Lotus Leaf-Derived Gradient Hierarchical Porous C/MoS2 Morphology Genetic Composites with Wideband and Tunable Electromagnetic Absorption Performance
Corresponding Author: Wei Lu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 43
Abstract
Inspired by the nature, lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites (GHPCM) were successfully fabricated through an in situ strategy. The biological microstructure of lotus leaf was well preserved after treatment. Different pores with gradient pore sizes ranging from 300 to 5 μm were hierarchically distributed in the composites. In addition, the surface states of lotus leaf resulted in the Janus-like morphologies of MoS2. The GHPCM exhibit excellent electromagnetic wave absorption performance, with the minimum reflection loss of − 50.1 dB at a thickness of 2.4 mm and the maximum effective bandwidth of 6.0 GHz at a thickness of 2.2 mm. The outstanding performance could be attributed to the synergy of conductive loss, polarization loss, and impedance matching. In particularly, we provided a brand-new dielectric sum-quotient model to analyze the electromagnetic performance of the non-magnetic material system. It suggests that the specific sum and quotient of permittivity are the key to keep reflection loss below − 10 dB within a certain frequency range. Furthermore, based on the concept of material genetic engineering, the dielectric constant could be taken into account to seek for suitable materials with designable electromagnetic absorption performance.
Highlights:
1 Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites nanocomposites were fabricated.
2 Excellent electromagnetic absorption performance was achieved with RLmin of − 50.1 dB and EBW of 6.0 GHz.
3 A brand-new dielectric sum-quotient model was proposed and corresponded well to the experimental results.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Xiang, C. Huang, Y. Song, B. Deng, X. Zhang et al., Rational construction of hierarchical accordion-like Ni@porous carbon nanocomposites derived from metal-organic frameworks with enhanced microwave absorption. Carbon 167, 364–377 (2020). https://doi.org/10.1016/j.carbon.2020.06.015
- Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang et al., Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks. Carbon 142, 20–31 (2019). https://doi.org/10.1016/j.carbon.2018.10.014
- J. Xiong, Z. Xiang, J. Zhao, L. Yu, E. Cui et al., Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance. Carbon 154, 391–401 (2019). https://doi.org/10.1016/j.carbon.2019.07.096
- P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
- Z. Xiang, B. Deng, C. Huang, Z. Liu, Y. Song et al., Rational design of hollow nanosphere γ-Fe2O3/MWCNTs composites with enhanced electromagnetic wave absorption. J. Alloys Compd. 822, 153570 (2020). https://doi.org/10.1016/j.jallcom.2019.153570
- J. Pan, H. Guo, M. Wang, H. Yang, H. Hu et al., Shape anisotropic Fe3O4 nanotubes for efficient microwave absorption. Nano Res. 13, 621–629 (2020). https://doi.org/10.1007/s12274-020-2656-5
- J. Xiong, Z. Xiang, B. Deng, M. Wu, L. Yu et al., Engineering compositions and hierarchical yolk-shell structures of NiCo/GC/NPC nanocomposites with excellent electromagnetic wave absorption properties. Appl. Surf. Sci. 513, 145778 (2020). https://doi.org/10.1016/j.apsusc.2020.145778
- X. Ye, Z. Chen, S. Ao, B. Hou, J. Zhang et al., Novel three-dimensional SiC/melamine-derived carbon foam reinforced SiO2 aerogel composite with low dielectric loss and high impedance matching ratio. ACS Sustain. Chem. Eng. 7, 2774–2783 (2019). https://doi.org/10.1021/acssuschemeng.8b05966
- F. Pan, L. Yu, Z. Xiang, Z. Liu, B. Deng et al., Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite. Carbon 172, 506–515 (2021). https://doi.org/10.1016/j.carbon.2020.10.039
- Y. Zhu, J. Zhang, Q. Wu, M. Chen, G. Huang et al., Three-dimensional programmable, reconfigurable, and recyclable biomass soft actuators enabled by designing an inverse opal-mimetic structure with exchangeable interfacial crosslinks. ACS Appl. Mater. Interfaces 12, 15757–15764 (2020). https://doi.org/10.1021/acsami.0c02722
- O. Pandoli, R. Neto, N. Oliveira, A. Fingolo, C. Corrêa et al., Ultra-highly conductive hollow channels guided by a bamboo bio-template for electric and electrochemical devices. J. Mater. Chem. A 8, 4030–4039 (2020). https://doi.org/10.1039/c9ta13069a
- Z. Wu, K. Tian, T. Huang, W. Hu, F. Xie et al., Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 10, 11108–11115 (2018). https://doi.org/10.1021/acsami.7b17264
- X. Zhou, Z. Jia, A. Feng, X. Wang, J. Liu et al., Synthesis of fish skin-derived 3d carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 152, 827–836 (2019). https://doi.org/10.1016/j.carbon.2019.06.080
- C. Liang, Z. Wang, Eggplant-derived sic aerogels with high-performance electromagnetic wave absorption and thermal insulation properties. Chem. Eng. J. 373, 598–605 (2019). https://doi.org/10.1016/j.cej.2019.05.076
- J. Xi, E. Zhou, Y. Liu, W. Gao, J. Ying et al., Wood-based straightway channel structure for high performance microwave absorption. Carbon 124, 492–498 (2017). https://doi.org/10.1016/j.carbon.2017.07.088
- H. Li, Z. Cao, J. Lin, H. Zhao, Q. Jiang et al., Synthesis of u-channelled spherical Fex(CoyNi1-y)100-x Janus colloidal particles with excellent electromagnetic wave absorption performance. Nanoscale 10, 1930–1938 (2018). https://doi.org/10.1039/c7nr06956a
- X. Shi, Z. Liu, W. You, X. Zhao, R. Che, Janus-like Fe3O4/PDA vesicles with broadening microwave absorption bandwidth. J. Mater. Chem. C 6, 7790–7796 (2018). https://doi.org/10.1039/c8tc02556h
- L. Wang, M. Huang, X. Yu, W. You, J. Zhang et al., MOF-derived Ni1−xCox@carbon with tunable nano–microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
- B. Deng, Z. Xiang, J. Xiong, Z. Liu, L. Yu et al., Sandwich-Like Fe&TiO2@C Nanocomposites Derived from MXene/Fe-MOFs Hybrids for Electromagnetic Absorption. Nano-Micro Lett. 12, 55 (2020). https://doi.org/10.1007/s40820-020-0398-2
- J. Cheng, H. Zhao, M. Cao, M. Li, A. Zhang et al., Banana leaflike C-doped MoS2 aerogels toward excellent microwave absorption performance. ACS Appl. Mater. Interfaces 12, 26301–26312 (2020). https://doi.org/10.1021/acsami.0c01841
- Y. Cheng, Y. Zhao, H. Zhao, H. Lv, X. Qi et al., Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties. Chem. Eng. J. 372, 390–398 (2019). https://doi.org/10.1016/j.cej.2019.04.174
- J.H. Luo, K. Zhang, M. Cheng, M. Gu, X. Sun, MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 380, 122625 (2020). https://doi.org/10.1016/j.cej.2019.122625
- L.S. Xing, X. Li, Z. Wu, X. Yu, J. Liu et al., 3d hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 379, 122241 (2020). https://doi.org/10.1016/j.cej.2019.122241
- H. Guo, L. Wang, W. You, L. Yang, X. Li et al., Engineering phase transformation of MoS2/RGO by n-doping as an excellent microwave absorber. ACS Appl. Mater. Interfaces 12, 16831–16840 (2020). https://doi.org/10.1021/acsami.0c01998
- W. Zhang, X. Zhang, Y. Zheng, C. Guo, M. Yang et al., Preparation of polyaniline@MoS2@Fe3O4 nanowires with a wide band and small thickness toward enhancement in microwave absorption. ACS Appl. Nano Mater. 1, 5865–5875 (2018). https://doi.org/10.1021/acsanm.8b01452
- X. Wang, T. Zhu, S. Chang, Y. Lu, W. Mi et al., 3d nest-like architecture of core-shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 12, 11252–11264 (2020). https://doi.org/10.1021/acsami.9b23489
- Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12, 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
- T. Zhang, J. Zhang, G. Wen, B. Zhong, L. Xia et al., Ultra-light h-BCN architectures derived from new organic monomers with tunable electromagnetic wave absorption. Carbon 136, 345–358 (2018). https://doi.org/10.1016/j.carbon.2018.05.001
- L. Xing, Z. Wu, L. Wang, J. Ding, G. Ding et al., Polarization-enhanced three-dimensional Co3O4/MoO2/C flowers as efficient microwave absorbers. J. Mater. Chem. C 8, 10248–10256 (2020). https://doi.org/10.1039/d0tc02421j
- G. He, Y. Duan, H. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-020-0388-4
- Y. Cheng, J. Seow, H. Zhao, Z. Xu, G. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12, 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
- P. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang et al., Core-shell CoNi@graphitic carbon decorated on b, n-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces 11, 25624–25635 (2019). https://doi.org/10.1021/acsami.9b08525
- X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
- J. Ding, L. Wang, Y. Zhao, L. Xing, X. Yu et al., Boosted interfacial polarization from multishell TiO2@Fe3O4@PPY heterojunction for enhanced microwave absorption. Small 15, 1902885 (2019). https://doi.org/10.1002/smll.201902885
- X. Yan, X. Huang, Z. Bo, W. Tong, H. Wang et al., Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials. Chem. Eng. J. 391, 123538 (2020). https://doi.org/10.1016/j.cej.2019.123538
- H. Zhou, J. Wang, J. Zhuang, Q. Liu, A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers. Nanoscale 5, 12502–12511 (2013). https://doi.org/10.1039/c3nr04379g
- B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu et al., Dielectric polarization in electromagnetic wave absorption: review and perspective. J. Alloys Compd. 728, 1065–1075 (2017). https://doi.org/10.1016/j.jallcom.2017.09.082
- Z. Xiang, J. Xiong, B. Deng, E. Cui, L. Yu et al., Rational design of 2d hierarchically laminated Fe3O4@nanoporous carbon@RGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C 8, 2123–2134 (2020). https://doi.org/10.1039/c9tc06526a
- D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020). https://doi.org/10.1016/j.carbon.2019.10.056
- H. Wang, F. Meng, F. Huang, C. Jing, Y. Li et al., Interface modulating CNTs@PANI hybrids by controlled unzipping of the walls of cnts to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 11, 12142–12153 (2019). https://doi.org/10.1021/acsami.9b01122
- E. Cui, F. Pan, Z. Xiang, Z. Liu, L. Yu, et al., Engineering dielectric loss of FeCo/polyvinylpyrrolidone core-shell nanochains@graphene oxide composites with excellent microwave absorbing properties. Adv. Eng. Mater. 2000827 (2020). https://doi.org/10.1002/adem.202000827
- Z. Liu, Z. Xiang, B. Deng, F. Pan, J. Xiong et al., Rational design of hierarchical porous Fe3O4/RGO composites with lightweight and high-efficiency microwave absorption. Comp. Commun. 22, 100492 (2020). https://doi.org/10.1016/j.coco.2020.100492
- X. Li, E. Cui, Z. Xiang, L. Yu, J. Xiong et al., Fe@NPC@CF nanocomposites derived from Fe-MOFs/biomass cotton for lightweight and high-performance electromagnetic wave absorption applications. J. Alloys Compd. 819, 152952 (2020). https://doi.org/10.1016/j.jallcom.2019.152952
- S. Dong, W. Tang, P. Hu, X. Zhao, X. Zhang et al., Achieving excellent electromagnetic wave absorption capabilities by construction of MnO nanorods on porous carbon composites derived from natural wood via a simple route. ACS Sustain. Chem. Eng. 7, 11795–11805 (2019). https://doi.org/10.1021/acssuschemeng.9b02100
- X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei et al., Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.carbon.2019.10.030
- S. Wang, S. Peng, S. Zhong, W. Jiang, Construction of SnO2/Co3Sn2@C and SnO2/Co3Sn2@air@C hierarchical heterostructures for efficient electromagnetic wave absorption. J. Mater. Chem. C 6, 9465–9474 (2018). https://doi.org/10.1039/c8tc03260b
- X. Liu, X. Nie, R. Yu, H. Feng, Design of dual-frequency electromagnetic wave absorption by interface modulation strategy. Chem. Eng. J. 334, 153–161 (2018). https://doi.org/10.1016/j.cej.2017.10.012
- W. Song, Z. Zhou, L. Wang, X. Cheng, M. Chen et al., Constructing repairable meta-structures of ultra-broad-band electromagnetic absorption from three-dimensional printed patterned shells. ACS Appl. Mater. Interfaces 9, 43179–43187 (2017). https://doi.org/10.1021/acsami.7b15367
- Y. Fang, W. Xue, R. Zhao, S.X. Bao, W. Wang et al., Effect of nanoporosity on the electromagnetic wave absorption performance in a biomass-templated Fe3O4/C composite: a small-angle neutron scattering study. J. Mater. Chem. C 8, 319–327 (2020). https://doi.org/10.1039/c9tc04569d
- S. Gao, Q. An, Z. Xiao, S. Zhai, D. Yang, Controllable n-doped carbonaceous composites with highly dispersed Ni nanoparticles for excellent microwave absorption. ACS Appl. Nano Mater. 1, 5895–5906 (2018). https://doi.org/10.1021/acsanm.8b01556
- G. Gou, F. Meng, H. Wang, M. Jiang, W. Wei et al., Wheat straw-derived magnetic carbon foams: in-situ preparation and tunable high-performance microwave absorption. Nano Res. 12, 1423–1429 (2019). https://doi.org/10.1007/s12274-019-2376-x
- L. Huang, J. Li, Z. Wang, Y. Li, X. He et al., Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 143, 507–516 (2019). https://doi.org/10.1016/j.carbon.2018.11.042
- Q. Li, J. Zhu, S. Wang, F. Huang, Q. Liu et al., Microwave absorption on a bare biomass derived holey silica-hybridized carbon absorbent. Carbon 161, 639–646 (2020). https://doi.org/10.1016/j.carbon.2020.01.087
- L. Liang, Z. Zhang, F. Song, W. Zhang, H. Li et al., Ultralight, flexible carbon hybrid aerogels from bacterial cellulose for strong microwave absorption. Carbon 162, 283–291 (2020). https://doi.org/10.1016/j.carbon.2020.02.045
- L. Liu, S. Yang, H. Hu, T. Zhang, Y. Yuan et al., Lightweight and efficient microwave-absorbing materials based on loofah-sponge-derived hierarchically porous carbons. ACS Sustain. Chem. Eng. 7, 1228–1238 (2018). https://doi.org/10.1021/acssuschemeng.8b04907
- Z. Lou, Y. Li, H. Han, H. Ma, L. Wang et al., Synthesis of porous 3d Fe/C composites from waste wood with tunable and excellent electromagnetic wave absorption performance. ACS Sustain. Chem. Eng. 6, 15598–15607 (2018). https://doi.org/10.1021/acssuschemeng.8b04045
- M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang et al., Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework. Carbon 161, 517–527 (2020). https://doi.org/10.1016/j.carbon.2020.01.073
- Q. Yang, Y. Shi, Y. Fang, Y. Dong, Q. Ni et al., Construction of polyaniline aligned on magnetic functionalized biomass carbon giving excellent microwave absorption properties. Compos. Sci. Technol. 174, 176–183 (2019). https://doi.org/10.1016/j.compscitech.2019.02.031
References
Z. Xiang, C. Huang, Y. Song, B. Deng, X. Zhang et al., Rational construction of hierarchical accordion-like Ni@porous carbon nanocomposites derived from metal-organic frameworks with enhanced microwave absorption. Carbon 167, 364–377 (2020). https://doi.org/10.1016/j.carbon.2020.06.015
Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang et al., Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks. Carbon 142, 20–31 (2019). https://doi.org/10.1016/j.carbon.2018.10.014
J. Xiong, Z. Xiang, J. Zhao, L. Yu, E. Cui et al., Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance. Carbon 154, 391–401 (2019). https://doi.org/10.1016/j.carbon.2019.07.096
P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
Z. Xiang, B. Deng, C. Huang, Z. Liu, Y. Song et al., Rational design of hollow nanosphere γ-Fe2O3/MWCNTs composites with enhanced electromagnetic wave absorption. J. Alloys Compd. 822, 153570 (2020). https://doi.org/10.1016/j.jallcom.2019.153570
J. Pan, H. Guo, M. Wang, H. Yang, H. Hu et al., Shape anisotropic Fe3O4 nanotubes for efficient microwave absorption. Nano Res. 13, 621–629 (2020). https://doi.org/10.1007/s12274-020-2656-5
J. Xiong, Z. Xiang, B. Deng, M. Wu, L. Yu et al., Engineering compositions and hierarchical yolk-shell structures of NiCo/GC/NPC nanocomposites with excellent electromagnetic wave absorption properties. Appl. Surf. Sci. 513, 145778 (2020). https://doi.org/10.1016/j.apsusc.2020.145778
X. Ye, Z. Chen, S. Ao, B. Hou, J. Zhang et al., Novel three-dimensional SiC/melamine-derived carbon foam reinforced SiO2 aerogel composite with low dielectric loss and high impedance matching ratio. ACS Sustain. Chem. Eng. 7, 2774–2783 (2019). https://doi.org/10.1021/acssuschemeng.8b05966
F. Pan, L. Yu, Z. Xiang, Z. Liu, B. Deng et al., Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite. Carbon 172, 506–515 (2021). https://doi.org/10.1016/j.carbon.2020.10.039
Y. Zhu, J. Zhang, Q. Wu, M. Chen, G. Huang et al., Three-dimensional programmable, reconfigurable, and recyclable biomass soft actuators enabled by designing an inverse opal-mimetic structure with exchangeable interfacial crosslinks. ACS Appl. Mater. Interfaces 12, 15757–15764 (2020). https://doi.org/10.1021/acsami.0c02722
O. Pandoli, R. Neto, N. Oliveira, A. Fingolo, C. Corrêa et al., Ultra-highly conductive hollow channels guided by a bamboo bio-template for electric and electrochemical devices. J. Mater. Chem. A 8, 4030–4039 (2020). https://doi.org/10.1039/c9ta13069a
Z. Wu, K. Tian, T. Huang, W. Hu, F. Xie et al., Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 10, 11108–11115 (2018). https://doi.org/10.1021/acsami.7b17264
X. Zhou, Z. Jia, A. Feng, X. Wang, J. Liu et al., Synthesis of fish skin-derived 3d carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 152, 827–836 (2019). https://doi.org/10.1016/j.carbon.2019.06.080
C. Liang, Z. Wang, Eggplant-derived sic aerogels with high-performance electromagnetic wave absorption and thermal insulation properties. Chem. Eng. J. 373, 598–605 (2019). https://doi.org/10.1016/j.cej.2019.05.076
J. Xi, E. Zhou, Y. Liu, W. Gao, J. Ying et al., Wood-based straightway channel structure for high performance microwave absorption. Carbon 124, 492–498 (2017). https://doi.org/10.1016/j.carbon.2017.07.088
H. Li, Z. Cao, J. Lin, H. Zhao, Q. Jiang et al., Synthesis of u-channelled spherical Fex(CoyNi1-y)100-x Janus colloidal particles with excellent electromagnetic wave absorption performance. Nanoscale 10, 1930–1938 (2018). https://doi.org/10.1039/c7nr06956a
X. Shi, Z. Liu, W. You, X. Zhao, R. Che, Janus-like Fe3O4/PDA vesicles with broadening microwave absorption bandwidth. J. Mater. Chem. C 6, 7790–7796 (2018). https://doi.org/10.1039/c8tc02556h
L. Wang, M. Huang, X. Yu, W. You, J. Zhang et al., MOF-derived Ni1−xCox@carbon with tunable nano–microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
B. Deng, Z. Xiang, J. Xiong, Z. Liu, L. Yu et al., Sandwich-Like Fe&TiO2@C Nanocomposites Derived from MXene/Fe-MOFs Hybrids for Electromagnetic Absorption. Nano-Micro Lett. 12, 55 (2020). https://doi.org/10.1007/s40820-020-0398-2
J. Cheng, H. Zhao, M. Cao, M. Li, A. Zhang et al., Banana leaflike C-doped MoS2 aerogels toward excellent microwave absorption performance. ACS Appl. Mater. Interfaces 12, 26301–26312 (2020). https://doi.org/10.1021/acsami.0c01841
Y. Cheng, Y. Zhao, H. Zhao, H. Lv, X. Qi et al., Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties. Chem. Eng. J. 372, 390–398 (2019). https://doi.org/10.1016/j.cej.2019.04.174
J.H. Luo, K. Zhang, M. Cheng, M. Gu, X. Sun, MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 380, 122625 (2020). https://doi.org/10.1016/j.cej.2019.122625
L.S. Xing, X. Li, Z. Wu, X. Yu, J. Liu et al., 3d hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 379, 122241 (2020). https://doi.org/10.1016/j.cej.2019.122241
H. Guo, L. Wang, W. You, L. Yang, X. Li et al., Engineering phase transformation of MoS2/RGO by n-doping as an excellent microwave absorber. ACS Appl. Mater. Interfaces 12, 16831–16840 (2020). https://doi.org/10.1021/acsami.0c01998
W. Zhang, X. Zhang, Y. Zheng, C. Guo, M. Yang et al., Preparation of polyaniline@MoS2@Fe3O4 nanowires with a wide band and small thickness toward enhancement in microwave absorption. ACS Appl. Nano Mater. 1, 5865–5875 (2018). https://doi.org/10.1021/acsanm.8b01452
X. Wang, T. Zhu, S. Chang, Y. Lu, W. Mi et al., 3d nest-like architecture of core-shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 12, 11252–11264 (2020). https://doi.org/10.1021/acsami.9b23489
Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12, 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
T. Zhang, J. Zhang, G. Wen, B. Zhong, L. Xia et al., Ultra-light h-BCN architectures derived from new organic monomers with tunable electromagnetic wave absorption. Carbon 136, 345–358 (2018). https://doi.org/10.1016/j.carbon.2018.05.001
L. Xing, Z. Wu, L. Wang, J. Ding, G. Ding et al., Polarization-enhanced three-dimensional Co3O4/MoO2/C flowers as efficient microwave absorbers. J. Mater. Chem. C 8, 10248–10256 (2020). https://doi.org/10.1039/d0tc02421j
G. He, Y. Duan, H. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-020-0388-4
Y. Cheng, J. Seow, H. Zhao, Z. Xu, G. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12, 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
P. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang et al., Core-shell CoNi@graphitic carbon decorated on b, n-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces 11, 25624–25635 (2019). https://doi.org/10.1021/acsami.9b08525
X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
J. Ding, L. Wang, Y. Zhao, L. Xing, X. Yu et al., Boosted interfacial polarization from multishell TiO2@Fe3O4@PPY heterojunction for enhanced microwave absorption. Small 15, 1902885 (2019). https://doi.org/10.1002/smll.201902885
X. Yan, X. Huang, Z. Bo, W. Tong, H. Wang et al., Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials. Chem. Eng. J. 391, 123538 (2020). https://doi.org/10.1016/j.cej.2019.123538
H. Zhou, J. Wang, J. Zhuang, Q. Liu, A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers. Nanoscale 5, 12502–12511 (2013). https://doi.org/10.1039/c3nr04379g
B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu et al., Dielectric polarization in electromagnetic wave absorption: review and perspective. J. Alloys Compd. 728, 1065–1075 (2017). https://doi.org/10.1016/j.jallcom.2017.09.082
Z. Xiang, J. Xiong, B. Deng, E. Cui, L. Yu et al., Rational design of 2d hierarchically laminated Fe3O4@nanoporous carbon@RGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C 8, 2123–2134 (2020). https://doi.org/10.1039/c9tc06526a
D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020). https://doi.org/10.1016/j.carbon.2019.10.056
H. Wang, F. Meng, F. Huang, C. Jing, Y. Li et al., Interface modulating CNTs@PANI hybrids by controlled unzipping of the walls of cnts to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 11, 12142–12153 (2019). https://doi.org/10.1021/acsami.9b01122
E. Cui, F. Pan, Z. Xiang, Z. Liu, L. Yu, et al., Engineering dielectric loss of FeCo/polyvinylpyrrolidone core-shell nanochains@graphene oxide composites with excellent microwave absorbing properties. Adv. Eng. Mater. 2000827 (2020). https://doi.org/10.1002/adem.202000827
Z. Liu, Z. Xiang, B. Deng, F. Pan, J. Xiong et al., Rational design of hierarchical porous Fe3O4/RGO composites with lightweight and high-efficiency microwave absorption. Comp. Commun. 22, 100492 (2020). https://doi.org/10.1016/j.coco.2020.100492
X. Li, E. Cui, Z. Xiang, L. Yu, J. Xiong et al., Fe@NPC@CF nanocomposites derived from Fe-MOFs/biomass cotton for lightweight and high-performance electromagnetic wave absorption applications. J. Alloys Compd. 819, 152952 (2020). https://doi.org/10.1016/j.jallcom.2019.152952
S. Dong, W. Tang, P. Hu, X. Zhao, X. Zhang et al., Achieving excellent electromagnetic wave absorption capabilities by construction of MnO nanorods on porous carbon composites derived from natural wood via a simple route. ACS Sustain. Chem. Eng. 7, 11795–11805 (2019). https://doi.org/10.1021/acssuschemeng.9b02100
X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei et al., Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.carbon.2019.10.030
S. Wang, S. Peng, S. Zhong, W. Jiang, Construction of SnO2/Co3Sn2@C and SnO2/Co3Sn2@air@C hierarchical heterostructures for efficient electromagnetic wave absorption. J. Mater. Chem. C 6, 9465–9474 (2018). https://doi.org/10.1039/c8tc03260b
X. Liu, X. Nie, R. Yu, H. Feng, Design of dual-frequency electromagnetic wave absorption by interface modulation strategy. Chem. Eng. J. 334, 153–161 (2018). https://doi.org/10.1016/j.cej.2017.10.012
W. Song, Z. Zhou, L. Wang, X. Cheng, M. Chen et al., Constructing repairable meta-structures of ultra-broad-band electromagnetic absorption from three-dimensional printed patterned shells. ACS Appl. Mater. Interfaces 9, 43179–43187 (2017). https://doi.org/10.1021/acsami.7b15367
Y. Fang, W. Xue, R. Zhao, S.X. Bao, W. Wang et al., Effect of nanoporosity on the electromagnetic wave absorption performance in a biomass-templated Fe3O4/C composite: a small-angle neutron scattering study. J. Mater. Chem. C 8, 319–327 (2020). https://doi.org/10.1039/c9tc04569d
S. Gao, Q. An, Z. Xiao, S. Zhai, D. Yang, Controllable n-doped carbonaceous composites with highly dispersed Ni nanoparticles for excellent microwave absorption. ACS Appl. Nano Mater. 1, 5895–5906 (2018). https://doi.org/10.1021/acsanm.8b01556
G. Gou, F. Meng, H. Wang, M. Jiang, W. Wei et al., Wheat straw-derived magnetic carbon foams: in-situ preparation and tunable high-performance microwave absorption. Nano Res. 12, 1423–1429 (2019). https://doi.org/10.1007/s12274-019-2376-x
L. Huang, J. Li, Z. Wang, Y. Li, X. He et al., Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 143, 507–516 (2019). https://doi.org/10.1016/j.carbon.2018.11.042
Q. Li, J. Zhu, S. Wang, F. Huang, Q. Liu et al., Microwave absorption on a bare biomass derived holey silica-hybridized carbon absorbent. Carbon 161, 639–646 (2020). https://doi.org/10.1016/j.carbon.2020.01.087
L. Liang, Z. Zhang, F. Song, W. Zhang, H. Li et al., Ultralight, flexible carbon hybrid aerogels from bacterial cellulose for strong microwave absorption. Carbon 162, 283–291 (2020). https://doi.org/10.1016/j.carbon.2020.02.045
L. Liu, S. Yang, H. Hu, T. Zhang, Y. Yuan et al., Lightweight and efficient microwave-absorbing materials based on loofah-sponge-derived hierarchically porous carbons. ACS Sustain. Chem. Eng. 7, 1228–1238 (2018). https://doi.org/10.1021/acssuschemeng.8b04907
Z. Lou, Y. Li, H. Han, H. Ma, L. Wang et al., Synthesis of porous 3d Fe/C composites from waste wood with tunable and excellent electromagnetic wave absorption performance. ACS Sustain. Chem. Eng. 6, 15598–15607 (2018). https://doi.org/10.1021/acssuschemeng.8b04045
M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang et al., Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework. Carbon 161, 517–527 (2020). https://doi.org/10.1016/j.carbon.2020.01.073
Q. Yang, Y. Shi, Y. Fang, Y. Dong, Q. Ni et al., Construction of polyaniline aligned on magnetic functionalized biomass carbon giving excellent microwave absorption properties. Compos. Sci. Technol. 174, 176–183 (2019). https://doi.org/10.1016/j.compscitech.2019.02.031