Applications of 2D-Layered Palladium Diselenide and Its van der Waals Heterostructures in Electronics and Optoelectronics
Corresponding Author: Yu Zhang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 143
Abstract
The rapid development of two-dimensional (2D) transition-metal dichalcogenides has been possible owing to their special structures and remarkable properties. In particular, palladium diselenide (PdSe2) with a novel pentagonal structure and unique physical characteristics have recently attracted extensive research interest. Consequently, tremendous research progress has been achieved regarding the physics, chemistry, and electronics of PdSe2. Accordingly, in this review, we recapitulate and summarize the most recent research on PdSe2, including its structure, properties, synthesis, and applications. First, a mechanical exfoliation method to obtain PdSe2 nanosheets is introduced, and large-area synthesis strategies are explained with respect to chemical vapor deposition and metal selenization. Next, the electronic and optoelectronic properties of PdSe2 and related heterostructures, such as field-effect transistors, photodetectors, sensors, and thermoelectric devices, are discussed. Subsequently, the integration of systems into infrared image sensors on the basis of PdSe2 van der Waals heterostructures is explored. Finally, future opportunities are highlighted to serve as a general guide for physicists, chemists, materials scientists, and engineers. Therefore, this comprehensive review may shed light on the research conducted by the 2D material community.
Highlights:
1 The structure–property relationship of PdSe2 is discussed, i.e., layer number vs. tunable bandgap, pentagonal structure vs. anisotropy-based polarized light detection.
2 The synthesis approaches of PdSe2 are thoroughly compared, including bottom-up methods such as chemical vapor transport for bulk crystals, chemical vapor deposition for thin films and single-crystal domains, selenization of Pd films. Besides, top-down strategies are discussed, covering the mechanical exfoliation of bulk crystals, plasma thinning, and vacuum annealing as well as phase transition.
3 The emerging devices of PdSe2 and its van der Waals heterostructures have been delivered such as metal/semiconductor contact, Schottky junction transistors, field-effect transistors, photodetectors, p–n junction-based rectifiers, polarized light detector, and infrared image sensors.
4 Future opportunities of PdSe2-based van der Waals heterostructures are given including logic gate-based digital circuits, RF-integrated circuits, Internet of Things, and theoretical calculation as well as big data for materials science.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Saito, J. Ge, K. Watanabe, T. Taniguchi, A.F. Young, Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16(9), 926–930 (2020). https://doi.org/10.1038/s41567-020-0928-3
- C. Jin, J. Kim, M.I.B. Utama, E.C. Regan, H. Kleemann et al., Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures. Science 360(6391), 893–896 (2018). https://doi.org/10.1126/science.aao3503
- Y. Pang, Z. Yang, Y. Yang, T.L. Ren, Wearable electronics based on 2D materials for human physiological information detection. Small 16(15), 1901124 (2020). https://doi.org/10.1002/smll.201901124
- A.V. Agrawal, N. Kumar, M. Kumar, Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 13(1), 38 (2021). https://doi.org/10.1007/s40820-020-00558-3
- N.E. Holden, T.B. Coplen, J.K. Böhlke, L.V. Tarbox, J. Benefield et al., IUPAC periodic table of the elements and isotopes (IPTEI) for the education community (IUPAC Technical Report). Pure Appl. Chem. 90(12), 1833–2092 (2018). https://doi.org/10.1515/pac-2015-0703
- K.F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10(4), 216–226 (2016). https://doi.org/10.1038/nphoton.2015.282
- L. Zeng, S. Lin, Z. Lou, H. Yuan, H. Long et al., Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 10(4), 352–362 (2018). https://doi.org/10.1038/s41427-018-0035-4
- R. Kempt, A. Kuc, T. Heine, Two-dimensional noble-metal chalcogenides and phosphochalcogenides. Angew. Chem. Int. Ed. 59(24), 9242–9254 (2020). https://doi.org/10.1002/anie.201914886
- S. Ahmad, Strain dependent tuning electronic properties of noble metal di chalcogenides PdX2 (X = S, Se) mono-layer. Mater. Chem. Phys. 198(1), 162–166 (2017). https://doi.org/10.1016/j.matchemphys.2017.05.060
- L. Zeng, D. Wu, J. Jie, X. Ren, X. Hu et al., Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 microm. Adv. Mater. 32(52), 2004412 (2020). https://doi.org/10.1002/adma.202004412
- Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu et al., High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 29(5), 1604230 (2017). https://doi.org/10.1002/adma.201604230
- H. Yang, Y. Li, Z. Yang, X. Shi, Z. Lin et al., First-principles calculations of the electronic properties of two-dimensional pentagonal structure XS2 (X=Ni, Pd, Pt). Vacuum 174(1), 109176 (2020). https://doi.org/10.1016/j.vacuum.2020.109176
- D. Saraf, S. Chakraborty, A. Kshirsagar, R. Ahuja, In pursuit of bifunctional catalytic activity in PdS2 pseudo-monolayer through reaction coordinate mapping. Nano Energy 49(4), 283–289 (2018). https://doi.org/10.1016/j.nanoen.2018.04.019
- M. Ghorbani-Asl, A. Kuc, P. Miro, T. Heine, A single-material logical junction based on 2D Crystal PdS2. Adv. Mater. 28(5), 853–856 (2016). https://doi.org/10.1002/adma.201504274
- A.D. Oyedele, S. Yang, L. Liang, A.A. Puretzky, K. Wang et al., PdSe2: pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 139(40), 14090–14097 (2017). https://doi.org/10.1021/jacs.7b04865
- Y. Gu, H. Cai, J. Dong, Y. Yu, A.N. Hoffman et al., Two-dimensional palladium diselenide with strong in-plane optical anisotropy and high mobility grown by chemical vapor deposition. Adv. Mater. 32(19), 1906238 (2020). https://doi.org/10.1002/adma.201906238
- W.L. Chow, P. Yu, F. Liu, J. Hong, X. Wang et al., High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater. 29(21), 1602969 (2017). https://doi.org/10.1002/adma.201602969
- A.A. Puretzky, A.D. Oyedele, K. Xiao, A.V. Haglund, B.G. Sumpter et al., Anomalous interlayer vibrations in strongly coupled layered PdSe2. 2D Mater. 5(3), 35016 (2018). https://doi.org/10.1088/2053-1583/aabe4d
- Q. Liang, Q. Wang, Q. Zhang, J. Wei, S.X. Lim et al., High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 31(24), 1807609 (2019). https://doi.org/10.1002/adma.201807609
- H. Yang, S.W. Kim, M. Chhowalla, Y.H. Lee, Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13(10), 931–937 (2017). https://doi.org/10.1038/nphys4188
- D. Wu, J. Guo, J. Du, C. Xia, L. Zeng et al., Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 13(9), 9907–9917 (2019). https://doi.org/10.1021/acsnano.9b03994
- K.L. Tai, J. Chen, Y. Wen, H. Park, Q. Zhang et al., Phase variations and layer epitaxy of 2D PdSe2 GRown on 2D monolayers by direct selenization of molecular Pd precursors. ACS Nano 14(9), 11677–11690 (2020). https://doi.org/10.1021/acsnano.0c04230
- M. Jakhar, J. Singh, A. Kumar, K. Tankeshwar, Pressure and electric field tuning of Schottky contacts in PdSe2/ZT-MoSe2 van der Waals heterostructure. Nanotechnology 31(14), 145710 (2020). https://doi.org/10.1088/1361-6528/ab5de1
- A.M. Afzal, M.Z. Iqbal, S. Mumtaz, I. Akhtar, Multifunctional and high-performance GeSe/PdSe2 heterostructure device with a fast photoresponse. J. Mater. Chem. C 8(14), 4743–4753 (2020). https://doi.org/10.1039/d0tc00004c
- D. Wu, C. Jia, F. Shi, L. Zeng, P. Lin et al., Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. J. Mater. Chem. A 8(7), 3632–3642 (2020). https://doi.org/10.1039/c9ta13611h
- L.H. Zeng, Q.M. Chen, Z.X. Zhang, D. Wu, H. Yuan et al., Multilayered PdSe2/perovskite schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 6(19), 1901134 (2019). https://doi.org/10.1002/advs.201901134
- J. Sun, H. Shi, T. Siegrist, D.J. Singh, Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Appl. Phys. Lett. 107(15), 153902 (2015). https://doi.org/10.1063/1.4933302
- F. Grønvold, E. Røst, The crystal structure of PdSe2 and PdS2. Acta Crystallogr. 10(4), 329–331 (1957). https://doi.org/10.1107/s0365110x57000948
- J. Zhong, J. Yu, L. Cao, C. Zeng, J. Ding et al., High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 13(6), 1780–1786 (2020). https://doi.org/10.1007/s12274-020-2804-y
- Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin et al., Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 28(12), 2399–2407 (2016). https://doi.org/10.1002/adma.201504572
- A.V. Kuklin, H. Ågren, Quasiparticle electronic structure and optical spectra of single-layer and bilayer PdSe2: Proximity and defect-induced band gap renormalization. Phys. Rev. B 99(24), 2469–9950 (2019). https://doi.org/10.1103/PhysRevB.99.245114
- X. Zhao, Q. Zhao, B. Zhao, X. Dai, S. Wei et al., Electronic and optical properties of PdSe2 from monolayer to trilayer. Superlattices Microstr. 142(4), 106514 (2020). https://doi.org/10.1016/j.spmi.2020.106514
- W. Lei, B. Cai, H. Zhou, G. Heymann, X. Tang et al., Ferroelastic lattice rotation and band-gap engineering in quasi 2D layered-structure PdSe2 under uniaxial stress. Nanoscale 11(25), 12317–12325 (2019). https://doi.org/10.1039/c9nr03101d
- X. Zhao, B. Qiu, G. Hu, W. Yue, J. Ren et al., Spin polarization properties of pentagonal PdSe(2) induced by 3D transition-metal doping: first-principles calculations. Materials 11(11), 2339 (2018). https://doi.org/10.3390/ma11112339
- S.-H. Zhang, B.-G. Liu, Hole-doping-induced half-metallic ferromagnetism in a highly-air-stable PdSe2 monolayer under uniaxial stress. J. Mater. Chem. C 6(25), 6792–6798 (2018). https://doi.org/10.1039/c8tc01450g
- S. Deng, L. Li, Y. Zhang, Strain modulated electronic, mechanical, and optical properties of the monolayer PdS2, PdSe2, and PtSe2 for tunable devices. ACS Appl. Nano Mater. 1(4), 1932–1939 (2018). https://doi.org/10.1021/acsanm.8b00363
- G. Liu, Q.M. Zeng, P.F. Zhu, R.G. Quhe, P.F. Lu, Negative Poisson’s ratio in monolayer PdSe2. Comput. Mater. Sci. 160(1), 309–314 (2019). https://doi.org/10.1016/j.commatsci.2019.01.024
- M.A. ElGhazali, P.G. Naumov, H. Mirhosseini, V. Suss, L. Muchler et al., Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdSe2. Phys. Rev. B 96(6), 060509 (2017). https://doi.org/10.1103/PhysRevB.96.060509
- J. Yu, X. Kuang, Y. Gao, Y. Wang, K. Chen et al., Direct observation of the linear dichroism transition in two-dimensional palladium diselenide. Nano Lett. 20(2), 1172–1182 (2020). https://doi.org/10.1021/acs.nanolett.9b04598
- W. Lei, S. Zhang, G. Heymann, X. Tang, J. Wen et al., A new 2D high-pressure phase of PdSe2 with high-mobility transport anisotropy for photovoltaic applications. J. Mater. Chem. C 7(7), 2096–2105 (2019). https://doi.org/10.1039/c8tc06050a
- T.S. Walmsley, K. Andrews, T. Wang, A. Haglund, U. Rijal et al., Near-infrared optical transitions in PdSe2 phototransistors. Nanoscale 11(30), 14410–14416 (2019). https://doi.org/10.1039/c9nr03505b
- M. Sun, J.P. Chou, L. Shi, J. Gao, A. Hu et al., Few-Layer PdSe2 sheets: promising thermoelectric materials driven by high valley convergence. ACS Omega 3(6), 5971–5979 (2018). https://doi.org/10.1021/acsomega.8b00485
- Y. Cai, G. Zhang, Y.W. Zhang, Polarity-reversed robust carrier mobility in monolayer MoS(2) nanoribbons. J. Am. Chem. Soc. 136(17), 6269–6275 (2014). https://doi.org/10.1021/ja4109787
- X.-J. Ge, D. Qin, K.-L. Yao, J.-T. Lü, First-principles study of thermoelectric transport properties of monolayer gallium chalcogenides. J. Phys. D-Appl. Phys. 50(40), 405301 (2017). https://doi.org/10.1088/1361-6463/aa85b4
- G.D. Nguyen, L. Liang, Q. Zou, M. Fu, A.D. Oyedele et al., 3D imaging and manipulation of subsurface selenium vacancies in PdSe2. Phys. Rev. Lett. 121(8), 086101 (2018). https://doi.org/10.1103/PhysRevLett.121.086101
- J. Lin, S. Zuluaga, P. Yu, Z. Liu, S.T. Pantelides et al., Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett. 119(1), 016101 (2017). https://doi.org/10.1103/PhysRevLett.119.016101
- J. Chen, G.H. Ryu, S. Sinha, J.H. Warner, Atomic structure and dynamics of defects and grain boundaries in 2D Pd2Se3 Monolayers. ACS Nano 13(7), 8256–8264 (2019). https://doi.org/10.1021/acsnano.9b03645
- S. Zuluaga, J. Lin, K. Suenaga, S.T. Pantelides, Two-dimensional PdSe2-Pd2Se3 junctions can serve as nanowires. 2D Mater. 5(3), 035025 (2018). https://doi.org/10.1088/2053-1583/aac34c
- G.H. Ryu, T. Zhu, J. Chen, S. Sinha, V. Shautsova, Striated 2D lattice with sub-nm 1D etch channels by controlled thermally induced phase transformations of PdSe2. Adv. Mater. 31(46), 1904251 (2019). https://doi.org/10.1002/adma.201904251
- V. Shautsova, S. Sinha, L. Hou, Q. Zhang, M. Tweedie et al., Direct laser patterning and phase transformation of 2D PdSe2 films for on-demand device fabrication. ACS Nano 13(12), 14162–14171 (2019). https://doi.org/10.1021/acsnano.9b06892
- T. Takabatake, M. Ishikawa, J.L. Jorda, Superconductivity and phase relations in the Pd-Se system. J. Less Common Met. 134(1), 79–89 (1987). https://doi.org/10.1016/0022-5088(87)90444-9
- A.D. Oyedele, S. Yang, T. Feng, A.V. Haglund, Y. Gu et al., Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc. 141(22), 8928–8936 (2019). https://doi.org/10.1021/jacs.9b02593
- D. Wang, F. Luo, M. Lu, X. Xie, L. Huang et al., Chemical vapor transport reactions for synthesizing layered materials and their 2D counterparts. Small 15(40), 1804404 (2019). https://doi.org/10.1002/smll.201804404
- M. Long, Y. Wang, P. Wang, X. Zhou, H. Xia et al., Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13(2), 2511–2519 (2019). https://doi.org/10.1021/acsnano.8b09476
- M. Velicky, G.E. Donnelly, W.R. Hendren, S. McFarland, D. Scullion et al., Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 12(10), 10463–10472 (2018). https://doi.org/10.1021/acsnano.8b06101
- M. Heyl, D. Burmeister, T. Schultz, S. Pallasch, G. Ligorio et al., Thermally activated gold-mediated transition metal dichalcogenide exfoliation and a unique gold-mediated transfer. Phys. Status Solidi (RRL) 14(11), 2000408 (2020). https://doi.org/10.1002/pssr.202000408
- S.B. Desai, S.R. Madhvapathy, M. Amani, D. Kiriya, M. Hettick et al., Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv. Mater. 28(21), 4053–4058 (2016). https://doi.org/10.1002/adma.201506171
- Y. Huang, Y.H. Pan, R. Yang, L.H. Bao, L. Meng et al., Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11(1), 2453 (2020). https://doi.org/10.1038/s41467-020-16266-w
- D. Zhao, S. Xie, Y. Wang, H. Zhu, L. Chen et al., Synthesis of large-scale few-layer PtS2 films by chemical vapor deposition. AIP Adv. 9(2), 025225 (2019). https://doi.org/10.1063/1.5086447
- L. Jia, J. Wu, T. Yang, B. Jia, D.J. Moss, Large third-order optical kerr nonlinearity in nanometer-thick PdSe2 2D dichalcogenide films: implications for nonlinear photonic devices. ACS Appl. Nano Mater. 3(7), 6876–6883 (2020). https://doi.org/10.1021/acsanm.0c01239
- J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen et al., A library of atomically thin metal chalcogenides. Nature 556(7701), 355–359 (2018). https://doi.org/10.1038/s41586-018-0008-3
- L.H. Zeng, D. Wu, S.H. Lin, C. Xie, H.Y. Yuan et al., Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 29(1), 1806878 (2019). https://doi.org/10.1002/adfm.201806878
- L.S. Lu, G.H. Chen, H.Y. Cheng, C.P. Chuu, K.C. Lu et al., Layer-dependent and in-plane anisotropic properties of low-temperature synthesized few-layer PdSe2 single crystals. ACS Nano 14(4), 4963–4972 (2020). https://doi.org/10.1021/acsnano.0c01139
- G.D. Nguyen, A.D. Oyedele, A. Haglund, W. Ko, L. Liang et al., Atomically precise PdSe2 pentagonal nanoribbons. ACS Nano 14(2), 1951–1957 (2020). https://doi.org/10.1021/acsnano.9b08390
- L.H. Zeng, S.H. Lin, Z.J. Li, Z.X. Zhang, T.F. Zhang et al., Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 28(16), 1705970 (2018). https://doi.org/10.1002/adfm.201705970
- A.N. Hoffman, Y. Gu, J. Tokash, J. Woodward, K. Xiao et al., Layer-by-layer thinning of pdse2 flakes via plasma induced oxidation and sublimation. ACS Appl. Mater. Interfaces 12(6), 7345–7350 (2020). https://doi.org/10.1021/acsami.9b21287
- Q. Liang, Q. Zhang, J. Gou, T. Song, Arramel et al., Performance improvement by ozone treatment of 2D PdSe2. ACS Nano 14(5), 5668–5677 (2020). https://doi.org/10.1021/acsnano.0c00180
- A. Di. Bartolomeo, F. Urban, A. Pelella, A. Grillo, M. Passacantando et al., Electron irradiation of multilayer PdSe2 field effect transistors. Nanotechnology 31(37), 375204 (2020). https://doi.org/10.1088/1361-6528/ab9472
- A. Hassan, Y. Guo, Q. Wang, Performance of the pentagonal PdSe2 sheet as a channel material in contact with metal surfaces and graphene. ACS Appl. Electron. Mater. 2(8), 2535–2542 (2020). https://doi.org/10.1021/acsaelm.0c00438
- A. Di. Bartolomeo, A. Pelella, X. Liu, F. Miao, M. Passacantando et al., Pressure-tunable ambipolar conduction and hysteresis in thin palladium diselenide field effect transistors. Adv. Funct. Mater. 29(29), 1902483 (2019). https://doi.org/10.1002/adfm.201902483
- J. Gao, Y. Gao, Y. Han, J. Pang, C. Wang et al., Ultrasensitive label-free MiRNA sensing based on a flexible graphene field-effect transistor without functionalization. ACS Appl. Electron. Mater. 2(4), 1090–1098 (2020). https://doi.org/10.1021/acsaelm.0c00095
- A. Tankut, M. Karaman, I. Yildiz, S. Canli, R. Turan, Effect of Al vacuum annealing prior to a-Si deposition on aluminum-induced crystallization. Phys. Status Solidi A Appl. Mater. Sci. 212(12), 2702–2707 (2015). https://doi.org/10.1002/pssa.201532857
- T. Takenobu, T. Kanbara, N. Akima, T. Takahashi, M. Shiraishi et al., Control of carrier density by a solution method in carbon-nanotube devices. Adv. Mater. 17(20), 2430–2434 (2005). https://doi.org/10.1002/adma.200500759
- F. Giubileo, A. Grillo, L. Iemmo, G. Luongo, F. Urban et al., Environmental effects on transport properties of PdSe2 field effect transistors. Mater. Today Proc. 20(1), 50–53 (2020). https://doi.org/10.1016/j.matpr.2019.08.226
- G.T. Xia, Y.N. Huang, F.J. Li, L.C. Wang, J.B. Pang et al., A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging. Front. Chem. Sci. Eng. 14(6), 1039–1051 (2020). https://doi.org/10.1007/s11705-019-1901-5
- D. Chen, Z. Liu, Y. Li, D. Sun, X. Liu et al., Unsymmetrical alveolate PMMA/MWCNT film as a piezoresistive E-skin with four-dimensional resolution and application for detecting motion direction and airflow rate. ACS Appl. Mater. Interfaces 12(27), 30896–30904 (2020). https://doi.org/10.1021/acsami.0c02640
- Y. Zhou, Y. Wang, K. Wang, L. Kang, F. Peng et al., Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors. Appl. Energy 260(1), 114169 (2020). https://doi.org/10.1016/j.apenergy.2019.114169
- X. Shang, S. Li, K. Wang, X. Teng, X. Wang et al., MnSe2/Se composite nanobelts as an improved performance anode for lithium storage. Int. J. Electrochem. Sci. 14(1), 6000–6008 (2019). https://doi.org/10.20964/2019.07.37
- C. Bu, F. Li, K. Yin, J. Pang, L. Wang et al., Research progress and prospect of triboelectric nanogenerators as self-powered human body sensors. ACS Appl. Electron. Mater. 2(4), 863–878 (2020). https://doi.org/10.1021/acsaelm.0c00022
- S.C. Dhanabalan, J.S. Ponraj, H. Zhang, Q. Bao, Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. Nanoscale 8(12), 6410–6434 (2016). https://doi.org/10.1039/c5nr09111j
- A. Di. Bartolomeo, A. Pelella, F. Urban, A. Grillo, L. Iemmo et al., Field emission in ultrathin PdSe2 back-gated transistors. Adv. Electron. Mater. 6(7), 2000094 (2020). https://doi.org/10.1002/aelm.202000094
- R. Zhuo, L. Zeng, H. Yuan, D. Wu, Y. Wang et al., In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 12(1), 183–189 (2018). https://doi.org/10.1007/s12274-018-2200-z
- M. Buscema, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S. van der Zant et al., Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14(6), 3347–3352 (2014). https://doi.org/10.1021/nl5008085
- X. Wan, Y. Xu, H. Guo, K. Shehzad, A. Ali et al., A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon? NPJ 2D Mater. Appl. 1(1), 2397–7132 (2017). https://doi.org/10.1038/s41699-017-0008-4
- R. Zhuo, Y. Wang, D. Wu, Z. Lou, Z. Shi et al., High-performance self-powered deep ultraviolet photodetector based on MoS2/GaN p–n heterojunction. J. Mater. Chem. C 6(2), 299–303 (2018). https://doi.org/10.1039/c7tc04754a
- E.P. Mukhokosi, S.B. Krupanidhi, K.K. Nanda, Band gap engineering of hexagonal SnSe2 nanostructured thin films for infra-red photodetection. Sci. Rep. 7(1), 15215 (2017). https://doi.org/10.1038/s41598-017-15519-x
- L.B. Luo, D. Wang, C. Xie, J.G. Hu, X.Y. Zhao et al., PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv. Funct. Mater. 29(22), 1900849 (2019). https://doi.org/10.1002/adfm.201900849
- Y. Yang, S.C. Liu, X. Wang, Z. Li, Y. Zhang et al., Polarization-sensitive ultraviolet photodetection of anisotropic 2D GeS2. Adv. Funct. Mater. 29(16), 1900411 (2019). https://doi.org/10.1002/adfm.201900411
- F. Chu, M. Chen, Y. Wang, Y. Xie, B. Liu et al., A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy. J. Mater. Chem. C 6(10), 2509–2514 (2018). https://doi.org/10.1039/c7tc05488b
- P.K. Venuthurumilli, P.D. Ye, X. Xu, Plasmonic Resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 12(5), 4861–4867 (2018). https://doi.org/10.1021/acsnano.8b01660
- Y. Yang, S.C. Liu, W. Yang, Z. Li, Y. Wang et al., Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region. J. Am. Chem. Soc. 140(11), 4150–4156 (2018). https://doi.org/10.1021/jacs.8b01234
- J. Bullock, M. Amani, J. Cho, Y.-Z. Chen, G.H. Ahn et al., Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photon. 12(10), 601–607 (2018). https://doi.org/10.1038/s41566-018-0239-8
- J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu et al., Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep. 7(1), 42357 (2017). https://doi.org/10.1038/srep42357
- Y.F. Ma, S.C. Zhang, S.J. Din, X.X. Liu, X. Yu et al., Passively Q-switched Nd:GdLaNbO4 laser based on 2D PdSe2 nanosheet. Opt. Laser Technol. 124(1), 105959 (2020). https://doi.org/10.1016/j.optlastec.2019.105959
- Y.F. Ma, Z.F. Peng, S.J. Ding, H.Y. Sun, F. Peng et al., Two-dimensional WS2 nanosheet based passively Q-switched Nd:GdLaNbO4 laser. Opt. Laser Technnol. 115(1), 104–108 (2019). https://doi.org/10.1016/j.optlastec.2019.02.015
- P.K. Cheng, C.Y. Tang, S. Ahmed, J. Qiao, L.H. Zeng et al., Utilization of group 10 2D TMDs-PdSe2 as a nonlinear optical material for obtaining switchable laser pulse generation modes. Nanotechnology 32(5), 055201 (2021). https://doi.org/10.1088/1361-6528/abc1a2
- J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao et al., Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 8(8), 1702093 (2018). https://doi.org/10.1002/aenm.201702093
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/c8cs00324f
- K. Olszowska, J. Pang, P.S. Wrobel, L. Zhao, H.Q. Ta et al., Three-dimensional nanostructured graphene: synthesis and energy, environmental and biomedical applications. Synth. Met. 234(1), 53–85 (2017). https://doi.org/10.1016/j.synthmet.2017.10.014
- J. Zhou, H. Chen, X. Zhang, K. Chi, Y. Cai et al., Substrate dependence on (Sb4Se6)n ribbon orientations of antimony selenide thin films: morphology, carrier transport and photovoltaic performance. J. Alloys Compd. 862(1), 158703 (2021). https://doi.org/10.1016/j.jallcom.2021.158703
- F. Shu, M. Wang, J. Pang, P. Yu, A free-standing superhydrophobic film for highly efficient removal of water from turbine oil. Front. Chem. Sci. Eng. 13(2), 393–399 (2019). https://doi.org/10.1007/s11705-018-1754-3
- K. Wang, J. Pang, L. Li, S. Zhou, Y. Li et al., Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation. Front. Chem. Sci. Eng. 12(3), 376–382 (2018). https://doi.org/10.1007/s11705-018-1705-z
- Y. Yin, J. Pang, J. Wang, X. Lu, Q. Hao et al., Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection. ACS Appl. Mater. Interfaces 11(17), 15891–15897 (2019). https://doi.org/10.1021/acsami.9b00733
- F.-X. Liang, J.-Z. Wang, Z.-X. Zhang, Y.-Y. Wang, Y. Gao et al., Broadband, ultrafast, self-driven photodetector based on Cs-doped FAPbI3 perovskite thin film. Adv. Opt. Mater. 5(22), 1700654 (2017). https://doi.org/10.1002/adom.201700654
- M. Long, A. Gao, P. Wang, H. Xia, C. Ott et al., Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3(6), e1700589 (2017). https://doi.org/10.1126/sciadv.1700589
- X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng et al., Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun. 9(1), 1545 (2018). https://doi.org/10.1038/s41467-018-03935-0
- A.L. Hsu, P.K. Herring, N.M. Gabor, S. Ha, Y.C. Shin et al., Graphene-based thermopile for thermal imaging applications. Nano Lett. 15(11), 7211–7216 (2015). https://doi.org/10.1021/acs.nanolett.5b01755
- J. Piotrowski, A. Rogalski, Uncooled long wavelength infrared photon detectors. Infrared Phys. Technol. 46(1–2), 115–131 (2004). https://doi.org/10.1016/j.infrared.2004.03.016
- Y. Cao, X. Zhu, H. Chen, X. Zhang, J. Zhouc et al., Towards high efficiency inverted Sb2Se3 thin film solar cells. Sol. Energy Mater. Sol. Cells 200(1), 109945 (2019). https://doi.org/10.1016/j.solmat.2019.109945
- Y. Cao, X. Zhu, J. Jiang, C. Liu, J. Zhou et al., Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices. Sol. Energy Mater. Sol. Cells 206(1), 110279 (2020). https://doi.org/10.1016/j.solmat.2019.110279
- J. Jiang, F. Meng, Q. Cheng, A. Wang, Y. Chen et al., Low lattice mismatch InSe–Se vertical van der Waals heterostructure for high-performance transistors via strong fermi-level depinning. Small Methods 4(8), 2000238 (2020). https://doi.org/10.1002/smtd.202000238
- J. Jiang, F. Meng, Q. Cheng, A. Wang, Y. Chen et al., Low lattice mismatch InSe–Se vertical van der Waals heterostructure for high-performance transistors via strong fermi-level depinning (Small Methods 8/2020). Small Methods 4(8), 2070032 (2020). https://doi.org/10.1002/smtd.202070032
- C.-C. Wu, D. Jariwala, V.K. Sangwan, T.J. Marks, M.C. Hersam et al., Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopy. J. Phys. Chem. Lett. 4(15), 2508–2513 (2013). https://doi.org/10.1021/jz401199x
- F. Xue, L. Chen, J. Chen, J. Liu, L. Wang et al., p-Type MoS2 and n-type ZnO diode and its performance enhancement by the piezophototronic effect. Adv. Mater. 28(17), 3391–3398 (2016). https://doi.org/10.1002/adma.201506472
- D. Li, M. Chen, Z. Sun, P. Yu, Z. Liu et al., Two-dimensional non-volatile programmable p–n junctions. Nat. Nanotechnol. 12(9), 901–906 (2017). https://doi.org/10.1038/nnano.2017.104
- X. Zhang, J. Grajal, J.L. Vazquez-Roy, U. Radhakrishna, X. Wang et al., Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566(7744), 368–372 (2019). https://doi.org/10.1038/s41586-019-0892-1
- A.M. Afzal, G. Dastgeer, M.Z. Iqbal, P. Gautam, M.M. Faisal, High-performance p-BP/n-PdSe2 near-infrared photodiodes with a fast and gate-tunable photoresponse. ACS Appl. Mater. Interfaces 12(17), 19625–19634 (2020). https://doi.org/10.1021/acsami.9b22898
- J.A. Leñero-Bardallo, R. Carmona-Galán, A. Rodríguez-Vázquez, Applications of event-based image sensors—review and analysis. Int. J. Circ. Theor. Appl. 46(9), 1620–1630 (2018). https://doi.org/10.1002/cta.2546
- F.X. Liang, X.Y. Zhao, J.J. Jiang, J.G. Hu, W.Q. Xie et al., Light confinement effect induced highly sensitive, self-driven near-infrared photodetector and image sensor based on multilayer PdSe2 /pyramid Si heterojunction. Small 15(44), 1903831 (2019). https://doi.org/10.1002/smll.201903831
- I. Ibrahim, J. Kalbacova, V. Engemaier, J.B. Pang, R.D. Rodriguez et al., Confirming the dual role of etchants during the enrichment of semiconducting single wall carbon nanotubes by chemical vapor deposition. Chem. Mater. 27(17), 5964–5973 (2015). https://doi.org/10.1021/acs.chemmater.5b02037
- J. Pang, R.G. Mendes, P.S. Wrobel, M.D. Wlodarski, H.Q. Ta et al., Self-terminating confinement approach for large-area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition. ACS Nano 11(2), 1946–1956 (2017). https://doi.org/10.1021/acsnano.6b08069
- J. Pang, A. Bachmatiuk, I. Ibrahim, L. Fu, D. Placha et al., CVD growth of 1D and 2D sp2 carbon nanomaterials. J. Mater. Sci. 51(2), 640–667 (2015). https://doi.org/10.1007/s10853-015-9440-z
- A. Soni, L. Zhao, H.Q. Ta, Q. Shi, J. Pang et al., Facile graphitization of silicon nano-particles with ethanol based chemical vapor deposition. Nano-Struct. Nano-Objects 16(1), 38–44 (2018). https://doi.org/10.1016/j.nanoso.2018.04.001
- B. Sun, J. Pang, Q. Cheng, S. Zhang, C. Zhang et al., Synthesis of wafer-scale graphene with chemical vapor deposition for electronic device applications. Adv. Mater. Technol. 1, 2000744 (2021). https://doi.org/10.1002/admt.202000744
- G.S. Martynkova, F. Becerik, D. Placha, J. Pang, H. Akbulut et al., Effect of milling and annealing on carbon-silver system. J. Nanosci. Nanotechnol. 19(5), 2770–2774 (2019). https://doi.org/10.1166/jnn.2019.15869
- M.H. Rummeli, S. Gorantla, A. Bachmatiuk, J. Phieler, N. Geissler et al., On the role of vapor trapping for chemical vapor deposition (CVD) grown graphene over copper. Chem. Mater. 25(24), 4861–4866 (2013). https://doi.org/10.1021/cm401669k
- J.B. Pang, A. Bachmatiuk, L. Fu, C.L. Yan, M.Q. Zeng et al., Oxidation as a means to remove surface contaminants on Cu foil prior to graphene growth by chemical vapor deposition. J. Phys. Chem. C 119(23), 13363–13368 (2015). https://doi.org/10.1021/acs.jpcc.5b03911
- J.B. Pang, A. Bachmatiuk, L. Fu, R.G. Mendes, M. Libera et al., Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Adv. 5(75), 60884–60891 (2015). https://doi.org/10.1039/c5ra09405d
- N.M. Santhosh, G. Filipič, E. Kovacevic, A. Jagodar, J. Berndt et al., N-graphene nanowalls via plasma nitrogen incorporation and substitution: the experimental evidence. Nano-Micro Lett. 12(1), 53 (2020). https://doi.org/10.1007/s40820-020-0395-5
- R.G. Mendes, J. Pang, A. Bachmatiuk, H.Q. Ta, L. Zhao et al., Electron-driven in situ transmission electron microscopy of 2D transition metal dichalcogenides and their 2D heterostructures. ACS Nano 13(2), 978–995 (2019). https://doi.org/10.1021/acsnano.8b08079
- D. Zhang, T. Liu, J. Cheng, Q. Cao, G. Zheng et al., Lightweight and high-performance microwave absorber based on 2D WS2–RGO heterostructures. Nano-Micro Lett. 11(1), 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
- K. Persson, Materials Data on PdSe2 (SG:61) by Materials Project. https://doi.org/10.17188/1199960
- L.-Y. Feng, R.A.B. Villaos, Z.-Q. Huang, C.-H. Hsu, F.-C. Chuang, Layer-dependent band engineering of Pd dichalcogenides: a first-principles study. New J. Phys. 22(5), 053010 (2020). https://doi.org/10.1088/1367-2630/ab7d7a
- K. Persson, Materials Data on PdS2 (SG:61) by Materials Project. https://doi.org/10.17188/1189716
- K. Persson. Materials Data on Te2Pd (SG:164) by Materials Project. https://doi.org/10.17188/1307608
- G. Anemone, P. Casado Aguilar, M. Garnica, F. Calleja, A. Al Taleb et al., Electron–phonon coupling in superconducting 1T-PdTe2. NPJ 2D Mater. Appl. 5(1), 25 (2021). https://doi.org/10.1038/s41699-021-00204-5
- R.N. Madhu, Singh, Palladium selenides as active methanol tolerant cathode materials for direct methanol fuel cell. Int. J. Hydrogen Energy 36(16), 10006–10012 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.069
- D. Qin, P. Yan, G. Ding, X. Ge, H. Song et al., Monolayer PdSe2: a promising two-dimensional thermoelectric material. Sci. Rep. 8(1), 2764 (2018). https://doi.org/10.1038/s41598-018-20918-9
- G. Zhang, M. Amani, A. Chaturvedi, C. Tan, J. Bullock et al., Optical and electrical properties of two-dimensional palladium diselenide. Appl. Phys. Lett. 114(25), 253102 (2019). https://doi.org/10.1063/1.5097825
- A.N. Hoffman, Y. Gu, L. Liang, J.D. Fowlkes, K. Xiao et al., Exploring the air stability of PdSe2 via electrical transport measurements and defect calculations. NPJ 2D Mater. Appl. 3(1), 50 (2019). https://doi.org/10.1038/s41699-019-0132-4
- H. Fang, W. Hu, Photogating in low dimensional photodetectors. Adv. Sci. 4(12), 1700323 (2017). https://doi.org/10.1002/advs.201700323
- P. Miro, M. Ghorbani-Asl, T. Heine, Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides. Angew. Chem. Int. Ed. 53(11), 3015–3018 (2014). https://doi.org/10.1002/anie.201309280
- L. Li, W. Wang, Y. Chai, H. Li, M. Tian et al., Few-layered PtS2 phototransistor on h-BN with high gain. Adv. Funct. Mater. 27(27), 1701011 (2017). https://doi.org/10.1002/adfm.201701011
- H. Xu, H.P. Huang, H. Fei, J. Feng, H.R. Fuh et al., Strategy for fabricating wafer-scale platinum disulfide. ACS Appl. Mater. Interfaces 11(8), 8202–8209 (2019). https://doi.org/10.1021/acsami.8b19218
- E. Zhang, Y. Jin, X. Yuan, W. Wang, C. Zhang et al., ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater. 25(26), 4076–4082 (2015). https://doi.org/10.1002/adfm.201500969
- J. Shim, A. Oh, D.H. Kang, S. Oh, S.K. Jang et al., High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 28(32), 6985–6992 (2016). https://doi.org/10.1002/adma.201601002
- E. Zhang, P. Wang, Z. Li, H. Wang, C. Song et al., Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 10(8), 8067–8077 (2016). https://doi.org/10.1021/acsnano.6b04165
- M. Hafeez, L. Gan, H. Li, Y. Ma, T. Zhai, Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic raman property and optoelectronic application. Adv. Mater. 28(37), 8296–8301 (2016). https://doi.org/10.1002/adma.201601977
- W. Feng, J.-B. Wu, X. Li, W. Zheng, X. Zhou et al., Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. J. Mater. Chem. C 3(27), 7022–7028 (2015). https://doi.org/10.1039/c5tc01208b
- M. Dai, H. Chen, R. Feng, W. Feng, Y. Hu et al., A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric Schottky junction. ACS Nano 12(8), 8739–8747 (2018). https://doi.org/10.1021/acsnano.8b04931
- J. Ye, S. Soeda, Y. Nakamura, O. Nittono, Crystal structures and phase transformation in In2Se3 compound semiconductor. Jpn. J. Appl. Phys. 37, 4264–4271 (1998). https://doi.org/10.1143/jjap.37.4264
- W. Feng, F. Gao, Y. Hu, M. Dai, H. Liu et al., Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer In2Se3 nanosheets. ACS Appl. Mater. Interfaces 10(33), 27584–27588 (2018). https://doi.org/10.1021/acsami.8b10194
- R.B. Jacobs-Gedrim, M. Shanmugam, N. Jain, C.A. Durcan, M.T. Murphy et al., Extraordinary photoresponse in two-dimensional In(2)Se(3) nanosheets. ACS Nano 8(1), 514–521 (2014). https://doi.org/10.1021/nn405037s
- M. Amani, E. Regan, J. Bullock, G.H. Ahn, A. Javey, Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 11(11), 11724–11731 (2017). https://doi.org/10.1021/acsnano.7b07028
- D. Zheng, H. Fang, M. Long, F. Wu, P. Wang et al., High-performance near-infrared photodetectors based on p-type SnX (X = S, Se) nanowires grown via chemical vapor deposition. ACS Nano 12(7), 7239–7245 (2018). https://doi.org/10.1021/acsnano.8b03291
- G. Su, V.G. Hadjiev, P.E. Loya, J. Zhang, S. Lei et al., Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 15(1), 506–513 (2015). https://doi.org/10.1021/nl503857r
- F. Xia, T. Mueller, Y.M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4(12), 839–843 (2009). https://doi.org/10.1038/nnano.2009.292
- B.J. Kim, H. Jang, S.K. Lee, B.H. Hong, J.H. Ahn et al., High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 10(9), 3464–3466 (2010). https://doi.org/10.1021/nl101559n
- E.O. Polat, G. Mercier, I. Nikitskiy, E. Puma, T. Galan et al., Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 5(9), eaaw7846 (2019). https://doi.org/10.1126/sciadv.aaw7846
- X. Yu, Z. Dong, Y. Liu, T. Liu, J. Tao et al., A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2. Nanoscale 8(1), 327–332 (2016). https://doi.org/10.1039/c5nr06869j
- L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long et al., High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering. Sci. Rep. 6(1), 20343 (2016). https://doi.org/10.1038/srep20343
- J. Jiang, Q. Zhang, A. Wang, Y. Zhang, F. Meng, C. Zhang, X. Feng, Y. Feng, L. Gu, H. Liu, L. Han, A facile and effective method for patching sulfur vacancies of WS2 via nitrogen plasma treatment. Small 15(36), 1901791 (2019). https://doi.org/10.1002/smll.201901791
- Q. Wang, Q. Zhang, X. Zhao, Y.J. Zheng, J. Wang et al., High-energy gain upconversion in monolayer tungsten disulfide photodetectors. Nano Lett. 19(8), 5595–5603 (2019). https://doi.org/10.1021/acs.nanolett.9b02136
- W. Zhang, M.H. Chiu, C.H. Chen, W. Chen, L.J. Li et al., Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 8(8), 8653–8661 (2014). https://doi.org/10.1021/nn503521c
- H. Zhou, C. Wang, J.C. Shaw, R. Cheng, Y. Chen et al., Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 15(1), 709–713 (2015). https://doi.org/10.1021/nl504256y
- J. Chen, Q. Wang, Y. Sheng, G. Cao, P. Yang et al., High-performance WSe2 photodetector based on a laser-induced p–n junction. ACS Appl. Mater. Interfaces 11(46), 43330–43336 (2019). https://doi.org/10.1021/acsami.9b13948
- H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T. Nam et al., MoS(2) nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12(7), 3695–3700 (2012). https://doi.org/10.1021/nl301485q
- Y.H. Zhou, H.N. An, C. Gao, Z.Q. Zheng, B. Wang, UV–Vis-NIR photodetector based on monolayer MoS2. Mater. Lett. 237(1), 298–302 (2019). https://doi.org/10.1016/j.matlet.2018.11.112
- W. Wang, A. Klots, D. Prasai, Y. Yang, K.I. Bolotin et al., Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 15(11), 7440–7444 (2015). https://doi.org/10.1021/acs.nanolett.5b02866
- C. Jung, S.M. Kim, H. Moon, G. Han, J. Kwon et al., Highly crystalline CVD-grown multilayer MoSe2 thin film transistor for fast photodetector. Sci. Rep. 5(1), 15313 (2015). https://doi.org/10.1038/srep15313
- R. Coehoorn, C. Haas, R.A. de Groot, Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B 35(12), 6203–6206 (1987). https://doi.org/10.1103/physrevb.35.6203
- P.J. Ko, A. Abderrahmane, N.H. Kim, A. Sandhu, High-performance near-infrared photodetector based on nano-layered MoSe2. Semicond. Sci. Technol. 32(6), 065015 (2017). https://doi.org/10.1088/1361-6641/aa6819
- V. Tran, R. Soklaski, Y. Liang, L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89(23), 235319 (2014). https://doi.org/10.1103/PhysRevB.89.235319
- Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian et al., Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 16(7), 4648–4655 (2016). https://doi.org/10.1021/acs.nanolett.6b01977
- J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5(1), 4475 (2014). https://doi.org/10.1038/ncomms5475
- J. Wang, A. Rousseau, E. Eizner, A.-L. Phaneuf-L’Heureux, L. Schue et al., Spectral responsivity and photoconductive gain in thin film black phosphorus photodetectors. ACS Photon. 6(12), 3092–3099 (2019). https://doi.org/10.1021/acsphotonics.9b00951
- X. Zhou, X. Hu, B. Jin, J. Yu, K. Liu et al., Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity. Adv. Sci. 5(8), 1800478 (2018). https://doi.org/10.1002/advs.201800478
- C. Jia, D. Wu, E.P. Wu, J.W. Guo, Z.H. Zhao et al., A self-powered high-performance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity. J. Mater. Chem. C. 7(13), 3817–3821 (2019). https://doi.org/10.1039/c8tc06398b
- R. Chai, Y. Chen, M. Zhong, H. Yang, F. Yan et al., Non-layered ZnSb nanoplates for room temperature infrared polarized photodetectors. J. Mater. Chem. C 8(19), 6388–6395 (2020). https://doi.org/10.1039/d0tc00755b
- S. Deng, M.L. Tao, J. Mei, M. Li, Y. Zhang et al., Optical and piezoelectric properties of strained orthorhombic PdS2. IEEE Trans. Nanotechnol. 18(1), 358–364 (2019). https://doi.org/10.1109/Tnano.2019.2908221
- Y. Deng, Z. Luo, N.J. Conrad, H. Liu, Y. Gong et al., Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8(8), 8292–8299 (2014). https://doi.org/10.1021/nn5027388
- F. Yan, L. Zhao, A. Patane, P. Hu, X. Wei et al., Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures. Nanotechnology 28(27), 27LT01 (2017). https://doi.org/10.1088/1361-6528/aa749e
- X. Chen, H. Chen, Z. Wang, Y. Shan, D.W. Zhang et al., Analysis of the relationship between the contact barrier and rectification ratio in a two-dimensional P–N heterojunction. Semicond. Sci. Technol. 33(11), 114012 (2018). https://doi.org/10.1088/1361-6641/aae3aa
- K. Murali, M. Dandu, S. Das, K. Majumdar, Gate-tunable WSe2/SnSe2 backward diode with ultrahigh-reverse rectification ratio. ACS Appl. Mater. Interfaces 10(6), 5657–5664 (2018). https://doi.org/10.1021/acsami.7b18242
- M.A. Khan, S. Rathi, D. Lim, S.J. Yun, D.-H. Youn et al., Gate tunable self-biased diode based on few layered MoS2 and WSe2. Chem. Mater. 30(3), 1011–1016 (2018). https://doi.org/10.1021/acs.chemmater.7b04865
- Z. Yang, L. Liao, F. Gong, F. Wang, Z. Wang et al., WSe2/GeSe heterojunction photodiode with giant gate tunability. Nano Energy 49(1), 103–108 (2018). https://doi.org/10.1016/j.nanoen.2018.04.034
- C. Lan, C. Li, S. Wang, T. He, T. Jiao et al., Zener tunneling and photoresponse of a WS2/Si van der Waals heterojunction. ACS Appl. Mater. Interfaces 8(28), 18375–18382 (2016). https://doi.org/10.1021/acsami.6b05109
- J. Chu, F. Wang, L. Yin, L. Lei, C. Yan et al., High-performance ultraviolet photodetector based on a few-layered 2D NiPS3 nanosheet. Adv. Funct. Mater. 27(32), 1701342 (2017). https://doi.org/10.1002/adfm.201701342
- L. Ye, H. Li, Z. Chen, J. Xu, Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photon. 3(4), 692–699 (2016). https://doi.org/10.1021/acsphotonics.6b00079
- Y. Zhang, Y. Yu, L. Mi, H. Wang, Z. Zhu et al., In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors. Small 12(8), 1062–1071 (2016). https://doi.org/10.1002/smll.201502923
- Q. Liu, B. Cook, M. Gong, Y. Gong, D. Ewing et al., Printable transfer-free and wafer-size MoS2/graphene van der Waals heterostructures for high-performance photodetection. ACS Appl. Mater. Interfaces 9(14), 12728–12733 (2017). https://doi.org/10.1021/acsami.7b00912
- A. Gundimeda, S. Krishna, N. Aggarwal, A. Sharma, N.D. Sharma et al., Fabrication of non-polar GaN based highly responsive and fast UV photodetector. Appl. Phys. Lett. 110(10), 103507 (2017). https://doi.org/10.1063/1.4978427
- P. Wang, S. Liu, W. Luo, H. Fang, F. Gong et al., Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 29(16), 1521–4095 (2017). https://doi.org/10.1002/adma.201604439
- D.S. Um, Y. Lee, S. Lim, J. Park, W.C. Yen et al., InGaAs nanomembrane/si van der waals heterojunction photodiodes with broadband and high photoresponsivity. ACS Appl. Mater. Interfaces 8(39), 26105–26111 (2016). https://doi.org/10.1021/acsami.6b06580
- W. Zheng, R. Lin, Y. Zhu, Z. Zhang, X. Ji et al., Vacuum ultraviolet photodetection in two-dimensional oxides. ACS Appl. Mater. Interfaces 10(24), 20696–20702 (2018). https://doi.org/10.1021/acsami.8b04866
- L.H. Zeng, M.Z. Wang, H. Hu, B. Nie, Y.Q. Yu et al., Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013). https://doi.org/10.1021/am4026505
- X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang et al., High detectivity graphene-silicon heterojunction photodetector. Small 12(5), 595–601 (2016). https://doi.org/10.1002/smll.201502336
- K. Zhang, X. Fang, Y. Wang, Y. Wan, Q. Song et al., Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der Waals heterostructure. ACS Appl. Mater. Interfaces 9(6), 5392–5398 (2017). https://doi.org/10.1021/acsami.6b14483
- Y.-S. Lan, X.-R. Chen, C.-E. Hu, Y. Cheng, Q.-F. Chen, Penta-PdX2 (X = S, Se, Te) monolayers: promising anisotropic thermoelectric materials. J. Mater. Chem. A 7(18), 11134–11142 (2019). https://doi.org/10.1039/c9ta02138h
References
Y. Saito, J. Ge, K. Watanabe, T. Taniguchi, A.F. Young, Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16(9), 926–930 (2020). https://doi.org/10.1038/s41567-020-0928-3
C. Jin, J. Kim, M.I.B. Utama, E.C. Regan, H. Kleemann et al., Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures. Science 360(6391), 893–896 (2018). https://doi.org/10.1126/science.aao3503
Y. Pang, Z. Yang, Y. Yang, T.L. Ren, Wearable electronics based on 2D materials for human physiological information detection. Small 16(15), 1901124 (2020). https://doi.org/10.1002/smll.201901124
A.V. Agrawal, N. Kumar, M. Kumar, Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 13(1), 38 (2021). https://doi.org/10.1007/s40820-020-00558-3
N.E. Holden, T.B. Coplen, J.K. Böhlke, L.V. Tarbox, J. Benefield et al., IUPAC periodic table of the elements and isotopes (IPTEI) for the education community (IUPAC Technical Report). Pure Appl. Chem. 90(12), 1833–2092 (2018). https://doi.org/10.1515/pac-2015-0703
K.F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10(4), 216–226 (2016). https://doi.org/10.1038/nphoton.2015.282
L. Zeng, S. Lin, Z. Lou, H. Yuan, H. Long et al., Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 10(4), 352–362 (2018). https://doi.org/10.1038/s41427-018-0035-4
R. Kempt, A. Kuc, T. Heine, Two-dimensional noble-metal chalcogenides and phosphochalcogenides. Angew. Chem. Int. Ed. 59(24), 9242–9254 (2020). https://doi.org/10.1002/anie.201914886
S. Ahmad, Strain dependent tuning electronic properties of noble metal di chalcogenides PdX2 (X = S, Se) mono-layer. Mater. Chem. Phys. 198(1), 162–166 (2017). https://doi.org/10.1016/j.matchemphys.2017.05.060
L. Zeng, D. Wu, J. Jie, X. Ren, X. Hu et al., Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 microm. Adv. Mater. 32(52), 2004412 (2020). https://doi.org/10.1002/adma.202004412
Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu et al., High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 29(5), 1604230 (2017). https://doi.org/10.1002/adma.201604230
H. Yang, Y. Li, Z. Yang, X. Shi, Z. Lin et al., First-principles calculations of the electronic properties of two-dimensional pentagonal structure XS2 (X=Ni, Pd, Pt). Vacuum 174(1), 109176 (2020). https://doi.org/10.1016/j.vacuum.2020.109176
D. Saraf, S. Chakraborty, A. Kshirsagar, R. Ahuja, In pursuit of bifunctional catalytic activity in PdS2 pseudo-monolayer through reaction coordinate mapping. Nano Energy 49(4), 283–289 (2018). https://doi.org/10.1016/j.nanoen.2018.04.019
M. Ghorbani-Asl, A. Kuc, P. Miro, T. Heine, A single-material logical junction based on 2D Crystal PdS2. Adv. Mater. 28(5), 853–856 (2016). https://doi.org/10.1002/adma.201504274
A.D. Oyedele, S. Yang, L. Liang, A.A. Puretzky, K. Wang et al., PdSe2: pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 139(40), 14090–14097 (2017). https://doi.org/10.1021/jacs.7b04865
Y. Gu, H. Cai, J. Dong, Y. Yu, A.N. Hoffman et al., Two-dimensional palladium diselenide with strong in-plane optical anisotropy and high mobility grown by chemical vapor deposition. Adv. Mater. 32(19), 1906238 (2020). https://doi.org/10.1002/adma.201906238
W.L. Chow, P. Yu, F. Liu, J. Hong, X. Wang et al., High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater. 29(21), 1602969 (2017). https://doi.org/10.1002/adma.201602969
A.A. Puretzky, A.D. Oyedele, K. Xiao, A.V. Haglund, B.G. Sumpter et al., Anomalous interlayer vibrations in strongly coupled layered PdSe2. 2D Mater. 5(3), 35016 (2018). https://doi.org/10.1088/2053-1583/aabe4d
Q. Liang, Q. Wang, Q. Zhang, J. Wei, S.X. Lim et al., High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 31(24), 1807609 (2019). https://doi.org/10.1002/adma.201807609
H. Yang, S.W. Kim, M. Chhowalla, Y.H. Lee, Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13(10), 931–937 (2017). https://doi.org/10.1038/nphys4188
D. Wu, J. Guo, J. Du, C. Xia, L. Zeng et al., Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 13(9), 9907–9917 (2019). https://doi.org/10.1021/acsnano.9b03994
K.L. Tai, J. Chen, Y. Wen, H. Park, Q. Zhang et al., Phase variations and layer epitaxy of 2D PdSe2 GRown on 2D monolayers by direct selenization of molecular Pd precursors. ACS Nano 14(9), 11677–11690 (2020). https://doi.org/10.1021/acsnano.0c04230
M. Jakhar, J. Singh, A. Kumar, K. Tankeshwar, Pressure and electric field tuning of Schottky contacts in PdSe2/ZT-MoSe2 van der Waals heterostructure. Nanotechnology 31(14), 145710 (2020). https://doi.org/10.1088/1361-6528/ab5de1
A.M. Afzal, M.Z. Iqbal, S. Mumtaz, I. Akhtar, Multifunctional and high-performance GeSe/PdSe2 heterostructure device with a fast photoresponse. J. Mater. Chem. C 8(14), 4743–4753 (2020). https://doi.org/10.1039/d0tc00004c
D. Wu, C. Jia, F. Shi, L. Zeng, P. Lin et al., Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. J. Mater. Chem. A 8(7), 3632–3642 (2020). https://doi.org/10.1039/c9ta13611h
L.H. Zeng, Q.M. Chen, Z.X. Zhang, D. Wu, H. Yuan et al., Multilayered PdSe2/perovskite schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 6(19), 1901134 (2019). https://doi.org/10.1002/advs.201901134
J. Sun, H. Shi, T. Siegrist, D.J. Singh, Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Appl. Phys. Lett. 107(15), 153902 (2015). https://doi.org/10.1063/1.4933302
F. Grønvold, E. Røst, The crystal structure of PdSe2 and PdS2. Acta Crystallogr. 10(4), 329–331 (1957). https://doi.org/10.1107/s0365110x57000948
J. Zhong, J. Yu, L. Cao, C. Zeng, J. Ding et al., High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 13(6), 1780–1786 (2020). https://doi.org/10.1007/s12274-020-2804-y
Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin et al., Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 28(12), 2399–2407 (2016). https://doi.org/10.1002/adma.201504572
A.V. Kuklin, H. Ågren, Quasiparticle electronic structure and optical spectra of single-layer and bilayer PdSe2: Proximity and defect-induced band gap renormalization. Phys. Rev. B 99(24), 2469–9950 (2019). https://doi.org/10.1103/PhysRevB.99.245114
X. Zhao, Q. Zhao, B. Zhao, X. Dai, S. Wei et al., Electronic and optical properties of PdSe2 from monolayer to trilayer. Superlattices Microstr. 142(4), 106514 (2020). https://doi.org/10.1016/j.spmi.2020.106514
W. Lei, B. Cai, H. Zhou, G. Heymann, X. Tang et al., Ferroelastic lattice rotation and band-gap engineering in quasi 2D layered-structure PdSe2 under uniaxial stress. Nanoscale 11(25), 12317–12325 (2019). https://doi.org/10.1039/c9nr03101d
X. Zhao, B. Qiu, G. Hu, W. Yue, J. Ren et al., Spin polarization properties of pentagonal PdSe(2) induced by 3D transition-metal doping: first-principles calculations. Materials 11(11), 2339 (2018). https://doi.org/10.3390/ma11112339
S.-H. Zhang, B.-G. Liu, Hole-doping-induced half-metallic ferromagnetism in a highly-air-stable PdSe2 monolayer under uniaxial stress. J. Mater. Chem. C 6(25), 6792–6798 (2018). https://doi.org/10.1039/c8tc01450g
S. Deng, L. Li, Y. Zhang, Strain modulated electronic, mechanical, and optical properties of the monolayer PdS2, PdSe2, and PtSe2 for tunable devices. ACS Appl. Nano Mater. 1(4), 1932–1939 (2018). https://doi.org/10.1021/acsanm.8b00363
G. Liu, Q.M. Zeng, P.F. Zhu, R.G. Quhe, P.F. Lu, Negative Poisson’s ratio in monolayer PdSe2. Comput. Mater. Sci. 160(1), 309–314 (2019). https://doi.org/10.1016/j.commatsci.2019.01.024
M.A. ElGhazali, P.G. Naumov, H. Mirhosseini, V. Suss, L. Muchler et al., Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdSe2. Phys. Rev. B 96(6), 060509 (2017). https://doi.org/10.1103/PhysRevB.96.060509
J. Yu, X. Kuang, Y. Gao, Y. Wang, K. Chen et al., Direct observation of the linear dichroism transition in two-dimensional palladium diselenide. Nano Lett. 20(2), 1172–1182 (2020). https://doi.org/10.1021/acs.nanolett.9b04598
W. Lei, S. Zhang, G. Heymann, X. Tang, J. Wen et al., A new 2D high-pressure phase of PdSe2 with high-mobility transport anisotropy for photovoltaic applications. J. Mater. Chem. C 7(7), 2096–2105 (2019). https://doi.org/10.1039/c8tc06050a
T.S. Walmsley, K. Andrews, T. Wang, A. Haglund, U. Rijal et al., Near-infrared optical transitions in PdSe2 phototransistors. Nanoscale 11(30), 14410–14416 (2019). https://doi.org/10.1039/c9nr03505b
M. Sun, J.P. Chou, L. Shi, J. Gao, A. Hu et al., Few-Layer PdSe2 sheets: promising thermoelectric materials driven by high valley convergence. ACS Omega 3(6), 5971–5979 (2018). https://doi.org/10.1021/acsomega.8b00485
Y. Cai, G. Zhang, Y.W. Zhang, Polarity-reversed robust carrier mobility in monolayer MoS(2) nanoribbons. J. Am. Chem. Soc. 136(17), 6269–6275 (2014). https://doi.org/10.1021/ja4109787
X.-J. Ge, D. Qin, K.-L. Yao, J.-T. Lü, First-principles study of thermoelectric transport properties of monolayer gallium chalcogenides. J. Phys. D-Appl. Phys. 50(40), 405301 (2017). https://doi.org/10.1088/1361-6463/aa85b4
G.D. Nguyen, L. Liang, Q. Zou, M. Fu, A.D. Oyedele et al., 3D imaging and manipulation of subsurface selenium vacancies in PdSe2. Phys. Rev. Lett. 121(8), 086101 (2018). https://doi.org/10.1103/PhysRevLett.121.086101
J. Lin, S. Zuluaga, P. Yu, Z. Liu, S.T. Pantelides et al., Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett. 119(1), 016101 (2017). https://doi.org/10.1103/PhysRevLett.119.016101
J. Chen, G.H. Ryu, S. Sinha, J.H. Warner, Atomic structure and dynamics of defects and grain boundaries in 2D Pd2Se3 Monolayers. ACS Nano 13(7), 8256–8264 (2019). https://doi.org/10.1021/acsnano.9b03645
S. Zuluaga, J. Lin, K. Suenaga, S.T. Pantelides, Two-dimensional PdSe2-Pd2Se3 junctions can serve as nanowires. 2D Mater. 5(3), 035025 (2018). https://doi.org/10.1088/2053-1583/aac34c
G.H. Ryu, T. Zhu, J. Chen, S. Sinha, V. Shautsova, Striated 2D lattice with sub-nm 1D etch channels by controlled thermally induced phase transformations of PdSe2. Adv. Mater. 31(46), 1904251 (2019). https://doi.org/10.1002/adma.201904251
V. Shautsova, S. Sinha, L. Hou, Q. Zhang, M. Tweedie et al., Direct laser patterning and phase transformation of 2D PdSe2 films for on-demand device fabrication. ACS Nano 13(12), 14162–14171 (2019). https://doi.org/10.1021/acsnano.9b06892
T. Takabatake, M. Ishikawa, J.L. Jorda, Superconductivity and phase relations in the Pd-Se system. J. Less Common Met. 134(1), 79–89 (1987). https://doi.org/10.1016/0022-5088(87)90444-9
A.D. Oyedele, S. Yang, T. Feng, A.V. Haglund, Y. Gu et al., Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc. 141(22), 8928–8936 (2019). https://doi.org/10.1021/jacs.9b02593
D. Wang, F. Luo, M. Lu, X. Xie, L. Huang et al., Chemical vapor transport reactions for synthesizing layered materials and their 2D counterparts. Small 15(40), 1804404 (2019). https://doi.org/10.1002/smll.201804404
M. Long, Y. Wang, P. Wang, X. Zhou, H. Xia et al., Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13(2), 2511–2519 (2019). https://doi.org/10.1021/acsnano.8b09476
M. Velicky, G.E. Donnelly, W.R. Hendren, S. McFarland, D. Scullion et al., Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 12(10), 10463–10472 (2018). https://doi.org/10.1021/acsnano.8b06101
M. Heyl, D. Burmeister, T. Schultz, S. Pallasch, G. Ligorio et al., Thermally activated gold-mediated transition metal dichalcogenide exfoliation and a unique gold-mediated transfer. Phys. Status Solidi (RRL) 14(11), 2000408 (2020). https://doi.org/10.1002/pssr.202000408
S.B. Desai, S.R. Madhvapathy, M. Amani, D. Kiriya, M. Hettick et al., Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv. Mater. 28(21), 4053–4058 (2016). https://doi.org/10.1002/adma.201506171
Y. Huang, Y.H. Pan, R. Yang, L.H. Bao, L. Meng et al., Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11(1), 2453 (2020). https://doi.org/10.1038/s41467-020-16266-w
D. Zhao, S. Xie, Y. Wang, H. Zhu, L. Chen et al., Synthesis of large-scale few-layer PtS2 films by chemical vapor deposition. AIP Adv. 9(2), 025225 (2019). https://doi.org/10.1063/1.5086447
L. Jia, J. Wu, T. Yang, B. Jia, D.J. Moss, Large third-order optical kerr nonlinearity in nanometer-thick PdSe2 2D dichalcogenide films: implications for nonlinear photonic devices. ACS Appl. Nano Mater. 3(7), 6876–6883 (2020). https://doi.org/10.1021/acsanm.0c01239
J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen et al., A library of atomically thin metal chalcogenides. Nature 556(7701), 355–359 (2018). https://doi.org/10.1038/s41586-018-0008-3
L.H. Zeng, D. Wu, S.H. Lin, C. Xie, H.Y. Yuan et al., Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 29(1), 1806878 (2019). https://doi.org/10.1002/adfm.201806878
L.S. Lu, G.H. Chen, H.Y. Cheng, C.P. Chuu, K.C. Lu et al., Layer-dependent and in-plane anisotropic properties of low-temperature synthesized few-layer PdSe2 single crystals. ACS Nano 14(4), 4963–4972 (2020). https://doi.org/10.1021/acsnano.0c01139
G.D. Nguyen, A.D. Oyedele, A. Haglund, W. Ko, L. Liang et al., Atomically precise PdSe2 pentagonal nanoribbons. ACS Nano 14(2), 1951–1957 (2020). https://doi.org/10.1021/acsnano.9b08390
L.H. Zeng, S.H. Lin, Z.J. Li, Z.X. Zhang, T.F. Zhang et al., Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 28(16), 1705970 (2018). https://doi.org/10.1002/adfm.201705970
A.N. Hoffman, Y. Gu, J. Tokash, J. Woodward, K. Xiao et al., Layer-by-layer thinning of pdse2 flakes via plasma induced oxidation and sublimation. ACS Appl. Mater. Interfaces 12(6), 7345–7350 (2020). https://doi.org/10.1021/acsami.9b21287
Q. Liang, Q. Zhang, J. Gou, T. Song, Arramel et al., Performance improvement by ozone treatment of 2D PdSe2. ACS Nano 14(5), 5668–5677 (2020). https://doi.org/10.1021/acsnano.0c00180
A. Di. Bartolomeo, F. Urban, A. Pelella, A. Grillo, M. Passacantando et al., Electron irradiation of multilayer PdSe2 field effect transistors. Nanotechnology 31(37), 375204 (2020). https://doi.org/10.1088/1361-6528/ab9472
A. Hassan, Y. Guo, Q. Wang, Performance of the pentagonal PdSe2 sheet as a channel material in contact with metal surfaces and graphene. ACS Appl. Electron. Mater. 2(8), 2535–2542 (2020). https://doi.org/10.1021/acsaelm.0c00438
A. Di. Bartolomeo, A. Pelella, X. Liu, F. Miao, M. Passacantando et al., Pressure-tunable ambipolar conduction and hysteresis in thin palladium diselenide field effect transistors. Adv. Funct. Mater. 29(29), 1902483 (2019). https://doi.org/10.1002/adfm.201902483
J. Gao, Y. Gao, Y. Han, J. Pang, C. Wang et al., Ultrasensitive label-free MiRNA sensing based on a flexible graphene field-effect transistor without functionalization. ACS Appl. Electron. Mater. 2(4), 1090–1098 (2020). https://doi.org/10.1021/acsaelm.0c00095
A. Tankut, M. Karaman, I. Yildiz, S. Canli, R. Turan, Effect of Al vacuum annealing prior to a-Si deposition on aluminum-induced crystallization. Phys. Status Solidi A Appl. Mater. Sci. 212(12), 2702–2707 (2015). https://doi.org/10.1002/pssa.201532857
T. Takenobu, T. Kanbara, N. Akima, T. Takahashi, M. Shiraishi et al., Control of carrier density by a solution method in carbon-nanotube devices. Adv. Mater. 17(20), 2430–2434 (2005). https://doi.org/10.1002/adma.200500759
F. Giubileo, A. Grillo, L. Iemmo, G. Luongo, F. Urban et al., Environmental effects on transport properties of PdSe2 field effect transistors. Mater. Today Proc. 20(1), 50–53 (2020). https://doi.org/10.1016/j.matpr.2019.08.226
G.T. Xia, Y.N. Huang, F.J. Li, L.C. Wang, J.B. Pang et al., A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging. Front. Chem. Sci. Eng. 14(6), 1039–1051 (2020). https://doi.org/10.1007/s11705-019-1901-5
D. Chen, Z. Liu, Y. Li, D. Sun, X. Liu et al., Unsymmetrical alveolate PMMA/MWCNT film as a piezoresistive E-skin with four-dimensional resolution and application for detecting motion direction and airflow rate. ACS Appl. Mater. Interfaces 12(27), 30896–30904 (2020). https://doi.org/10.1021/acsami.0c02640
Y. Zhou, Y. Wang, K. Wang, L. Kang, F. Peng et al., Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors. Appl. Energy 260(1), 114169 (2020). https://doi.org/10.1016/j.apenergy.2019.114169
X. Shang, S. Li, K. Wang, X. Teng, X. Wang et al., MnSe2/Se composite nanobelts as an improved performance anode for lithium storage. Int. J. Electrochem. Sci. 14(1), 6000–6008 (2019). https://doi.org/10.20964/2019.07.37
C. Bu, F. Li, K. Yin, J. Pang, L. Wang et al., Research progress and prospect of triboelectric nanogenerators as self-powered human body sensors. ACS Appl. Electron. Mater. 2(4), 863–878 (2020). https://doi.org/10.1021/acsaelm.0c00022
S.C. Dhanabalan, J.S. Ponraj, H. Zhang, Q. Bao, Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. Nanoscale 8(12), 6410–6434 (2016). https://doi.org/10.1039/c5nr09111j
A. Di. Bartolomeo, A. Pelella, F. Urban, A. Grillo, L. Iemmo et al., Field emission in ultrathin PdSe2 back-gated transistors. Adv. Electron. Mater. 6(7), 2000094 (2020). https://doi.org/10.1002/aelm.202000094
R. Zhuo, L. Zeng, H. Yuan, D. Wu, Y. Wang et al., In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 12(1), 183–189 (2018). https://doi.org/10.1007/s12274-018-2200-z
M. Buscema, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S. van der Zant et al., Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14(6), 3347–3352 (2014). https://doi.org/10.1021/nl5008085
X. Wan, Y. Xu, H. Guo, K. Shehzad, A. Ali et al., A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon? NPJ 2D Mater. Appl. 1(1), 2397–7132 (2017). https://doi.org/10.1038/s41699-017-0008-4
R. Zhuo, Y. Wang, D. Wu, Z. Lou, Z. Shi et al., High-performance self-powered deep ultraviolet photodetector based on MoS2/GaN p–n heterojunction. J. Mater. Chem. C 6(2), 299–303 (2018). https://doi.org/10.1039/c7tc04754a
E.P. Mukhokosi, S.B. Krupanidhi, K.K. Nanda, Band gap engineering of hexagonal SnSe2 nanostructured thin films for infra-red photodetection. Sci. Rep. 7(1), 15215 (2017). https://doi.org/10.1038/s41598-017-15519-x
L.B. Luo, D. Wang, C. Xie, J.G. Hu, X.Y. Zhao et al., PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv. Funct. Mater. 29(22), 1900849 (2019). https://doi.org/10.1002/adfm.201900849
Y. Yang, S.C. Liu, X. Wang, Z. Li, Y. Zhang et al., Polarization-sensitive ultraviolet photodetection of anisotropic 2D GeS2. Adv. Funct. Mater. 29(16), 1900411 (2019). https://doi.org/10.1002/adfm.201900411
F. Chu, M. Chen, Y. Wang, Y. Xie, B. Liu et al., A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy. J. Mater. Chem. C 6(10), 2509–2514 (2018). https://doi.org/10.1039/c7tc05488b
P.K. Venuthurumilli, P.D. Ye, X. Xu, Plasmonic Resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 12(5), 4861–4867 (2018). https://doi.org/10.1021/acsnano.8b01660
Y. Yang, S.C. Liu, W. Yang, Z. Li, Y. Wang et al., Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region. J. Am. Chem. Soc. 140(11), 4150–4156 (2018). https://doi.org/10.1021/jacs.8b01234
J. Bullock, M. Amani, J. Cho, Y.-Z. Chen, G.H. Ahn et al., Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photon. 12(10), 601–607 (2018). https://doi.org/10.1038/s41566-018-0239-8
J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu et al., Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep. 7(1), 42357 (2017). https://doi.org/10.1038/srep42357
Y.F. Ma, S.C. Zhang, S.J. Din, X.X. Liu, X. Yu et al., Passively Q-switched Nd:GdLaNbO4 laser based on 2D PdSe2 nanosheet. Opt. Laser Technol. 124(1), 105959 (2020). https://doi.org/10.1016/j.optlastec.2019.105959
Y.F. Ma, Z.F. Peng, S.J. Ding, H.Y. Sun, F. Peng et al., Two-dimensional WS2 nanosheet based passively Q-switched Nd:GdLaNbO4 laser. Opt. Laser Technnol. 115(1), 104–108 (2019). https://doi.org/10.1016/j.optlastec.2019.02.015
P.K. Cheng, C.Y. Tang, S. Ahmed, J. Qiao, L.H. Zeng et al., Utilization of group 10 2D TMDs-PdSe2 as a nonlinear optical material for obtaining switchable laser pulse generation modes. Nanotechnology 32(5), 055201 (2021). https://doi.org/10.1088/1361-6528/abc1a2
J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao et al., Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 8(8), 1702093 (2018). https://doi.org/10.1002/aenm.201702093
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/c8cs00324f
K. Olszowska, J. Pang, P.S. Wrobel, L. Zhao, H.Q. Ta et al., Three-dimensional nanostructured graphene: synthesis and energy, environmental and biomedical applications. Synth. Met. 234(1), 53–85 (2017). https://doi.org/10.1016/j.synthmet.2017.10.014
J. Zhou, H. Chen, X. Zhang, K. Chi, Y. Cai et al., Substrate dependence on (Sb4Se6)n ribbon orientations of antimony selenide thin films: morphology, carrier transport and photovoltaic performance. J. Alloys Compd. 862(1), 158703 (2021). https://doi.org/10.1016/j.jallcom.2021.158703
F. Shu, M. Wang, J. Pang, P. Yu, A free-standing superhydrophobic film for highly efficient removal of water from turbine oil. Front. Chem. Sci. Eng. 13(2), 393–399 (2019). https://doi.org/10.1007/s11705-018-1754-3
K. Wang, J. Pang, L. Li, S. Zhou, Y. Li et al., Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation. Front. Chem. Sci. Eng. 12(3), 376–382 (2018). https://doi.org/10.1007/s11705-018-1705-z
Y. Yin, J. Pang, J. Wang, X. Lu, Q. Hao et al., Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection. ACS Appl. Mater. Interfaces 11(17), 15891–15897 (2019). https://doi.org/10.1021/acsami.9b00733
F.-X. Liang, J.-Z. Wang, Z.-X. Zhang, Y.-Y. Wang, Y. Gao et al., Broadband, ultrafast, self-driven photodetector based on Cs-doped FAPbI3 perovskite thin film. Adv. Opt. Mater. 5(22), 1700654 (2017). https://doi.org/10.1002/adom.201700654
M. Long, A. Gao, P. Wang, H. Xia, C. Ott et al., Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3(6), e1700589 (2017). https://doi.org/10.1126/sciadv.1700589
X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng et al., Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun. 9(1), 1545 (2018). https://doi.org/10.1038/s41467-018-03935-0
A.L. Hsu, P.K. Herring, N.M. Gabor, S. Ha, Y.C. Shin et al., Graphene-based thermopile for thermal imaging applications. Nano Lett. 15(11), 7211–7216 (2015). https://doi.org/10.1021/acs.nanolett.5b01755
J. Piotrowski, A. Rogalski, Uncooled long wavelength infrared photon detectors. Infrared Phys. Technol. 46(1–2), 115–131 (2004). https://doi.org/10.1016/j.infrared.2004.03.016
Y. Cao, X. Zhu, H. Chen, X. Zhang, J. Zhouc et al., Towards high efficiency inverted Sb2Se3 thin film solar cells. Sol. Energy Mater. Sol. Cells 200(1), 109945 (2019). https://doi.org/10.1016/j.solmat.2019.109945
Y. Cao, X. Zhu, J. Jiang, C. Liu, J. Zhou et al., Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices. Sol. Energy Mater. Sol. Cells 206(1), 110279 (2020). https://doi.org/10.1016/j.solmat.2019.110279
J. Jiang, F. Meng, Q. Cheng, A. Wang, Y. Chen et al., Low lattice mismatch InSe–Se vertical van der Waals heterostructure for high-performance transistors via strong fermi-level depinning. Small Methods 4(8), 2000238 (2020). https://doi.org/10.1002/smtd.202000238
J. Jiang, F. Meng, Q. Cheng, A. Wang, Y. Chen et al., Low lattice mismatch InSe–Se vertical van der Waals heterostructure for high-performance transistors via strong fermi-level depinning (Small Methods 8/2020). Small Methods 4(8), 2070032 (2020). https://doi.org/10.1002/smtd.202070032
C.-C. Wu, D. Jariwala, V.K. Sangwan, T.J. Marks, M.C. Hersam et al., Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopy. J. Phys. Chem. Lett. 4(15), 2508–2513 (2013). https://doi.org/10.1021/jz401199x
F. Xue, L. Chen, J. Chen, J. Liu, L. Wang et al., p-Type MoS2 and n-type ZnO diode and its performance enhancement by the piezophototronic effect. Adv. Mater. 28(17), 3391–3398 (2016). https://doi.org/10.1002/adma.201506472
D. Li, M. Chen, Z. Sun, P. Yu, Z. Liu et al., Two-dimensional non-volatile programmable p–n junctions. Nat. Nanotechnol. 12(9), 901–906 (2017). https://doi.org/10.1038/nnano.2017.104
X. Zhang, J. Grajal, J.L. Vazquez-Roy, U. Radhakrishna, X. Wang et al., Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566(7744), 368–372 (2019). https://doi.org/10.1038/s41586-019-0892-1
A.M. Afzal, G. Dastgeer, M.Z. Iqbal, P. Gautam, M.M. Faisal, High-performance p-BP/n-PdSe2 near-infrared photodiodes with a fast and gate-tunable photoresponse. ACS Appl. Mater. Interfaces 12(17), 19625–19634 (2020). https://doi.org/10.1021/acsami.9b22898
J.A. Leñero-Bardallo, R. Carmona-Galán, A. Rodríguez-Vázquez, Applications of event-based image sensors—review and analysis. Int. J. Circ. Theor. Appl. 46(9), 1620–1630 (2018). https://doi.org/10.1002/cta.2546
F.X. Liang, X.Y. Zhao, J.J. Jiang, J.G. Hu, W.Q. Xie et al., Light confinement effect induced highly sensitive, self-driven near-infrared photodetector and image sensor based on multilayer PdSe2 /pyramid Si heterojunction. Small 15(44), 1903831 (2019). https://doi.org/10.1002/smll.201903831
I. Ibrahim, J. Kalbacova, V. Engemaier, J.B. Pang, R.D. Rodriguez et al., Confirming the dual role of etchants during the enrichment of semiconducting single wall carbon nanotubes by chemical vapor deposition. Chem. Mater. 27(17), 5964–5973 (2015). https://doi.org/10.1021/acs.chemmater.5b02037
J. Pang, R.G. Mendes, P.S. Wrobel, M.D. Wlodarski, H.Q. Ta et al., Self-terminating confinement approach for large-area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition. ACS Nano 11(2), 1946–1956 (2017). https://doi.org/10.1021/acsnano.6b08069
J. Pang, A. Bachmatiuk, I. Ibrahim, L. Fu, D. Placha et al., CVD growth of 1D and 2D sp2 carbon nanomaterials. J. Mater. Sci. 51(2), 640–667 (2015). https://doi.org/10.1007/s10853-015-9440-z
A. Soni, L. Zhao, H.Q. Ta, Q. Shi, J. Pang et al., Facile graphitization of silicon nano-particles with ethanol based chemical vapor deposition. Nano-Struct. Nano-Objects 16(1), 38–44 (2018). https://doi.org/10.1016/j.nanoso.2018.04.001
B. Sun, J. Pang, Q. Cheng, S. Zhang, C. Zhang et al., Synthesis of wafer-scale graphene with chemical vapor deposition for electronic device applications. Adv. Mater. Technol. 1, 2000744 (2021). https://doi.org/10.1002/admt.202000744
G.S. Martynkova, F. Becerik, D. Placha, J. Pang, H. Akbulut et al., Effect of milling and annealing on carbon-silver system. J. Nanosci. Nanotechnol. 19(5), 2770–2774 (2019). https://doi.org/10.1166/jnn.2019.15869
M.H. Rummeli, S. Gorantla, A. Bachmatiuk, J. Phieler, N. Geissler et al., On the role of vapor trapping for chemical vapor deposition (CVD) grown graphene over copper. Chem. Mater. 25(24), 4861–4866 (2013). https://doi.org/10.1021/cm401669k
J.B. Pang, A. Bachmatiuk, L. Fu, C.L. Yan, M.Q. Zeng et al., Oxidation as a means to remove surface contaminants on Cu foil prior to graphene growth by chemical vapor deposition. J. Phys. Chem. C 119(23), 13363–13368 (2015). https://doi.org/10.1021/acs.jpcc.5b03911
J.B. Pang, A. Bachmatiuk, L. Fu, R.G. Mendes, M. Libera et al., Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Adv. 5(75), 60884–60891 (2015). https://doi.org/10.1039/c5ra09405d
N.M. Santhosh, G. Filipič, E. Kovacevic, A. Jagodar, J. Berndt et al., N-graphene nanowalls via plasma nitrogen incorporation and substitution: the experimental evidence. Nano-Micro Lett. 12(1), 53 (2020). https://doi.org/10.1007/s40820-020-0395-5
R.G. Mendes, J. Pang, A. Bachmatiuk, H.Q. Ta, L. Zhao et al., Electron-driven in situ transmission electron microscopy of 2D transition metal dichalcogenides and their 2D heterostructures. ACS Nano 13(2), 978–995 (2019). https://doi.org/10.1021/acsnano.8b08079
D. Zhang, T. Liu, J. Cheng, Q. Cao, G. Zheng et al., Lightweight and high-performance microwave absorber based on 2D WS2–RGO heterostructures. Nano-Micro Lett. 11(1), 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
K. Persson, Materials Data on PdSe2 (SG:61) by Materials Project. https://doi.org/10.17188/1199960
L.-Y. Feng, R.A.B. Villaos, Z.-Q. Huang, C.-H. Hsu, F.-C. Chuang, Layer-dependent band engineering of Pd dichalcogenides: a first-principles study. New J. Phys. 22(5), 053010 (2020). https://doi.org/10.1088/1367-2630/ab7d7a
K. Persson, Materials Data on PdS2 (SG:61) by Materials Project. https://doi.org/10.17188/1189716
K. Persson. Materials Data on Te2Pd (SG:164) by Materials Project. https://doi.org/10.17188/1307608
G. Anemone, P. Casado Aguilar, M. Garnica, F. Calleja, A. Al Taleb et al., Electron–phonon coupling in superconducting 1T-PdTe2. NPJ 2D Mater. Appl. 5(1), 25 (2021). https://doi.org/10.1038/s41699-021-00204-5
R.N. Madhu, Singh, Palladium selenides as active methanol tolerant cathode materials for direct methanol fuel cell. Int. J. Hydrogen Energy 36(16), 10006–10012 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.069
D. Qin, P. Yan, G. Ding, X. Ge, H. Song et al., Monolayer PdSe2: a promising two-dimensional thermoelectric material. Sci. Rep. 8(1), 2764 (2018). https://doi.org/10.1038/s41598-018-20918-9
G. Zhang, M. Amani, A. Chaturvedi, C. Tan, J. Bullock et al., Optical and electrical properties of two-dimensional palladium diselenide. Appl. Phys. Lett. 114(25), 253102 (2019). https://doi.org/10.1063/1.5097825
A.N. Hoffman, Y. Gu, L. Liang, J.D. Fowlkes, K. Xiao et al., Exploring the air stability of PdSe2 via electrical transport measurements and defect calculations. NPJ 2D Mater. Appl. 3(1), 50 (2019). https://doi.org/10.1038/s41699-019-0132-4
H. Fang, W. Hu, Photogating in low dimensional photodetectors. Adv. Sci. 4(12), 1700323 (2017). https://doi.org/10.1002/advs.201700323
P. Miro, M. Ghorbani-Asl, T. Heine, Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides. Angew. Chem. Int. Ed. 53(11), 3015–3018 (2014). https://doi.org/10.1002/anie.201309280
L. Li, W. Wang, Y. Chai, H. Li, M. Tian et al., Few-layered PtS2 phototransistor on h-BN with high gain. Adv. Funct. Mater. 27(27), 1701011 (2017). https://doi.org/10.1002/adfm.201701011
H. Xu, H.P. Huang, H. Fei, J. Feng, H.R. Fuh et al., Strategy for fabricating wafer-scale platinum disulfide. ACS Appl. Mater. Interfaces 11(8), 8202–8209 (2019). https://doi.org/10.1021/acsami.8b19218
E. Zhang, Y. Jin, X. Yuan, W. Wang, C. Zhang et al., ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater. 25(26), 4076–4082 (2015). https://doi.org/10.1002/adfm.201500969
J. Shim, A. Oh, D.H. Kang, S. Oh, S.K. Jang et al., High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 28(32), 6985–6992 (2016). https://doi.org/10.1002/adma.201601002
E. Zhang, P. Wang, Z. Li, H. Wang, C. Song et al., Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 10(8), 8067–8077 (2016). https://doi.org/10.1021/acsnano.6b04165
M. Hafeez, L. Gan, H. Li, Y. Ma, T. Zhai, Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic raman property and optoelectronic application. Adv. Mater. 28(37), 8296–8301 (2016). https://doi.org/10.1002/adma.201601977
W. Feng, J.-B. Wu, X. Li, W. Zheng, X. Zhou et al., Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. J. Mater. Chem. C 3(27), 7022–7028 (2015). https://doi.org/10.1039/c5tc01208b
M. Dai, H. Chen, R. Feng, W. Feng, Y. Hu et al., A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric Schottky junction. ACS Nano 12(8), 8739–8747 (2018). https://doi.org/10.1021/acsnano.8b04931
J. Ye, S. Soeda, Y. Nakamura, O. Nittono, Crystal structures and phase transformation in In2Se3 compound semiconductor. Jpn. J. Appl. Phys. 37, 4264–4271 (1998). https://doi.org/10.1143/jjap.37.4264
W. Feng, F. Gao, Y. Hu, M. Dai, H. Liu et al., Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer In2Se3 nanosheets. ACS Appl. Mater. Interfaces 10(33), 27584–27588 (2018). https://doi.org/10.1021/acsami.8b10194
R.B. Jacobs-Gedrim, M. Shanmugam, N. Jain, C.A. Durcan, M.T. Murphy et al., Extraordinary photoresponse in two-dimensional In(2)Se(3) nanosheets. ACS Nano 8(1), 514–521 (2014). https://doi.org/10.1021/nn405037s
M. Amani, E. Regan, J. Bullock, G.H. Ahn, A. Javey, Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 11(11), 11724–11731 (2017). https://doi.org/10.1021/acsnano.7b07028
D. Zheng, H. Fang, M. Long, F. Wu, P. Wang et al., High-performance near-infrared photodetectors based on p-type SnX (X = S, Se) nanowires grown via chemical vapor deposition. ACS Nano 12(7), 7239–7245 (2018). https://doi.org/10.1021/acsnano.8b03291
G. Su, V.G. Hadjiev, P.E. Loya, J. Zhang, S. Lei et al., Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 15(1), 506–513 (2015). https://doi.org/10.1021/nl503857r
F. Xia, T. Mueller, Y.M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4(12), 839–843 (2009). https://doi.org/10.1038/nnano.2009.292
B.J. Kim, H. Jang, S.K. Lee, B.H. Hong, J.H. Ahn et al., High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 10(9), 3464–3466 (2010). https://doi.org/10.1021/nl101559n
E.O. Polat, G. Mercier, I. Nikitskiy, E. Puma, T. Galan et al., Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 5(9), eaaw7846 (2019). https://doi.org/10.1126/sciadv.aaw7846
X. Yu, Z. Dong, Y. Liu, T. Liu, J. Tao et al., A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2. Nanoscale 8(1), 327–332 (2016). https://doi.org/10.1039/c5nr06869j
L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long et al., High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering. Sci. Rep. 6(1), 20343 (2016). https://doi.org/10.1038/srep20343
J. Jiang, Q. Zhang, A. Wang, Y. Zhang, F. Meng, C. Zhang, X. Feng, Y. Feng, L. Gu, H. Liu, L. Han, A facile and effective method for patching sulfur vacancies of WS2 via nitrogen plasma treatment. Small 15(36), 1901791 (2019). https://doi.org/10.1002/smll.201901791
Q. Wang, Q. Zhang, X. Zhao, Y.J. Zheng, J. Wang et al., High-energy gain upconversion in monolayer tungsten disulfide photodetectors. Nano Lett. 19(8), 5595–5603 (2019). https://doi.org/10.1021/acs.nanolett.9b02136
W. Zhang, M.H. Chiu, C.H. Chen, W. Chen, L.J. Li et al., Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 8(8), 8653–8661 (2014). https://doi.org/10.1021/nn503521c
H. Zhou, C. Wang, J.C. Shaw, R. Cheng, Y. Chen et al., Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 15(1), 709–713 (2015). https://doi.org/10.1021/nl504256y
J. Chen, Q. Wang, Y. Sheng, G. Cao, P. Yang et al., High-performance WSe2 photodetector based on a laser-induced p–n junction. ACS Appl. Mater. Interfaces 11(46), 43330–43336 (2019). https://doi.org/10.1021/acsami.9b13948
H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T. Nam et al., MoS(2) nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12(7), 3695–3700 (2012). https://doi.org/10.1021/nl301485q
Y.H. Zhou, H.N. An, C. Gao, Z.Q. Zheng, B. Wang, UV–Vis-NIR photodetector based on monolayer MoS2. Mater. Lett. 237(1), 298–302 (2019). https://doi.org/10.1016/j.matlet.2018.11.112
W. Wang, A. Klots, D. Prasai, Y. Yang, K.I. Bolotin et al., Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 15(11), 7440–7444 (2015). https://doi.org/10.1021/acs.nanolett.5b02866
C. Jung, S.M. Kim, H. Moon, G. Han, J. Kwon et al., Highly crystalline CVD-grown multilayer MoSe2 thin film transistor for fast photodetector. Sci. Rep. 5(1), 15313 (2015). https://doi.org/10.1038/srep15313
R. Coehoorn, C. Haas, R.A. de Groot, Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B 35(12), 6203–6206 (1987). https://doi.org/10.1103/physrevb.35.6203
P.J. Ko, A. Abderrahmane, N.H. Kim, A. Sandhu, High-performance near-infrared photodetector based on nano-layered MoSe2. Semicond. Sci. Technol. 32(6), 065015 (2017). https://doi.org/10.1088/1361-6641/aa6819
V. Tran, R. Soklaski, Y. Liang, L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89(23), 235319 (2014). https://doi.org/10.1103/PhysRevB.89.235319
Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian et al., Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 16(7), 4648–4655 (2016). https://doi.org/10.1021/acs.nanolett.6b01977
J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5(1), 4475 (2014). https://doi.org/10.1038/ncomms5475
J. Wang, A. Rousseau, E. Eizner, A.-L. Phaneuf-L’Heureux, L. Schue et al., Spectral responsivity and photoconductive gain in thin film black phosphorus photodetectors. ACS Photon. 6(12), 3092–3099 (2019). https://doi.org/10.1021/acsphotonics.9b00951
X. Zhou, X. Hu, B. Jin, J. Yu, K. Liu et al., Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity. Adv. Sci. 5(8), 1800478 (2018). https://doi.org/10.1002/advs.201800478
C. Jia, D. Wu, E.P. Wu, J.W. Guo, Z.H. Zhao et al., A self-powered high-performance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity. J. Mater. Chem. C. 7(13), 3817–3821 (2019). https://doi.org/10.1039/c8tc06398b
R. Chai, Y. Chen, M. Zhong, H. Yang, F. Yan et al., Non-layered ZnSb nanoplates for room temperature infrared polarized photodetectors. J. Mater. Chem. C 8(19), 6388–6395 (2020). https://doi.org/10.1039/d0tc00755b
S. Deng, M.L. Tao, J. Mei, M. Li, Y. Zhang et al., Optical and piezoelectric properties of strained orthorhombic PdS2. IEEE Trans. Nanotechnol. 18(1), 358–364 (2019). https://doi.org/10.1109/Tnano.2019.2908221
Y. Deng, Z. Luo, N.J. Conrad, H. Liu, Y. Gong et al., Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8(8), 8292–8299 (2014). https://doi.org/10.1021/nn5027388
F. Yan, L. Zhao, A. Patane, P. Hu, X. Wei et al., Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures. Nanotechnology 28(27), 27LT01 (2017). https://doi.org/10.1088/1361-6528/aa749e
X. Chen, H. Chen, Z. Wang, Y. Shan, D.W. Zhang et al., Analysis of the relationship between the contact barrier and rectification ratio in a two-dimensional P–N heterojunction. Semicond. Sci. Technol. 33(11), 114012 (2018). https://doi.org/10.1088/1361-6641/aae3aa
K. Murali, M. Dandu, S. Das, K. Majumdar, Gate-tunable WSe2/SnSe2 backward diode with ultrahigh-reverse rectification ratio. ACS Appl. Mater. Interfaces 10(6), 5657–5664 (2018). https://doi.org/10.1021/acsami.7b18242
M.A. Khan, S. Rathi, D. Lim, S.J. Yun, D.-H. Youn et al., Gate tunable self-biased diode based on few layered MoS2 and WSe2. Chem. Mater. 30(3), 1011–1016 (2018). https://doi.org/10.1021/acs.chemmater.7b04865
Z. Yang, L. Liao, F. Gong, F. Wang, Z. Wang et al., WSe2/GeSe heterojunction photodiode with giant gate tunability. Nano Energy 49(1), 103–108 (2018). https://doi.org/10.1016/j.nanoen.2018.04.034
C. Lan, C. Li, S. Wang, T. He, T. Jiao et al., Zener tunneling and photoresponse of a WS2/Si van der Waals heterojunction. ACS Appl. Mater. Interfaces 8(28), 18375–18382 (2016). https://doi.org/10.1021/acsami.6b05109
J. Chu, F. Wang, L. Yin, L. Lei, C. Yan et al., High-performance ultraviolet photodetector based on a few-layered 2D NiPS3 nanosheet. Adv. Funct. Mater. 27(32), 1701342 (2017). https://doi.org/10.1002/adfm.201701342
L. Ye, H. Li, Z. Chen, J. Xu, Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photon. 3(4), 692–699 (2016). https://doi.org/10.1021/acsphotonics.6b00079
Y. Zhang, Y. Yu, L. Mi, H. Wang, Z. Zhu et al., In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors. Small 12(8), 1062–1071 (2016). https://doi.org/10.1002/smll.201502923
Q. Liu, B. Cook, M. Gong, Y. Gong, D. Ewing et al., Printable transfer-free and wafer-size MoS2/graphene van der Waals heterostructures for high-performance photodetection. ACS Appl. Mater. Interfaces 9(14), 12728–12733 (2017). https://doi.org/10.1021/acsami.7b00912
A. Gundimeda, S. Krishna, N. Aggarwal, A. Sharma, N.D. Sharma et al., Fabrication of non-polar GaN based highly responsive and fast UV photodetector. Appl. Phys. Lett. 110(10), 103507 (2017). https://doi.org/10.1063/1.4978427
P. Wang, S. Liu, W. Luo, H. Fang, F. Gong et al., Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 29(16), 1521–4095 (2017). https://doi.org/10.1002/adma.201604439
D.S. Um, Y. Lee, S. Lim, J. Park, W.C. Yen et al., InGaAs nanomembrane/si van der waals heterojunction photodiodes with broadband and high photoresponsivity. ACS Appl. Mater. Interfaces 8(39), 26105–26111 (2016). https://doi.org/10.1021/acsami.6b06580
W. Zheng, R. Lin, Y. Zhu, Z. Zhang, X. Ji et al., Vacuum ultraviolet photodetection in two-dimensional oxides. ACS Appl. Mater. Interfaces 10(24), 20696–20702 (2018). https://doi.org/10.1021/acsami.8b04866
L.H. Zeng, M.Z. Wang, H. Hu, B. Nie, Y.Q. Yu et al., Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces 5(19), 9362–9366 (2013). https://doi.org/10.1021/am4026505
X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang et al., High detectivity graphene-silicon heterojunction photodetector. Small 12(5), 595–601 (2016). https://doi.org/10.1002/smll.201502336
K. Zhang, X. Fang, Y. Wang, Y. Wan, Q. Song et al., Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der Waals heterostructure. ACS Appl. Mater. Interfaces 9(6), 5392–5398 (2017). https://doi.org/10.1021/acsami.6b14483
Y.-S. Lan, X.-R. Chen, C.-E. Hu, Y. Cheng, Q.-F. Chen, Penta-PdX2 (X = S, Se, Te) monolayers: promising anisotropic thermoelectric materials. J. Mater. Chem. A 7(18), 11134–11142 (2019). https://doi.org/10.1039/c9ta02138h