016/j.coco.2021.100731
M.P. Morales, C.J. Serna, F. Bodker, S. Morup, Spin canting due to structural disorder in maghemite. J. Phys: Condens Matter. 9(25), 5461–5467 (1997). https://doi.org/10.1088/0953-8984/9/25/013
H. Kronmuller, H. Kronmüller, M. Fähnle, Micromagnetism and the Microstructure of Ferromagnetic Solids (Cambridge University Press, Cambridge, 2003)
T. Wang, R. Han, G. Tan, J. Wei, L. Qiao et al., Reflection loss mechanism of single layer absorber for flake-shaped carbonyl-iron particle composite. J. Appl. Phys. 112(10), 104903 (2012). https://doi.org/10.1063/1.4767365
Z. Gao, B. Xu, M. Ma, A. Feng, Y. Zhang et al., Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption. Compos. B 179, 107417 (2019). https://doi.org/10.1016/j.compositesb.2019.107417
W. Xu, G.-S. Wang, P.-G. Yin, Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding. Carbon 139, 759–767 (2018). https://doi.org/10.1016/j.Carbon2018.07.044
Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji, A flexible and lightweight biomass—reinforced microwave absorber. Nano-Micro Lett. 12(1), 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12(1), 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu, C. Huang, W. Lu, Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13(1), 43 (2021). https://doi.org/10.1007/s40820-020-00568-1
X. Li, J. Feng, Y. Du, J. Bai, H. Fan et al., One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3(10), 5535–5546 (2015). https://doi.org/10.1039/c4ta05718j
P. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang et al., Core-shell CoNi@graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces 11(28), 25624–25635 (2019). https://doi.org/10.1021/acsami.9b08525
Y. Liu, Z. Chen, Y. Zhang, R. Feng, X. Chen et al., Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/reduced graphene oxide porous nanocomposites. ACS Appl. Mater. Interfaces 10(16), 13860–13868 (2018). https://doi.org/10.1021/acsami.8b02137
H. Wang, F. Meng, F. Huang, C. Jing, Y. Li et al., Interface modulating CNTs@PANI hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 11(12), 12142–12153 (2019). https://doi.org/10.1021/acsami.9b01122
M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010). https://doi.org/10.1016/j.Carbon2009.10.028
B. Wen, M.-S. Cao, Z.-L. Hou, W.-L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.Carbon2013.07.110
P. Liu, S. Gao, Y. Wang, Y. Huang, W. He et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653
P. Fang, Cole-cole diagram and the distribution of relaxation times. J. Chem. Phys. 42(10), 3411–3413 (1965). https://doi.org/10.1063/1.1695743
Y.-F. Pan, G.-S. Wang, L. Liu, L. Guo, S.-H. Yu, Binary synergistic enhancement of dielectric and microwave absorption properties: a composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 10(1), 284–294 (2017). https://doi.org/10.1007/s12274-016-1290-8
Z. Gao, Z. Jia, K. Wang, X. Liu, L. Bi et al., Simultaneous enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. Chem. Eng. J. 402, 125951 (2020). https://doi.org/10.1016/j.cej.2020.125951
T. Hou, Z. Jia, A. Feng, Z. Zhou, X. Liu et al., Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity. J. Mater. Sci. Technol. 68, 61–69 (2021). https://doi.org/10.1016/j.jmst.2020.06.046
Y. Lin, J. Dai, H. Yang, L. Wang, F. Wang, Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties. Chem. Eng. J. 334, 1740–1748 (2018). https://doi.org/10.1016/j.cej.2017.11.150
X. Xu, F. Ran, H. Lai, Z. Cheng, T. Lv et al., In situ confined bimetallic metal-organic framework derived nanostructure within 3D interconnected bamboo-like carbon nanotube networks for boosting electromagnetic wave absorbing performances. ACS Appl. Mater. Interfaces 11(39), 35999–36009 (2019). https://doi.org/10.1021/acsami.9b14754
P. Liu, S. Gao, W. Huang, J. Ren, D. Yu et al., Hybrid zeolite imidazolate framework derived N-implanted carbon polyhedrons with tunable heterogeneous interfaces for strong wideband microwave attenuation. Carbon 159, 83–93 (2020). https://doi.org/10.1016/j.Carbon2019.12.021
P. Liu, S. Gao, X. Liu, Y. Huang, W. He et al., Rational construction of hierarchical hollow CuS@CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials. Compos. B 192, 107992 (2020). https://doi.org/10.1016/j.compositesb.2020.107992
J. Xiong, Z. Xiang, J. Zhao, L. Yu, E. Cui et al., Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance. Carbon 154, 391–401 (2019). https://doi.org/10.1016/j.Carbon2019.07.096
B. Lu, H. Huang, X.L. Dong, X.F. Zhang, J.P. Lei et al., Influence of alloy components on electromagnetic characteristics of core/shell-type Fe-Ni nanoparticles. J. Appl. Phys. 104(11), 114313 (2008). https://doi.org/10.1063/1.3040006
X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei et al., Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.Carbon2019.10.030
Z. Xiang, B. Deng, C. Huang, Z. Liu, Y. Song et al., Rational design of hollow nanosphere γ-Fe2O3/MWCNTs composites with enhanced electromagnetic wave absorption. J. Alloys Compd. 822, 153570 (2020). https://doi.org/10.1016/j.jallcom.2019.153570
Y.-L. Wang, S.-H. Yang, H.-Y. Wang, G.-S. Wang, X.-B. Sun et al., Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon 167, 485–494 (2020). https://doi.org/10.1016/j.Carbon2020.06.014
N. Gao, W.-P. Li, W.-S. Wang, P. Liu, Y.-M. Cui et al., Balancing dielectric loss and magnetic loss in Fe-NiS2/NiS/PVDF composites toward strong microwave reflection loss. ACS Appl. Mater. Interfaces 12(12), 14416–14424 (2020). https://doi.org/10.1021/acsami.9b23379
C. Wang, X. Han, P. Xu, J. Wang, Y. Du et al., Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties. J. Phys. Chem. C 114(7), 3196–3203 (2010). https://doi.org/10.1021/jp908839r
X. Li, B. Zhang, C. Ju, X. Han, Y. Du et al., Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors. J. Phys. Chem. C 115(25), 12350–12357 (2011). https://doi.org/10.1021/jp203147q
Y. Wang, X. Han, P. Xu, D. Liu, L. Cui et al., Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. Chem. Eng. J. 372, 312–320 (2019). https://doi.org/10.1016/j.cej.2019.04.153
X.-J. Zhang, J.-Q. Zhu, P.-G. Yin, A.-P. Guo, A.-P. Huang et al., Tunable high-performance microwave absorption of Co1-xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 28(49), 1800761 (2018). https://doi.org/10.1002/adfm.201800761
Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang et al., Enhanced electromagnetic wave absorption of nanoporous Fe3O4 @ carbon composites derived from metal-organic frameworks. Carbon 142, 20–31 (2019). https://doi.org/10.1016/j.Carbon2018.10.014
F. Shahzad, A. Iqbal, H. Kim, C.M. Koo, 2D transition metal carbides (MXenes): applications as an electrically conducting material. Adv. Mater. 32(51), 2002159 (2020). https://doi.org/10.1002/adma.202002159
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
M. Zhang, C. Han, W.-Q. Cao, M.-S. Cao, H.-J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13(1), 27 (2020). https://doi.org/10.1007/s40820-020-00552-9
Y.-W. Cai, X.-N. Zhang, G.-G. Wang, G.-Z. Li, D.-Q. Zhao et al., A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin. Nano Energy 81, 105663 (2021). https://doi.org/10.1016/j.nanoen.2020.105663
W. He, M. Sohn, R. Ma, D.J. Kang, Flexible single-electrode triboelectric nanogenerators with MXene/PDMS composite film for biomechanical motion sensors. Nano Energy 78, 105383 (2020). https://doi.org/10.1016/j.nanoen.2020.105383
W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15(4), 7668–7681 (2021). https://doi.org/10.1021/acsnano.1c01277
R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 11(4), 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
K. Li, T.-H. Chang, Z. Li, H. Yang, F. Fu et al., Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 9(34), 1901687 (2019). https://doi.org/10.1002/aenm.201901687
W.-T. Cao, W. Feng, Y.-Y. Jiang, C. Ma, Z.-F. Zhou et al., Two-dimensional MXene-reinforced robust surface superhydrophobicity with self-cleaning and photothermal-actuating binary effects. Mater. Horiz. 6(5), 1057–1065 (2019). https://doi.org/10.1039/c8mh01566j
H. Lin, Y. Wang, S. Gao, Y. Chen, J. Shi, Theranostic 2D tantalum carbide (MXene). Adv. Mater. 30(4), 1703284 (2018). https://doi.org/10.1002/adma.201703284
Q. Ren, B. Li, Z. Peng, G. He, W. Zhang et al., SnS nanosheets for efficient photothermal therapy. New J. Chem. 40(5), 4464–4467 (2016). https://doi.org/10.1039/c5nj03263f
T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng et al., Drug delivery with pegylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 26(21), 3433–3440 (2014). https://doi.org/10.1002/adma.201305256
P. Zijlstra, P.M.R. Paulo, M. Orrit, Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 7(6), 379–382 (2012). https://doi.org/10.1038/nnano.2012.51
Q.L. Zou, M. Abbas, L.Y. Zhao, S.K. Li, G.Z. Shen et al., Biological photothermal nanodots based on self-assembly of peptide porphyrin conjugates for antitumor therapy. J. Am. Chem. Soc. 139(5), 1921–1927 (2017). https://doi.org/10.1021/jacs.6b11382
D. Xu, Z. Li, L. Li, J. Wang, Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv. Funct. Mater. 30(47), 2000712 (2020). https://doi.org/10.1002/adfm.202000712