In-Situ Annealed Ti3C2Tx MXene Based All-Solid-State Flexible Zn-Ion Hybrid Micro Supercapacitor Array with Enhanced Stability
Corresponding Author: Guozhen Shen
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 100
Abstract
Zn-ion hybrid supercapacitors (SCs) are considered as promising energy storage owing to their high energy density compared to traditional SCs. How to realize the miniaturization, patterning, and flexibility of the Zn-ion SCs without affecting the electrochemical performances has special meanings for expanding their applications in wearable integrated electronics. Ti3C2Tx cathode with outstanding conductivity, unique lamellar structure and good mechanical flexibility has been demonstrated tremendous potential in the design of Zn-ion SCs, but achieving long cycling stability and high rate stability is still big challenges. Here, we proposed a facile laser writing approach to fabricate patterned Ti3C2Tx-based Zn-ion micro-supercapacitors (MSCs), followed by the in-situ anneal treatment of the assembled MSCs to improve the long-term stability, which exhibits 80% of the capacitance retention even after 50,000 charge/discharge cycles and superior rate stability. The influence of the cathode thickness on the electrochemical performance of the MSCs is also studied. When the thickness reaches 0.851 µm the maximum areal capacitance of 72.02 mF cm−2 at scan rate of 10 mV s−1, which is 1.77 times higher than that with a thickness of 0.329 µm (35.6 mF cm−2). Moreover, the fabricated Ti3C2Tx based Zn-ion MSCs have excellent flexibility, a digital timer can be driven by the single device even under bending state, a flexible LED displayer of “TiC” logo also can be easily lighted by the MSC arrays under twisting, crimping, and winding conditions, demonstrating the scalable fabrication and application of the fabricated MSCs in portable electronics.
Highlights:
1 Flexible Zn-ion hybrid micro-supercapacitors (MSCs) array was fabricated with Ti3C2Tx as the cathode via laser direct writing method, which present ultrastability up to 50,000 cycles after in-situ annealed treatment.
2 A digital timer driven by the obtained single MSC under bending state, together with a flexible LED displayer of the “TiC” logo lighted by the MSC arrays under twisting, crimping and winding conditions demonstrate the great potential application of the MSCs in integrated wearable electronics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Li, Z. Lou, D. Chen, K. Jiang, W. Han et al., Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small 14, e1702829 (2018). https://doi.org/10.1002/smll.201702829
- C.G. Núñez, W.T. Navaraj, E.O. Polat, R. Dahiya, Energy-autonomous, flexible, and transparent tactile skin. Adv. Funct. Mater. 27, 1606287 (2017). https://doi.org/10.1002/adfm.201606287
- H. Sun, Y. Zhang, J. Zhang, X. Sun, H. Peng, Energy harvesting and storage in 1d devices. Nat. Rev. Mater. 2, 17023 (2017). https://doi.org/10.1038/natrevmats.2017.23
- B. Yao, J. Zhang, T. Kou, Y. Song, T. Liu et al., Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4, 1700107 (2017). https://doi.org/10.1002/advs.201700107
- M. Zhu, Y. Huang, Y. Huang, H. Li, Z. Wang et al., A highly durable, transferable, and substrate-versatile high-performance all-polymer micro-supercapacitor with plug-and-play function. Adv. Mater. 29, 1605137 (2017). https://doi.org/10.1002/adma.201605137
- D. Chen, M. Lu, B. Wang, R. Chai, L. Li et al., Uncover the mystery of high-performance aqueous zinc-ion batteries constructed by oxygen-doped vanadium nitride cathode: cationic conversion reaction works. Energy Storage Mater. 35, 679–686 (2021). https://doi.org/10.1016/j.ensm.2020.12.001
- J. Li, J. Cao, X. Li, H.M.K. Sari, L. Li et al., Superior full battery performance of tunable hollow N-doped carbonaceous fibers encapsulating Ni3S2 nanocrystals with enhanced Li/Na storage. Electrochim. Acta 332, 135446 (2020). https://doi.org/10.1016/j.electacta.2019.135446
- S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng et al., An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80000 cycles. Adv. Energy Mater. 9, 1902915 (2019). https://doi.org/10.1002/aenm.201902915
- Y.F. He, P.P. Zhang, F.X. Wang, L.X. Wang, Y.Z. Su et al., Vacancy modification of Prussian-blue nano-thin films for high energy-density micro-supercapacitors with ultralow RC time constant. Nano Energy 60, 8–16 (2019). https://doi.org/10.1016/j.nanoen.2019.03.042
- P. Yu, Y.X. Zeng, H.Z. Zhang, M.H. Yu, Y.X. Tong et al., Flexible Zn-ion batteries: recent progresses and challenges. Small 15, 1804760 (2019). https://doi.org/10.1002/smll.201804760
- M. Song, H. Tan, D.L. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- H. Jia, Z.Q. Wang, B. Tawiah, Y.D. Wang, C.Y. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 4523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
- H. Wang, M. Wang, Y. Tang, A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 13, 1–7 (2018). https://doi.org/10.1016/j.ensm.2017.12.022
- F.Z. Cui, Z. Liu, D.L. Ma, L. Liu, T. Huang et al., Polyarylimide and porphyrin based polymer microspheres for zinc ion hybrid capacitors. Chem. Eng. J. 405, 1–8 (2021). https://doi.org/10.1016/j.cej.2020.127038
- G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher et al., Synthesis of Mo4VALC4 MAX phase and two-dimensional Mo4VC4 mxene with five atomic layers of transition metals. ACS Nano 14, 204–217 (2020). https://doi.org/10.1021/acsnano.9b07708
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3ALC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- J. Xu, J. Shim, J.H. Park, S. Lee, MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Adv. Funct. Mater. 26, 5328–5334 (2016). https://doi.org/10.1002/adfm.201600771
- L. Li, X. Fu, S. Chen, S. Uzun, A.S. Levitt et al., Hydrophobic and stable mxene-polymer pressure sensors for wearable electronics. ACS Appl. Mater. Interfaces 12, 15362–15369 (2020). https://doi.org/10.1021/acsami.0c00255
- Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti3C2Tx Mxene-based piezoresistive sensor. ACS Nano 14, 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
- M.K. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: Mxenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
- J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong et al., Single platinum atoms immobilized on an Mxene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018). https://doi.org/10.1038/s41929-018-0195-1
- P. Srimuk, F. Kaasik, B. Krüner, A. Tolosa, S. Fleischmann et al., Mxene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J. Mater. Chem. A 4, 18265–18271 (2016). https://doi.org/10.1039/c6ta07833h
- X. Xiao, H. Wang, P. Urbankowski, Y. Gogotsi, Topochemical synthesis of 2d materials. Chem. Soc. Rev. 47, 8744–8765 (2018). https://doi.org/10.1039/c8cs00649k
- K. Li, M. Liang, H. Wang, X. Wang, Y. Huang et al., 3d Mxene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30, 2000842 (2020). https://doi.org/10.1002/adfm.202000842
- C.J. Zhang, L. McKeon, M.P. Kremer, S.H. Park, O. Ronan et al., Additive-free Mxene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
- C. Liu, H. Liang, D. Wu, X. Lu, Q. Wang, Direct semiconductor laser writing of few-layer graphene polyhedra networks for flexible solid-state supercapacitor. Adv. Electron. Mater. 4, 1800092 (2018). https://doi.org/10.1002/aelm.201800092
- Y.-Y. Peng, B. Akuzum, N. Kurra, M.-Q. Zhao, M. Alhabeb et al., All-Mxene (2d titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9, 2847–2854 (2016). https://doi.org/10.1039/c6ee01717g
- B. Anasori, A. Sarycheva, S. Buondonno, Z.H. Zhou, S. Yang et al., 2d Metal carbides (mxenes) in fibers. Mater. Today 20, 481–482 (2017). https://doi.org/10.1016/j.mattod.2017.08.001
- L. Li, D. Chen, G.Z. Shen, All-Ti3C2Tx MXene based flexible on-chip microsupercapacitor array. Chem. Res. Chin. Univ. 36, 694–698 (2020). https://doi.org/10.1007/s40242-020-0197-9
- H. Zhou, C. Liu, J.-C. Wu, M. Liu, D. Zhang et al., Boosting the electrochemical performance through proton transfer for the Zn-ion hybrid supercapacitor with both ionic liquid and organic electrolytes. J. Mater. Chem. A 7, 9708–9715 (2019). https://doi.org/10.1039/c9ta01256g
- S.K. Cheah, E. Perre, M. Rooth, M. Fondell, A. Harsta et al., Self-supported three-dimensional nanoelectrodes for microbattery applications. Nano Lett. 9, 3230–3233 (2009). https://doi.org/10.1021/nl9014843
- N. Wang, J. Liu, Y. Zhao, M. Hu, R. Qin et al., Laser-cutting fabrication of Mxene-based flexible micro-supercapacitors with high areal capacitance. Chem. Nano Mat. 5, 658–665 (2019). https://doi.org/10.1002/cnma.201800674
- C.J. Zhang, M.P. Kremer, A. Seral-Ascaso, S.-H. Park, N. McEvoy et al., Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 28, 1705506 (2018). https://doi.org/10.1002/adfm.201705506
- Y. Liu, J. Yu, D. Guo, Z. Li, Y. Su, Ti3C2Tx MXene/graphene nanocomposites: synthesis and application in electrochemical energy storage. J. Alloy. Compd. 815, 152403 (2020). https://doi.org/10.1016/j.jallcom.2019.152403
References
L. Li, Z. Lou, D. Chen, K. Jiang, W. Han et al., Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small 14, e1702829 (2018). https://doi.org/10.1002/smll.201702829
C.G. Núñez, W.T. Navaraj, E.O. Polat, R. Dahiya, Energy-autonomous, flexible, and transparent tactile skin. Adv. Funct. Mater. 27, 1606287 (2017). https://doi.org/10.1002/adfm.201606287
H. Sun, Y. Zhang, J. Zhang, X. Sun, H. Peng, Energy harvesting and storage in 1d devices. Nat. Rev. Mater. 2, 17023 (2017). https://doi.org/10.1038/natrevmats.2017.23
B. Yao, J. Zhang, T. Kou, Y. Song, T. Liu et al., Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4, 1700107 (2017). https://doi.org/10.1002/advs.201700107
M. Zhu, Y. Huang, Y. Huang, H. Li, Z. Wang et al., A highly durable, transferable, and substrate-versatile high-performance all-polymer micro-supercapacitor with plug-and-play function. Adv. Mater. 29, 1605137 (2017). https://doi.org/10.1002/adma.201605137
D. Chen, M. Lu, B. Wang, R. Chai, L. Li et al., Uncover the mystery of high-performance aqueous zinc-ion batteries constructed by oxygen-doped vanadium nitride cathode: cationic conversion reaction works. Energy Storage Mater. 35, 679–686 (2021). https://doi.org/10.1016/j.ensm.2020.12.001
J. Li, J. Cao, X. Li, H.M.K. Sari, L. Li et al., Superior full battery performance of tunable hollow N-doped carbonaceous fibers encapsulating Ni3S2 nanocrystals with enhanced Li/Na storage. Electrochim. Acta 332, 135446 (2020). https://doi.org/10.1016/j.electacta.2019.135446
S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng et al., An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80000 cycles. Adv. Energy Mater. 9, 1902915 (2019). https://doi.org/10.1002/aenm.201902915
Y.F. He, P.P. Zhang, F.X. Wang, L.X. Wang, Y.Z. Su et al., Vacancy modification of Prussian-blue nano-thin films for high energy-density micro-supercapacitors with ultralow RC time constant. Nano Energy 60, 8–16 (2019). https://doi.org/10.1016/j.nanoen.2019.03.042
P. Yu, Y.X. Zeng, H.Z. Zhang, M.H. Yu, Y.X. Tong et al., Flexible Zn-ion batteries: recent progresses and challenges. Small 15, 1804760 (2019). https://doi.org/10.1002/smll.201804760
M. Song, H. Tan, D.L. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564
H. Jia, Z.Q. Wang, B. Tawiah, Y.D. Wang, C.Y. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 4523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
H. Wang, M. Wang, Y. Tang, A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 13, 1–7 (2018). https://doi.org/10.1016/j.ensm.2017.12.022
F.Z. Cui, Z. Liu, D.L. Ma, L. Liu, T. Huang et al., Polyarylimide and porphyrin based polymer microspheres for zinc ion hybrid capacitors. Chem. Eng. J. 405, 1–8 (2021). https://doi.org/10.1016/j.cej.2020.127038
G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher et al., Synthesis of Mo4VALC4 MAX phase and two-dimensional Mo4VC4 mxene with five atomic layers of transition metals. ACS Nano 14, 204–217 (2020). https://doi.org/10.1021/acsnano.9b07708
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3ALC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
J. Xu, J. Shim, J.H. Park, S. Lee, MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Adv. Funct. Mater. 26, 5328–5334 (2016). https://doi.org/10.1002/adfm.201600771
L. Li, X. Fu, S. Chen, S. Uzun, A.S. Levitt et al., Hydrophobic and stable mxene-polymer pressure sensors for wearable electronics. ACS Appl. Mater. Interfaces 12, 15362–15369 (2020). https://doi.org/10.1021/acsami.0c00255
Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti3C2Tx Mxene-based piezoresistive sensor. ACS Nano 14, 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
M.K. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: Mxenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong et al., Single platinum atoms immobilized on an Mxene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018). https://doi.org/10.1038/s41929-018-0195-1
P. Srimuk, F. Kaasik, B. Krüner, A. Tolosa, S. Fleischmann et al., Mxene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J. Mater. Chem. A 4, 18265–18271 (2016). https://doi.org/10.1039/c6ta07833h
X. Xiao, H. Wang, P. Urbankowski, Y. Gogotsi, Topochemical synthesis of 2d materials. Chem. Soc. Rev. 47, 8744–8765 (2018). https://doi.org/10.1039/c8cs00649k
K. Li, M. Liang, H. Wang, X. Wang, Y. Huang et al., 3d Mxene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30, 2000842 (2020). https://doi.org/10.1002/adfm.202000842
C.J. Zhang, L. McKeon, M.P. Kremer, S.H. Park, O. Ronan et al., Additive-free Mxene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
C. Liu, H. Liang, D. Wu, X. Lu, Q. Wang, Direct semiconductor laser writing of few-layer graphene polyhedra networks for flexible solid-state supercapacitor. Adv. Electron. Mater. 4, 1800092 (2018). https://doi.org/10.1002/aelm.201800092
Y.-Y. Peng, B. Akuzum, N. Kurra, M.-Q. Zhao, M. Alhabeb et al., All-Mxene (2d titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9, 2847–2854 (2016). https://doi.org/10.1039/c6ee01717g
B. Anasori, A. Sarycheva, S. Buondonno, Z.H. Zhou, S. Yang et al., 2d Metal carbides (mxenes) in fibers. Mater. Today 20, 481–482 (2017). https://doi.org/10.1016/j.mattod.2017.08.001
L. Li, D. Chen, G.Z. Shen, All-Ti3C2Tx MXene based flexible on-chip microsupercapacitor array. Chem. Res. Chin. Univ. 36, 694–698 (2020). https://doi.org/10.1007/s40242-020-0197-9
H. Zhou, C. Liu, J.-C. Wu, M. Liu, D. Zhang et al., Boosting the electrochemical performance through proton transfer for the Zn-ion hybrid supercapacitor with both ionic liquid and organic electrolytes. J. Mater. Chem. A 7, 9708–9715 (2019). https://doi.org/10.1039/c9ta01256g
S.K. Cheah, E. Perre, M. Rooth, M. Fondell, A. Harsta et al., Self-supported three-dimensional nanoelectrodes for microbattery applications. Nano Lett. 9, 3230–3233 (2009). https://doi.org/10.1021/nl9014843
N. Wang, J. Liu, Y. Zhao, M. Hu, R. Qin et al., Laser-cutting fabrication of Mxene-based flexible micro-supercapacitors with high areal capacitance. Chem. Nano Mat. 5, 658–665 (2019). https://doi.org/10.1002/cnma.201800674
C.J. Zhang, M.P. Kremer, A. Seral-Ascaso, S.-H. Park, N. McEvoy et al., Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 28, 1705506 (2018). https://doi.org/10.1002/adfm.201705506
Y. Liu, J. Yu, D. Guo, Z. Li, Y. Su, Ti3C2Tx MXene/graphene nanocomposites: synthesis and application in electrochemical energy storage. J. Alloy. Compd. 815, 152403 (2020). https://doi.org/10.1016/j.jallcom.2019.152403