Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness
Corresponding Author: Wei Lu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 140
Abstract
Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system. However, it is still challenging for dielectric–magnetic loss coexisting-type absorber to develop electromagnetic wave (EMW) performance with ultra-low matching thickness (≤ 1 mm). Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale, a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering. The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved via a special magnetic field-induced growth. Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation. The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber. The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in the impressive permittivity even at high frequencies. Consequently, the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm. Thus, based on the modulation of electromagnetic parameters, this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers.
Highlights:
1 A ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.
2 The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved for the first time via a special magnetic field-induced growth.
3 The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in a remarkable electromagnetic wave performance at an ultrathin thickness of 1 mm.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Pan, L. Cai, Y. Shi, Y. Dong, X. Zhu et al., Heterointerface engineering of β chitin/carbon nano onions/Ni–P composites with boosted Maxwell Wagner Sillars effect for highly efficient electromagnetic wave response and thermal management. Nano-Micro Lett. 14, 85 (2022). https://doi.org/10.1007/s40820-022-00804-w
- L. Cai, F. Pan, X. Zhu, Y. Dong, Y. Shi et al., Etching engineering and electrostatic self-assembly of N-doped MXene/ hollow Co-ZIF hybrids for high-performance microwave absorbers. Chem. Eng. J. 434, 133865 (2022). https://doi.org/10.1016/j.cej.2021.133865
- X. Zhang, Z. Liu, B. Deng, L. Cai, Y. Dong et al., Honeycomb-like NiCo2O4@MnO2 nanosheets array/3D porous expanded graphite hybrids for high-performance microwave absorber with hydrophobic and flame-retardant functions. Chem. Eng. J. 419, 129547 (2021). https://doi.org/10.1016/j.cej.2021.129547
- J. Cheng, L. Cai, Y. Shi, F. Pan, Y. Dong et al., Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 431, 134284 (2022). https://doi.org/10.1016/j.cej.2021.134284
- X. Wang, F. Pan, Z. Xiang, Q.W. Zeng, K. Pei et al., Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.carbon.2019.10.030
- G. Wang, Y. Zhao, F. Yang, Y. Zhang, M. Zhou et al., Multifunctional integrated transparent film for efficient electromagnetic protection. Nano-Micro Lett. 14, 65 (2022). https://doi.org/10.1007/s40820-022-00810-y
- F. Wang, W. Gu, J. Chen, Q. Huang, M. Han et al., Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption. J. Mater. Sci. Technol. 105, 92–100 (2022). https://doi.org/10.1016/j.jmst.2021.06.058
- L. Wang, X. Li, X. Shi, M. Huang, X. Li et al., Recent progress of microwave absorption microspheres by magnetic-dielectric synergy. Nanoscale 13(4), 2136–2156 (2021). https://doi.org/10.1039/d0nr06267g
- B. Wang, Q. Wu, Y. Fu, T. Liu, A review on carbon/magnetic metal composites for microwave absorption. J. Mater. Sci. Technol. 86, 91–109 (2021). https://doi.org/10.1016/j.jmst.2020.12.078
- Y. Zhao, L. Hao, X. Zhang, S. Tan, H. Li et al., A novel strategy in electromagnetic wave absorbing and shielding materials design: multi-responsive field effect. Small Sci. 2(2), 2100077 (2021). https://doi.org/10.1002/smsc.202100077
- L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), 2106195 (2022). https://doi.org/10.1002/adma.202106195
- R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
- X. Li, W. You, R. Zhang, J. Fang, Q. Zeng et al., Synthesis of nonspherical hollow architecture with magnetic Fe core and Ni decorated tadpole-like shell as ultrabroad bandwidth microwave absorbers. Small 17(46), 2103351 (2021). https://doi.org/10.1002/smll.202103351
- L. Wang, M. Huang, X. Qian, L. Liu, W. You et al., Confined magnetic-dielectric balance boosted electromagnetic wave absorption. Small 17(30), 2100970 (2021). https://doi.org/10.1002/smll.202100970
- Z. Wu, H.W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), 2107538 (2021). https://doi.org/10.1002/adma.202107538
- F. Pan, L. Cai, Y. Shi, Y. Dong, X. Zhu et al., Phase engineering reinforced multiple loss network in apple tree-like liquid metal/Ni-Ni3P/N-doped carbon fiber composites for high-performance microwave absorption. Chem. Eng. J. 435, 135009 (2022). https://doi.org/10.1016/j.cej.2022.135009
- X. Fu, L. Wang, L. Zhao, Z. Yuan, Y. Zhang et al., Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin. Adv. Funct. Mater. 31(17), 2010533 (2021). https://doi.org/10.1002/adfm.202010533
- B.W. Deng, Z.C. Liu, F. Pan, Z. Xiang, X. Zhang et al., Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanop hybrids with high electromagnetic absorption performance and improved impendence matching. J. Mater. Chem. A 9(6), 3500–3510 (2021). https://doi.org/10.1039/d0ta10551a
- B.W. Deng, Z. Xiang, J. Xiong, Z.C. Liu, L.Z. Yu et al., Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 12, 55 (2020). https://doi.org/10.1007/s40820-020-0398-2
- F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Magnetic Fe3S4 LTMCs micro-flowers@ wax gourd aerogel-derived carbon hybrids as efficient and sustainable electromagnetic absorber. Carbon 179, 554–565 (2021). https://doi.org/10.1016/j.carbon.2021.04.053
- H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
- M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang et al., Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels. ACS Appl. Mater. Interfaces 12(29), 33128–33138 (2020). https://doi.org/10.1021/acsami.0c09726
- Y. Dai, X. Wu, Z. Liu, H.B. Zhang, Z.Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B Eng. 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
- H. Wu, J. Liu, H. Liang, D. Zang, Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 393, 124743 (2020). https://doi.org/10.1016/j.cej.2020.124743
- B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding et al., Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 16(40), 2003502 (2020). https://doi.org/10.1002/smll.202003502
- F. Pan, L. Yu, Z. Xiang, Z. Liu, B. Deng et al., Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite. Carbon 172, 506–515 (2021). https://doi.org/10.1016/j.carbon.2020.10.039
- X. Zhang, Y. Li, R. Liu, Y. Rao, H. Rong et al., High-magnetization FeCo nanochains with ultrathin interfacial gaps for broadband electromagnetic wave absorption at gigahertz. ACS Appl. Mater. Interf 8(5), 3494–3498 (2016). https://doi.org/10.1021/acsami.5b12203
- L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
- N. Atykyan, V. Revin, V. Shutova, Raman and FT-IR spectroscopy investigation the cellulose structural differences from bacteria gluconacetobacter sucrofermentans during the different regimes of cultivation on a molasses media. AMB Expr 10(1), 84 (2020). https://doi.org/10.1186/s13568-020-01020-8
- L. Liang, R. Yang, G. Han, Y. Feng, B. Zhao et al., Enhanced electromagnetic wave-absorbing performance of magnetic nanops-anchored 2D Ti3C2Tx MXene. ACS Appl. Mater. Interf 12(2), 2644–2654 (2020). https://doi.org/10.1021/acsami.9b18504
- E.R.P. Pinto, H.S. Barud, W.L. Polito, S.J.L. Ribeiro, Y. Messaddeq, Preparation and characterization of the bacterial cellulose/polyurethane nanocomposites. J. Therm. Anal. Calorim. 114(2), 549–555 (2013). https://doi.org/10.1007/s10973-013-3001-y
- J. Zhu, M. Wang, M. Lyu, Y. Jiao, A. Du et al., Two-dimensional titanium carbonitride MXene for high-performance sodium ion batteries. ACS Appl. Nano Mater. 1(12), 6854–6863 (2018). https://doi.org/10.1021/acsanm.8b01330
- H.B. Zhao, Z.B. Fu, H.B. Chen, M.L. Zhong, C.Y. Wang, Excellent electromagnetic absorption capability of Ni/carbon based conductive and magnetic foams synthesized via a green one pot route. ACS Appl. Mater. Interf 8(2), 1468–1477 (2016). https://doi.org/10.1021/acsami.5b10805
- Q. Li, Y. Zhao, X. Li, L. Wang, X. Li et al., MOF induces 2D go to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance. Small 16(42), 2003905 (2020). https://doi.org/10.1002/smll.202003905
- P.T. Xie, H.Y. Li, B. He, F. Dang, J. Lin et al., Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J. Mater. Chem. C 6(32), 8812–8822 (2018). https://doi.org/10.1039/c8tc02127a
- X. Zhu, Y. Dong, F. Pan, Z. Xiang, Z. Liu et al., Covalent organic framework-derived hollow core-shell Fe/Fe3O4@porous carbon composites with corrosion resistance for lightweight and efficient microwave absorption. Compos. Commun. 25, 100731 (2021). https://doi.org/10.1016/j.coco.2021.100731
- T. Hou, Z. Jia, B. Wang, H. Li, X. Liu et al., MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.128875
- F. Pan, L. Cai, Y. Dong, X. Zhu, Y. Shi et al., Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption. J. Mater. Sci. Techn. 101, 85–94 (2022). https://doi.org/10.1016/j.jmst.2021.05.066
- W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13, 102 (2021). https://doi.org/10.1007/s40820-021-00635-1
- S. Gao, G.S. Wang, L. Guo, S.H. Yu, Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16(19), 1906668 (2020). https://doi.org/10.1002/smll.201906668
- M. Qin, L. Zhang, X. Zhao, H. Wu, Lightweight ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Funct. Mater. 31(30), 2103436 (2021). https://doi.org/10.1002/adfm.202103436
- W. You, K. Pei, L. Yang, X. Li, X. Shi et al., In situ dynamics response mechanism of the tunable length-diameter ratio nanochains for excellent microwave absorber. Nano Res. 13(1), 72–78 (2019). https://doi.org/10.1007/s12274-019-2574-6
- P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
- X. Xu, S. Shi, Y. Tang, G. Wang, M. Zhou et al., Growth of nial-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 8(5), 2002658 (2021). https://doi.org/10.1002/advs.202002658
- D.W. Liu, Y.C. Du, P. Xu, F.Y. Wang, Y.H. Wang et al., Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 9(8), 5086–5096 (2021). https://doi.org/10.1039/d0ta10942h
- T. Li, D.D. Zhi, Y. Chen, B. Li, Z.W. Zhou et al., Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res. 13(2), 477–484 (2020). https://doi.org/10.1007/s12274-020-2632-0
- F. Wang, W. Gu, J. Chen, Y. Wu, M. Zhou et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res 15(4), 3720–3728 (2021). https://doi.org/10.1007/s12274-021-3955-1
- M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- B. Quan, X.H. Liang, G.B. Ji, Y. Cheng, W. Liu et al., Dielectric polarization in electromagnetic wave absorption: review and perspective. J. Alloy Compd. 728, 1065–1075 (2017). https://doi.org/10.1016/j.jallcom.2017.09.082
- Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
- D.W. Liu, Y.C. Du, F.Y. Wang, Y.H. Wang, L.R. Cui et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020). https://doi.org/10.1016/j.carbon.2019.10.056
- M.S. Cao, J.C. Shu, X.X. Wang, X. Wang, M. Zhang et al., Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency. Ann. Phys. 531(4), 1800390 (2019). https://doi.org/10.1002/andp.201800390
- W. Gu, J. Tan, J. Chen, Z. Zhang, Y. Zhao et al., Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interf 12(25), 28727–28737 (2020). https://doi.org/10.1021/acsami.0c09202
- Z. Zhang, J.W. Tan, W.H. Gu, H.Q. Zhao, J. Zheng et al., Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 395, 125190 (2020). https://doi.org/10.1016/j.cej.2020.125190
- G. Wang, S.J.H. Ong, Y. Zhao, Z.J. Xu, G. Ji, Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. J. Mater. Chem. A 8(46), 24368–24387 (2020). https://doi.org/10.1039/d0ta08515d
- J. Li, D. Zhou, P. Wang, W. Liu, J. Su, Raspberry-like LiFe5O8 nanops embedded on MoS2 microflowers with excellent microwave absorption performance. J. Mater. Chem. A 8(39), 20337–20345 (2020). https://doi.org/10.1039/d0ta07483g
- Y.T. Zhao, L. Liu, J.V. Han, W.H. Wu, G.X. Tong, Effective modulation of electromagnetic characteristics by composition and size in expanded graphite/Fe3O4 nanoring composites with high snoek’s limit. J. Alloy Compd. 728, 100–111 (2017). https://doi.org/10.1016/j.jallcom.2017.08.238
- Z.C. Wu, K. Pei, L.S. Xing, X.F. Yu, W.B. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29(28), 1901448 (2019). https://doi.org/10.1002/adfm.201901448
References
F. Pan, L. Cai, Y. Shi, Y. Dong, X. Zhu et al., Heterointerface engineering of β chitin/carbon nano onions/Ni–P composites with boosted Maxwell Wagner Sillars effect for highly efficient electromagnetic wave response and thermal management. Nano-Micro Lett. 14, 85 (2022). https://doi.org/10.1007/s40820-022-00804-w
L. Cai, F. Pan, X. Zhu, Y. Dong, Y. Shi et al., Etching engineering and electrostatic self-assembly of N-doped MXene/ hollow Co-ZIF hybrids for high-performance microwave absorbers. Chem. Eng. J. 434, 133865 (2022). https://doi.org/10.1016/j.cej.2021.133865
X. Zhang, Z. Liu, B. Deng, L. Cai, Y. Dong et al., Honeycomb-like NiCo2O4@MnO2 nanosheets array/3D porous expanded graphite hybrids for high-performance microwave absorber with hydrophobic and flame-retardant functions. Chem. Eng. J. 419, 129547 (2021). https://doi.org/10.1016/j.cej.2021.129547
J. Cheng, L. Cai, Y. Shi, F. Pan, Y. Dong et al., Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 431, 134284 (2022). https://doi.org/10.1016/j.cej.2021.134284
X. Wang, F. Pan, Z. Xiang, Q.W. Zeng, K. Pei et al., Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.carbon.2019.10.030
G. Wang, Y. Zhao, F. Yang, Y. Zhang, M. Zhou et al., Multifunctional integrated transparent film for efficient electromagnetic protection. Nano-Micro Lett. 14, 65 (2022). https://doi.org/10.1007/s40820-022-00810-y
F. Wang, W. Gu, J. Chen, Q. Huang, M. Han et al., Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption. J. Mater. Sci. Technol. 105, 92–100 (2022). https://doi.org/10.1016/j.jmst.2021.06.058
L. Wang, X. Li, X. Shi, M. Huang, X. Li et al., Recent progress of microwave absorption microspheres by magnetic-dielectric synergy. Nanoscale 13(4), 2136–2156 (2021). https://doi.org/10.1039/d0nr06267g
B. Wang, Q. Wu, Y. Fu, T. Liu, A review on carbon/magnetic metal composites for microwave absorption. J. Mater. Sci. Technol. 86, 91–109 (2021). https://doi.org/10.1016/j.jmst.2020.12.078
Y. Zhao, L. Hao, X. Zhang, S. Tan, H. Li et al., A novel strategy in electromagnetic wave absorbing and shielding materials design: multi-responsive field effect. Small Sci. 2(2), 2100077 (2021). https://doi.org/10.1002/smsc.202100077
L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), 2106195 (2022). https://doi.org/10.1002/adma.202106195
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
X. Li, W. You, R. Zhang, J. Fang, Q. Zeng et al., Synthesis of nonspherical hollow architecture with magnetic Fe core and Ni decorated tadpole-like shell as ultrabroad bandwidth microwave absorbers. Small 17(46), 2103351 (2021). https://doi.org/10.1002/smll.202103351
L. Wang, M. Huang, X. Qian, L. Liu, W. You et al., Confined magnetic-dielectric balance boosted electromagnetic wave absorption. Small 17(30), 2100970 (2021). https://doi.org/10.1002/smll.202100970
Z. Wu, H.W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), 2107538 (2021). https://doi.org/10.1002/adma.202107538
F. Pan, L. Cai, Y. Shi, Y. Dong, X. Zhu et al., Phase engineering reinforced multiple loss network in apple tree-like liquid metal/Ni-Ni3P/N-doped carbon fiber composites for high-performance microwave absorption. Chem. Eng. J. 435, 135009 (2022). https://doi.org/10.1016/j.cej.2022.135009
X. Fu, L. Wang, L. Zhao, Z. Yuan, Y. Zhang et al., Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin. Adv. Funct. Mater. 31(17), 2010533 (2021). https://doi.org/10.1002/adfm.202010533
B.W. Deng, Z.C. Liu, F. Pan, Z. Xiang, X. Zhang et al., Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanop hybrids with high electromagnetic absorption performance and improved impendence matching. J. Mater. Chem. A 9(6), 3500–3510 (2021). https://doi.org/10.1039/d0ta10551a
B.W. Deng, Z. Xiang, J. Xiong, Z.C. Liu, L.Z. Yu et al., Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 12, 55 (2020). https://doi.org/10.1007/s40820-020-0398-2
F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Magnetic Fe3S4 LTMCs micro-flowers@ wax gourd aerogel-derived carbon hybrids as efficient and sustainable electromagnetic absorber. Carbon 179, 554–565 (2021). https://doi.org/10.1016/j.carbon.2021.04.053
H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang et al., Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels. ACS Appl. Mater. Interfaces 12(29), 33128–33138 (2020). https://doi.org/10.1021/acsami.0c09726
Y. Dai, X. Wu, Z. Liu, H.B. Zhang, Z.Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B Eng. 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
H. Wu, J. Liu, H. Liang, D. Zang, Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 393, 124743 (2020). https://doi.org/10.1016/j.cej.2020.124743
B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding et al., Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 16(40), 2003502 (2020). https://doi.org/10.1002/smll.202003502
F. Pan, L. Yu, Z. Xiang, Z. Liu, B. Deng et al., Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite. Carbon 172, 506–515 (2021). https://doi.org/10.1016/j.carbon.2020.10.039
X. Zhang, Y. Li, R. Liu, Y. Rao, H. Rong et al., High-magnetization FeCo nanochains with ultrathin interfacial gaps for broadband electromagnetic wave absorption at gigahertz. ACS Appl. Mater. Interf 8(5), 3494–3498 (2016). https://doi.org/10.1021/acsami.5b12203
L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
N. Atykyan, V. Revin, V. Shutova, Raman and FT-IR spectroscopy investigation the cellulose structural differences from bacteria gluconacetobacter sucrofermentans during the different regimes of cultivation on a molasses media. AMB Expr 10(1), 84 (2020). https://doi.org/10.1186/s13568-020-01020-8
L. Liang, R. Yang, G. Han, Y. Feng, B. Zhao et al., Enhanced electromagnetic wave-absorbing performance of magnetic nanops-anchored 2D Ti3C2Tx MXene. ACS Appl. Mater. Interf 12(2), 2644–2654 (2020). https://doi.org/10.1021/acsami.9b18504
E.R.P. Pinto, H.S. Barud, W.L. Polito, S.J.L. Ribeiro, Y. Messaddeq, Preparation and characterization of the bacterial cellulose/polyurethane nanocomposites. J. Therm. Anal. Calorim. 114(2), 549–555 (2013). https://doi.org/10.1007/s10973-013-3001-y
J. Zhu, M. Wang, M. Lyu, Y. Jiao, A. Du et al., Two-dimensional titanium carbonitride MXene for high-performance sodium ion batteries. ACS Appl. Nano Mater. 1(12), 6854–6863 (2018). https://doi.org/10.1021/acsanm.8b01330
H.B. Zhao, Z.B. Fu, H.B. Chen, M.L. Zhong, C.Y. Wang, Excellent electromagnetic absorption capability of Ni/carbon based conductive and magnetic foams synthesized via a green one pot route. ACS Appl. Mater. Interf 8(2), 1468–1477 (2016). https://doi.org/10.1021/acsami.5b10805
Q. Li, Y. Zhao, X. Li, L. Wang, X. Li et al., MOF induces 2D go to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance. Small 16(42), 2003905 (2020). https://doi.org/10.1002/smll.202003905
P.T. Xie, H.Y. Li, B. He, F. Dang, J. Lin et al., Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J. Mater. Chem. C 6(32), 8812–8822 (2018). https://doi.org/10.1039/c8tc02127a
X. Zhu, Y. Dong, F. Pan, Z. Xiang, Z. Liu et al., Covalent organic framework-derived hollow core-shell Fe/Fe3O4@porous carbon composites with corrosion resistance for lightweight and efficient microwave absorption. Compos. Commun. 25, 100731 (2021). https://doi.org/10.1016/j.coco.2021.100731
T. Hou, Z. Jia, B. Wang, H. Li, X. Liu et al., MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.128875
F. Pan, L. Cai, Y. Dong, X. Zhu, Y. Shi et al., Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption. J. Mater. Sci. Techn. 101, 85–94 (2022). https://doi.org/10.1016/j.jmst.2021.05.066
W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13, 102 (2021). https://doi.org/10.1007/s40820-021-00635-1
S. Gao, G.S. Wang, L. Guo, S.H. Yu, Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16(19), 1906668 (2020). https://doi.org/10.1002/smll.201906668
M. Qin, L. Zhang, X. Zhao, H. Wu, Lightweight ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Funct. Mater. 31(30), 2103436 (2021). https://doi.org/10.1002/adfm.202103436
W. You, K. Pei, L. Yang, X. Li, X. Shi et al., In situ dynamics response mechanism of the tunable length-diameter ratio nanochains for excellent microwave absorber. Nano Res. 13(1), 72–78 (2019). https://doi.org/10.1007/s12274-019-2574-6
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
X. Xu, S. Shi, Y. Tang, G. Wang, M. Zhou et al., Growth of nial-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 8(5), 2002658 (2021). https://doi.org/10.1002/advs.202002658
D.W. Liu, Y.C. Du, P. Xu, F.Y. Wang, Y.H. Wang et al., Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 9(8), 5086–5096 (2021). https://doi.org/10.1039/d0ta10942h
T. Li, D.D. Zhi, Y. Chen, B. Li, Z.W. Zhou et al., Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res. 13(2), 477–484 (2020). https://doi.org/10.1007/s12274-020-2632-0
F. Wang, W. Gu, J. Chen, Y. Wu, M. Zhou et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res 15(4), 3720–3728 (2021). https://doi.org/10.1007/s12274-021-3955-1
M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
B. Quan, X.H. Liang, G.B. Ji, Y. Cheng, W. Liu et al., Dielectric polarization in electromagnetic wave absorption: review and perspective. J. Alloy Compd. 728, 1065–1075 (2017). https://doi.org/10.1016/j.jallcom.2017.09.082
Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
D.W. Liu, Y.C. Du, F.Y. Wang, Y.H. Wang, L.R. Cui et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020). https://doi.org/10.1016/j.carbon.2019.10.056
M.S. Cao, J.C. Shu, X.X. Wang, X. Wang, M. Zhang et al., Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency. Ann. Phys. 531(4), 1800390 (2019). https://doi.org/10.1002/andp.201800390
W. Gu, J. Tan, J. Chen, Z. Zhang, Y. Zhao et al., Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interf 12(25), 28727–28737 (2020). https://doi.org/10.1021/acsami.0c09202
Z. Zhang, J.W. Tan, W.H. Gu, H.Q. Zhao, J. Zheng et al., Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 395, 125190 (2020). https://doi.org/10.1016/j.cej.2020.125190
G. Wang, S.J.H. Ong, Y. Zhao, Z.J. Xu, G. Ji, Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. J. Mater. Chem. A 8(46), 24368–24387 (2020). https://doi.org/10.1039/d0ta08515d
J. Li, D. Zhou, P. Wang, W. Liu, J. Su, Raspberry-like LiFe5O8 nanops embedded on MoS2 microflowers with excellent microwave absorption performance. J. Mater. Chem. A 8(39), 20337–20345 (2020). https://doi.org/10.1039/d0ta07483g
Y.T. Zhao, L. Liu, J.V. Han, W.H. Wu, G.X. Tong, Effective modulation of electromagnetic characteristics by composition and size in expanded graphite/Fe3O4 nanoring composites with high snoek’s limit. J. Alloy Compd. 728, 100–111 (2017). https://doi.org/10.1016/j.jallcom.2017.08.238
Z.C. Wu, K. Pei, L.S. Xing, X.F. Yu, W.B. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29(28), 1901448 (2019). https://doi.org/10.1002/adfm.201901448