Stable Lithium-Carbon Composite Enabled by Dual-Salt Additives
Corresponding Author: Yanbin Shen
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 111
Abstract
Lithium metal is regarded as the ultimate negative electrode material for secondary batteries due to its high energy density. However, it suffers from poor cycling stability because of its high reactivity with liquid electrolytes. Therefore, continuous efforts have been put into improving the cycling Coulombic efficiency (CE) to extend the lifespan of the lithium metal negative electrode. Herein, we report that using dual-salt additives of LiPF6 and LiNO3 in an ether solvent-based electrolyte can significantly improve the cycling stability and rate capability of a Li-carbon (Li-CNT) composite. As a result, an average cycling CE as high as 99.30% was obtained for the Li-CNT at a current density of 2.5 mA cm–2 and an negative electrode to positive electrode capacity (N/P) ratio of 2. The cycling stability and rate capability enhancement of the Li-CNT negative electrode could be attributed to the formation of a better solid electrolyte interphase layer that contains both inorganic components and organic polyether. The former component mainly originates from the decomposition of the LiNO3 additive, while the latter comes from the LiPF6-induced ring-opening polymerization of the ether solvent. This novel surface chemistry significantly improves the CE of Li negative electrode, revealing its importance for the practical application of lithium metal batteries.
Highlights:
1 It is the first report that using dual-salt additives of LiPF6 and LiNO3 to significantly improve the cycling performance of the Li-CNT negative electrode.
2 The mechanism why the combined use of LiPF6 and LiNO3 additive can improve the cycling performance and rate capability of the Li-CNT negative electrode was investigated.
3 An average cycling Coulombic efficiency as high as 99.30% was obtained for the Li-CNT negative electrode at a current density of 2.5 mA cm−2 and an negative electrode to positive electrode capacity (N/P) ratio of 2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
- D.C. Lin, Y.Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/NNANO.2017.16
- A. Zhamu, G.R. Chen, C.G. Liu, D. Neff, Q. Fang et al., Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy Environ. Sci. 5, 5701–5707 (2012). https://doi.org/10.1039/C2EE02911A
- C.P. Yang, K. Fu, Y. Zhang, E. Hitz, L.B. Hu, Protected lithium-metal anodes in batteries: from liquid to solid. Adv. Mater. 29, 1701169 (2017). https://doi.org/10.1002/adma.201701169
- W. Xu, J.L. Wang, F. Ding, X.L. Chen, E. Nasybutin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/C3EE40795K
- M.R. Palacin, A. de Guibert, Why do batteries fail? Science 351, 1253292 (2016). https://doi.org/10.1126/science.1253292
- M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
- R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang et al., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56, 7764–7768 (2017). https://doi.org/10.1002/anie.201702099
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
- X.L. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/NMAT2460
- R.G. Cao, W. Xu, D.P. Lv, J. Xiao, J.G. Zhang, Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater. 5, 1402273 (2015). https://doi.org/10.1002/aenm.201402273
- X.B. Cheng, R. Zhang, C.Z. Zhao, F. Wei, J.G. Zhang et al., A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016). https://doi.org/10.1002/advs.201500213
- Y. Gao, Y.M. Zhao, Y.G.C. Li, Q.Q. Huang, T.E. Mallouk et al., Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J. Am. Chem. Soc. 139, 15288–15291 (2017). https://doi.org/10.1021/jacs.7b06437
- K. Yan, Z.D. Lu, H.W. Lee, F. Xiong, P.C. Hsu et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). https://doi.org/10.1038/NENERGY.2016.10
- R. Zhang, X. Chen, X. Shen, X.Q. Zhang, X.R. Chen et al., Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2, 764–777 (2018). https://doi.org/10.1016/j.joule.2018.02.001
- L. Liu, Y.X. Yin, J.Y. Li, S.H. Wang, Y.G. Guo et al., Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv. Mater. 30, 1706216 (2018). https://doi.org/10.1002/adma.201706216
- T. Kang, J.H. Zhao, F. Guo, L. Zheng, Y.Y. Mao et al., Dendrite-free lithium anodes enabled by a commonly used copper antirusting agent. ACS Appl. Mater. Interfaces 12, 8168–8175 (2020). https://doi.org/10.1021/acsami.9b19655
- Z. Liang, D.C. Lin, J. Zhao, Z.D. Lu, Y.Y. Liu et al., Composite lithium metal anode by melt infusion of lithium into a 3d conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. U.S.A. 113, 2862–2867 (2016). https://doi.org/10.1073/pnas.1518188113
- W.J. Tang, S. Tang, X.Z. Guan, X.Y. Zhang, Q. Xiang et al., High-performance solid polymer electrolytes filled with vertically aligned 2D materials. Adv. Funct. Mater. 29, 1900648 (2019). https://doi.org/10.1002/adfm.201900648
- S.M. Xu, D.W. McOwen, C.W. Wang, L. Zhang, W. Luo et al., Three-dimensional, solid-state mixed electron-ion conductive framework for lithium metal anode. Nano Lett. 18, 3926–3933 (2018). https://doi.org/10.1021/acs.nanolett.8b01295
- C.Y. Zhang, S. Liu, G.J. Li, C.J. Zhang, X.J. Liu et al., Incorporating ionic paths into 3d conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes. Adv. Mater. 30, 1801328 (2018). https://doi.org/10.1002/adma.201801328
- F.Q. Liu, W.P. Wang, Y.X. Yin, S.F. Zhang, J.L. Shi et al., Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 4, eaat5383 (2018). https://doi.org/10.1126/sciadv.aat5383
- H.F. Fei, Y.P. Liu, C.L. Wei, Y.C. Zhang, J.K. Feng et al., Poly(propylene carbonate)-based polymer electrolyte with an organic cathode for stable all-solid-state sodium batteries. Acta Phys.-Chim. Sin. 36, 1905015 (2020). https://doi.org/10.3866/PKU.WHXB201905015
- J.M. Zheng, M.H. Engelhard, D.H. Mei, S.H. Jiao, B.J. Polzin et al., Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017). https://doi.org/10.1038/nenergy.2017.12
- Q. Ran, T. Sun, C. Han, H. Zhang, J. Yan et al., Natural polyphenol tannic acid as an efficient electrolyte additive for high performance lithium metal anode. Acta Phys. Chim. Sin. (2020). https://doi.org/10.3866/pku.Whxb201912068
- W.G. Zhao, J.M. Zheng, L.F. Zou, H.P. Jia, B. Liu et al., High voltage operation of ni-rich nmc cathodes enabled by stable electrode/electrolyte interphases. Adv. Energy Mater. 8, 1800297 (2018). https://doi.org/10.1002/aenm.201800297
- Z.J. Cheng, Y.Y. Mao, Q.Y. Dong, F. Jin, Y.B. Shen et al., Fluoroethylene carbonate as an additive for sodium-ion batteries: effect on the sodium cathode. Acta Phys. Chim. Sin. 35, 868–875 (2019). https://doi.org/10.3866/PKU.WHXB201811033
- G.H. Chen, Y. Bai, Y.S. Gao, F. Wu, C. Wu, Chalcogenide electrolytes for all-solid-state sodium ion batteries. Acta Phys. Chim. Sin. 36, 1905009 (2020). https://doi.org/10.3866/PKU.WHXB201905009
- X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017). https://doi.org/10.1002/adfm.201605989
- J. Meng, F. Chu, J. Hu, C. Li, Liquid polydimethylsiloxane grafting to enable dendrite-free li plating for highly reversible li-metal batteries. Adv. Funct. Mater. 29, 1902220 (2019). https://doi.org/10.1002/adfm.201902220
- Z. Ju, J. Nai, Y. Wang, T. Liu, J. Zheng et al., Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nat. Commun. 11, 488 (2020). https://doi.org/10.1038/s41467-020-14358-1
- B.Q. Li, X.R. Chen, X. Chen, C.X. Zhao, R. Zhang et al., Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes. Research 2019, 4608940 (2019). https://doi.org/10.34133/2019/4608940
- Y. Chen, M. Yue, C. Liu, H. Zhang, Y. Yu et al., Long cycle life lithium metal batteries enabled with upright lithium anode. Adv. Funct. Mater. 29, 1806752 (2019). https://doi.org/10.1002/adfm.201806752
- X.-Y. Hu, P. Xu, S. Deng, J. Lei, X. Lin et al., Inducing ordered li deposition on a pani-decorated cu mesh for an advanced li anode. J. Mater. Chem. A 8, 17056–17064 (2020). https://doi.org/10.1039/d0ta03929b
- Q. Wang, C. Yang, J. Yang, K. Wu, C. Hu et al., Dendrite-free lithium deposition via a superfilling mechanism for high-performance li-metal batteries. Adv. Mater. 31, e1903248 (2019). https://doi.org/10.1002/adma.201903248
- Y. Liu, L. Zheng, W. Gu, Y. Shen, L. Chen, Surface passivation of lithium metal via in situ polymerization. Acta Phys. Chim. Sin. (2020). https://doi.org/10.3866/pku.Whxb202004058
- Y.L. Wang, Y.B. Shen, Z.L. Du, X.F. Zhang, K. Wang et al., A lithium-carbon nanotube composite for stable lithium anodes. J. Mater. Chem. A 5, 23434–23439 (2017). https://doi.org/10.1039/C7TA08531A
- F. Guo, Y.L. Wang, T. Kang, C.H. Liu, Y.B. Shen et al., A li-dual carbon composite as stable anode material for li batteries. Energy Storage Mater. 15, 116–123 (2018). https://doi.org/10.1016/j.ensm.2018.03.018
- F. Guo, P. Chen, T. Kang, Y.L. Wang, C.H. Liu et al., Silicon-loaded lithium-carbon composite microspheres as lithium secondary battery anodes. Acta Phys. Chim. Sin. 35, 1365–1371 (2019). https://doi.org/10.3866/Pku.Whxb201903008
- F. Guo, T. Kang, Z.J. Liu, B. Tong, L.M. Guo et al., Advanced lithium metal-carbon nanotube composite anode for high-performance lithium-oxygen batteries. Nano Lett. 19, 6377–6384 (2019). https://doi.org/10.1021/acs.nanolett.9b02560
- T. Kang, Y.L. Wang, F. Guo, C.B. Liu, J.H. Zhao et al., Self-assembled monolayer enables slurry-coating of li anode. ACS Cen. Sci. 5, 468–476 (2019). https://doi.org/10.1021/acscentsci.8b00845
- L. Zheng, F. Guo, T. Kang, J. Yang, Y. Liu et al., Highly stable lithium anode enabled by self-assembled monolayer of dihexadecanoalkyl phosphate. Nano Res. 13, 1324–1331 (2019). https://doi.org/10.1007/s12274-019-2565-7
- W. Gu, Q.Y. Dong, L. Zheng, Y. Liu, Y.Y. Mao et al., Ambient air stable ni-rich layered oxides enabled by hydrophobic self-assembled monolayer. ACS Appl. Mater. Interfaces 12, 1937–1943 (2020). https://doi.org/10.1021/acsami.9b20030
- S.S. Zhang, A new finding on the role of lino3 in lithium-sulfur battery. J. Power Sources 322, 99–105 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.009
- J. Guo, Z.Y. Wen, M.F. Wu, J. Jin, Y. Liu, Vinylene carbonate-lino3: a hybrid additive in carbonic ester electrolytes for sei modification on li metal anode. Electrochem. Commun. 51, 59–63 (2015). https://doi.org/10.1016/j.elecom.2014.12.008
- W.D. Zhang, Q. Wu, J.X. Huang, L. Fan, Z.Y. Shen et al., Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 32, 2001740 (2020). https://doi.org/10.1002/adma.202001740
- P. Verma, P. Maire, P. Novak, A review of the features and analyses of the solid electrolyte interphase in li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010). https://doi.org/10.1016/j.electacta.2010.05.072
- W. Huang, H. Wang, D.T. Boyle, Y.Z. Li, Y. Cui, Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy. ACS Energy Lett. 5, 1128–1135 (2020). https://doi.org/10.1021/acsenergylett.0c00194
- Y. Gao, T. Rojas, K. Wang, S. Liu, D.W. Wang et al., Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 5, 534–542 (2020). https://doi.org/10.1038/s41560-020-0640-7
- M.F. Chu, D.Q. Meng, Y.R. Li, M. Wang, S. Xiao et al., The solid reaction of lithium hydride and lithium hydroxide in lithium hydride pellet under normal condition and the application of CO2 for long-time storage. Appl. Surf. Sci. 447, 673–676 (2018). https://doi.org/10.1016/j.apsusc.2018.04.024
References
X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
D.C. Lin, Y.Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/NNANO.2017.16
A. Zhamu, G.R. Chen, C.G. Liu, D. Neff, Q. Fang et al., Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy Environ. Sci. 5, 5701–5707 (2012). https://doi.org/10.1039/C2EE02911A
C.P. Yang, K. Fu, Y. Zhang, E. Hitz, L.B. Hu, Protected lithium-metal anodes in batteries: from liquid to solid. Adv. Mater. 29, 1701169 (2017). https://doi.org/10.1002/adma.201701169
W. Xu, J.L. Wang, F. Ding, X.L. Chen, E. Nasybutin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/C3EE40795K
M.R. Palacin, A. de Guibert, Why do batteries fail? Science 351, 1253292 (2016). https://doi.org/10.1126/science.1253292
M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang et al., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56, 7764–7768 (2017). https://doi.org/10.1002/anie.201702099
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
X.L. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/NMAT2460
R.G. Cao, W. Xu, D.P. Lv, J. Xiao, J.G. Zhang, Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater. 5, 1402273 (2015). https://doi.org/10.1002/aenm.201402273
X.B. Cheng, R. Zhang, C.Z. Zhao, F. Wei, J.G. Zhang et al., A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016). https://doi.org/10.1002/advs.201500213
Y. Gao, Y.M. Zhao, Y.G.C. Li, Q.Q. Huang, T.E. Mallouk et al., Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J. Am. Chem. Soc. 139, 15288–15291 (2017). https://doi.org/10.1021/jacs.7b06437
K. Yan, Z.D. Lu, H.W. Lee, F. Xiong, P.C. Hsu et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). https://doi.org/10.1038/NENERGY.2016.10
R. Zhang, X. Chen, X. Shen, X.Q. Zhang, X.R. Chen et al., Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2, 764–777 (2018). https://doi.org/10.1016/j.joule.2018.02.001
L. Liu, Y.X. Yin, J.Y. Li, S.H. Wang, Y.G. Guo et al., Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv. Mater. 30, 1706216 (2018). https://doi.org/10.1002/adma.201706216
T. Kang, J.H. Zhao, F. Guo, L. Zheng, Y.Y. Mao et al., Dendrite-free lithium anodes enabled by a commonly used copper antirusting agent. ACS Appl. Mater. Interfaces 12, 8168–8175 (2020). https://doi.org/10.1021/acsami.9b19655
Z. Liang, D.C. Lin, J. Zhao, Z.D. Lu, Y.Y. Liu et al., Composite lithium metal anode by melt infusion of lithium into a 3d conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. U.S.A. 113, 2862–2867 (2016). https://doi.org/10.1073/pnas.1518188113
W.J. Tang, S. Tang, X.Z. Guan, X.Y. Zhang, Q. Xiang et al., High-performance solid polymer electrolytes filled with vertically aligned 2D materials. Adv. Funct. Mater. 29, 1900648 (2019). https://doi.org/10.1002/adfm.201900648
S.M. Xu, D.W. McOwen, C.W. Wang, L. Zhang, W. Luo et al., Three-dimensional, solid-state mixed electron-ion conductive framework for lithium metal anode. Nano Lett. 18, 3926–3933 (2018). https://doi.org/10.1021/acs.nanolett.8b01295
C.Y. Zhang, S. Liu, G.J. Li, C.J. Zhang, X.J. Liu et al., Incorporating ionic paths into 3d conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes. Adv. Mater. 30, 1801328 (2018). https://doi.org/10.1002/adma.201801328
F.Q. Liu, W.P. Wang, Y.X. Yin, S.F. Zhang, J.L. Shi et al., Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 4, eaat5383 (2018). https://doi.org/10.1126/sciadv.aat5383
H.F. Fei, Y.P. Liu, C.L. Wei, Y.C. Zhang, J.K. Feng et al., Poly(propylene carbonate)-based polymer electrolyte with an organic cathode for stable all-solid-state sodium batteries. Acta Phys.-Chim. Sin. 36, 1905015 (2020). https://doi.org/10.3866/PKU.WHXB201905015
J.M. Zheng, M.H. Engelhard, D.H. Mei, S.H. Jiao, B.J. Polzin et al., Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017). https://doi.org/10.1038/nenergy.2017.12
Q. Ran, T. Sun, C. Han, H. Zhang, J. Yan et al., Natural polyphenol tannic acid as an efficient electrolyte additive for high performance lithium metal anode. Acta Phys. Chim. Sin. (2020). https://doi.org/10.3866/pku.Whxb201912068
W.G. Zhao, J.M. Zheng, L.F. Zou, H.P. Jia, B. Liu et al., High voltage operation of ni-rich nmc cathodes enabled by stable electrode/electrolyte interphases. Adv. Energy Mater. 8, 1800297 (2018). https://doi.org/10.1002/aenm.201800297
Z.J. Cheng, Y.Y. Mao, Q.Y. Dong, F. Jin, Y.B. Shen et al., Fluoroethylene carbonate as an additive for sodium-ion batteries: effect on the sodium cathode. Acta Phys. Chim. Sin. 35, 868–875 (2019). https://doi.org/10.3866/PKU.WHXB201811033
G.H. Chen, Y. Bai, Y.S. Gao, F. Wu, C. Wu, Chalcogenide electrolytes for all-solid-state sodium ion batteries. Acta Phys. Chim. Sin. 36, 1905009 (2020). https://doi.org/10.3866/PKU.WHXB201905009
X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017). https://doi.org/10.1002/adfm.201605989
J. Meng, F. Chu, J. Hu, C. Li, Liquid polydimethylsiloxane grafting to enable dendrite-free li plating for highly reversible li-metal batteries. Adv. Funct. Mater. 29, 1902220 (2019). https://doi.org/10.1002/adfm.201902220
Z. Ju, J. Nai, Y. Wang, T. Liu, J. Zheng et al., Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nat. Commun. 11, 488 (2020). https://doi.org/10.1038/s41467-020-14358-1
B.Q. Li, X.R. Chen, X. Chen, C.X. Zhao, R. Zhang et al., Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes. Research 2019, 4608940 (2019). https://doi.org/10.34133/2019/4608940
Y. Chen, M. Yue, C. Liu, H. Zhang, Y. Yu et al., Long cycle life lithium metal batteries enabled with upright lithium anode. Adv. Funct. Mater. 29, 1806752 (2019). https://doi.org/10.1002/adfm.201806752
X.-Y. Hu, P. Xu, S. Deng, J. Lei, X. Lin et al., Inducing ordered li deposition on a pani-decorated cu mesh for an advanced li anode. J. Mater. Chem. A 8, 17056–17064 (2020). https://doi.org/10.1039/d0ta03929b
Q. Wang, C. Yang, J. Yang, K. Wu, C. Hu et al., Dendrite-free lithium deposition via a superfilling mechanism for high-performance li-metal batteries. Adv. Mater. 31, e1903248 (2019). https://doi.org/10.1002/adma.201903248
Y. Liu, L. Zheng, W. Gu, Y. Shen, L. Chen, Surface passivation of lithium metal via in situ polymerization. Acta Phys. Chim. Sin. (2020). https://doi.org/10.3866/pku.Whxb202004058
Y.L. Wang, Y.B. Shen, Z.L. Du, X.F. Zhang, K. Wang et al., A lithium-carbon nanotube composite for stable lithium anodes. J. Mater. Chem. A 5, 23434–23439 (2017). https://doi.org/10.1039/C7TA08531A
F. Guo, Y.L. Wang, T. Kang, C.H. Liu, Y.B. Shen et al., A li-dual carbon composite as stable anode material for li batteries. Energy Storage Mater. 15, 116–123 (2018). https://doi.org/10.1016/j.ensm.2018.03.018
F. Guo, P. Chen, T. Kang, Y.L. Wang, C.H. Liu et al., Silicon-loaded lithium-carbon composite microspheres as lithium secondary battery anodes. Acta Phys. Chim. Sin. 35, 1365–1371 (2019). https://doi.org/10.3866/Pku.Whxb201903008
F. Guo, T. Kang, Z.J. Liu, B. Tong, L.M. Guo et al., Advanced lithium metal-carbon nanotube composite anode for high-performance lithium-oxygen batteries. Nano Lett. 19, 6377–6384 (2019). https://doi.org/10.1021/acs.nanolett.9b02560
T. Kang, Y.L. Wang, F. Guo, C.B. Liu, J.H. Zhao et al., Self-assembled monolayer enables slurry-coating of li anode. ACS Cen. Sci. 5, 468–476 (2019). https://doi.org/10.1021/acscentsci.8b00845
L. Zheng, F. Guo, T. Kang, J. Yang, Y. Liu et al., Highly stable lithium anode enabled by self-assembled monolayer of dihexadecanoalkyl phosphate. Nano Res. 13, 1324–1331 (2019). https://doi.org/10.1007/s12274-019-2565-7
W. Gu, Q.Y. Dong, L. Zheng, Y. Liu, Y.Y. Mao et al., Ambient air stable ni-rich layered oxides enabled by hydrophobic self-assembled monolayer. ACS Appl. Mater. Interfaces 12, 1937–1943 (2020). https://doi.org/10.1021/acsami.9b20030
S.S. Zhang, A new finding on the role of lino3 in lithium-sulfur battery. J. Power Sources 322, 99–105 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.009
J. Guo, Z.Y. Wen, M.F. Wu, J. Jin, Y. Liu, Vinylene carbonate-lino3: a hybrid additive in carbonic ester electrolytes for sei modification on li metal anode. Electrochem. Commun. 51, 59–63 (2015). https://doi.org/10.1016/j.elecom.2014.12.008
W.D. Zhang, Q. Wu, J.X. Huang, L. Fan, Z.Y. Shen et al., Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 32, 2001740 (2020). https://doi.org/10.1002/adma.202001740
P. Verma, P. Maire, P. Novak, A review of the features and analyses of the solid electrolyte interphase in li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010). https://doi.org/10.1016/j.electacta.2010.05.072
W. Huang, H. Wang, D.T. Boyle, Y.Z. Li, Y. Cui, Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy. ACS Energy Lett. 5, 1128–1135 (2020). https://doi.org/10.1021/acsenergylett.0c00194
Y. Gao, T. Rojas, K. Wang, S. Liu, D.W. Wang et al., Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 5, 534–542 (2020). https://doi.org/10.1038/s41560-020-0640-7
M.F. Chu, D.Q. Meng, Y.R. Li, M. Wang, S. Xiao et al., The solid reaction of lithium hydride and lithium hydroxide in lithium hydride pellet under normal condition and the application of CO2 for long-time storage. Appl. Surf. Sci. 447, 673–676 (2018). https://doi.org/10.1016/j.apsusc.2018.04.024