In Situ Synthesis of Fluorescent Mesoporous Silica–Carbon Dot Nanohybrids Featuring Folate Receptor-Overexpressing Cancer Cell Targeting and Drug Delivery
Corresponding Author: Hengwei Lin
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 32
Abstract
Multifunctional nanocarrier-based theranostics is supposed to overcome some key problems in cancer treatment. In this work, a novel method for the preparation of a fluorescent mesoporous silica–carbon dot nanohybrid was developed. Carbon dots (CDs), from folic acid as the raw material, were prepared in situ and anchored on the surface of amino-modified mesoporous silica nanoparticles (MSNs–NH2) via a microwave-assisted solvothermal reaction. The as-prepared nanohybrid (designated MSNs–CDs) not only exhibited strong and stable yellow emission but also preserved the unique features of MSNs (e.g., mesoporous structure, large specific surface area, and good biocompatibility), demonstrating a potential capability for fluorescence imaging-guided drug delivery. More interestingly, the MSNs–CDs nanohybrid was able to selectively target folate receptor-overexpressing cancer cells (e.g., HeLa), indicating that folic acid still retained its function even after undergoing the solvothermal reaction. Benefited by these excellent properties, the fluorescent MSNs–CDs nanohybrid can be employed as a fluorescence-guided nanocarrier for the targeted delivery of anticancer drugs (e.g., doxorubicin), thereby enhancing chemotherapeutic efficacy and reducing side effects. Our studies may provide a facile strategy for the fabrication of multifunctional MSN-based theranostic platforms, which is beneficial in the diagnosis and therapy of cancers in future.
Highlights:
1 A one-pot method was developed for the preparation of fluorescent mesoporous silica nanoparticles–carbon dots (MSNs–CDs) nanohybrid.
2 The MSNs–CDs nanohybrid showed stable and bright yellow emission, excellent biocompatibility, and specific targeting capability toward folate receptor-overexpressing cancer cells and can be applied as fluorescence imaging-guided drug carriers for effectively delivering anticancer drugs to tumor sites.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.A. Torre, F. Bray, R.L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, Global cancer statistics, 2012. CA Cancer J. Clin. 65(2), 87–108 (2015). https://doi.org/10.3322/caac.21262
- B.A. Chabner, T.G. Roberts Jr., Timeline: chemotherapy and the war on cancer. Nat. Rev. Cancer 5(1), 65–72 (2005). https://doi.org/10.1038/nrc1529
- M.M. Gottesman, T. Fojo, S.E. Bates, Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2(1), 48–58 (2002). https://doi.org/10.1038/nrc706
- O.S. Fenton, K.N. Olafson, P.S. Pillai, M.J. Mitchell, R. Langer, Advances in biomaterials for drug delivery. Adv. Mater. 30(29), 1705328 (2018). https://doi.org/10.1002/adma.201705328
- L. Pan, J. Liu, Q. He, J. Shi, MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression. Adv. Mater. 26(39), 6742–6748 (2014). https://doi.org/10.1002/adma.201402752
- L. Pan, Q. He, J. Liu, Y. Chen, M. Ma, L. Zhang, J. Shi, Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 134(13), 5722–5725 (2012). https://doi.org/10.1021/ja211035w
- Q. Sun, M. Radosz, Y. Shen, Challenges in design of translational nanocarriers. J. Control. Release 164(2), 156–169 (2012). https://doi.org/10.1016/j.jconrel.2012.05.042
- L. Cheng, W.W. He, H. Gong, C. Wang, Q. Chen, Z.P. Cheng, Z. Liu, PEGylated micelle nanoparticles encapsulating a non-fluorescent near-infrared organic dye as a safe and highly-effective photothermal agent for in vivo cancer therapy. Adv. Funct. Mater. 23(47), 5893–5902 (2013). https://doi.org/10.1002/adfm.201301045
- W. Chen, S. Zhou, L. Ge, W. Wu, X. Jiang, Translatable high drug loading drug delivery systems based on biocompatible polymer nanocarriers. Biomacromol 19(6), 1732–1745 (2018). https://doi.org/10.1021/acs.biomac.8b00218
- P. Zhang, L. Zhang, Z. Qin, S. Hua, Z. Guo et al., Genetically engineered liposome-like nanovesicles as active targeted transport platform. Adv. Mater. 30(7), 1705350 (2018). https://doi.org/10.1002/adma.201705350
- Y. Deng, J. Ling, M.H. Li, Physical stimuli-responsive liposomes and polymersomes as drug delivery vehicles based on phase transitions in the membrane. Nanoscale 10(15), 6781–6800 (2018). https://doi.org/10.1039/c8nr00923f
- W. Shan, R. Chen, Q. Zhang, J. Zhao, B. Chen et al., Improved stable indocyanine green (ICG)-mediated cancer optotheranostics with naturalized hepatitis b core particles. Adv. Mater. 30(28), 1707567 (2018). https://doi.org/10.1002/adma.201707567
- W. Shan, D. Zhang, Y. Wu, X. Lv, B. Hu et al., Modularized peptides modified HBc virus-like particles for encapsulation and tumor-targeted delivery of doxorubicin. Nanomedicine 14(3), 725–734 (2018). https://doi.org/10.1016/j.nano.2017.12.002
- R. Lv, P. Yang, F. He, S. Gai, C. Li, Y. Dai, G. Yang, J. Lin, A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light. ACS Nano 9(2), 1630–1647 (2015). https://doi.org/10.1021/nn5063613
- J. Xie, C. Yang, Q. Liu, J. Li, R. Liang et al., Encapsulation of hydrophilic and hydrophobic peptides into hollow mesoporous silica nanoparticles for enhancement of antitumor immune response. Small 13(40), 1701741 (2017). https://doi.org/10.1002/smll.201701741
- M. Bjornmalm, K.J. Thurecht, M. Michael, A.M. Scott, F. Caruso, Bridging bio-nano science and cancer nanomedicine. ACS Nano 11(10), 9594–9613 (2017). https://doi.org/10.1021/acsnano.7b04855
- Q. Sun, Z. Zhou, N. Qiu, Y. Shen, Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv. Mater. 29(14), 1606628 (2017). https://doi.org/10.1002/adma.201606628
- Y. Wang, S. Sun, Z. Zhang, D. Shi, Nanomaterials for cancer precision medicine. Adv. Mater. 30(17), 1705660 (2018). https://doi.org/10.1002/adma.201705660
- X. Du, F. Kleitz, X.Y. Li, H.W. Huang, X.J. Zhang, S.Z. Qiao, Disulfide-bridged organosilica frameworks: designed, synthesis, redox-triggered biodegradation, and nanobiomedical applications. Adv. Funct. Mater. 28(26), 1707325 (2018). https://doi.org/10.1002/Adfm.201707325
- J.G. Croissant, Y. Fatieiev, A. Almalik, N.M. Khashab, Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv. Healthc. Mater. 7(4), 1700831 (2018). https://doi.org/10.1002/adhm.201700831
- F. Tang, L. Li, D. Chen, Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24(12), 1504–1534 (2012). https://doi.org/10.1002/adma.201104763
- S.H. Wu, C.Y. Mou, H.P. Lin, Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 42(9), 3862–3875 (2013). https://doi.org/10.1039/c3cs35405a
- N. Lu, W. Fan, X. Yi, S. Wang, Z. Wang et al., Biodegradable hollow mesoporous organosilica nanotheranostics for mild hyperthermia-induced bubble-enhanced oxygen-sensitized radiotherapy. ACS Nano 12(2), 1580–1591 (2018). https://doi.org/10.1021/acsnano.7b08103
- B.R. Smith, S.S. Gambhir, Nanomaterials for in vivo imaging. Chem. Rev. 117(3), 901–986 (2017). https://doi.org/10.1021/acs.chemrev.6b00073
- J. Kim, H.R. Cho, H. Jeon, D. Kim, C. Song, N. Lee, S.H. Choi, T. Hyeon, Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J. Am. Chem. Soc. 139(32), 10992–10995 (2017). https://doi.org/10.1021/jacs.7b05559
- M.-K. Tsang, Y.-T. Wong, J. Hao, Cutting-edge nanomaterials for advanced multimodal bioimaging applications. Small Methods 2(1), 1700265 (2018). https://doi.org/10.1002/smtd.201700265
- H. Kobayashi, M. Ogawa, R. Alford, P.L. Choyke, Y. Urano, New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110(5), 2620–2640 (2010). https://doi.org/10.1021/cr900263j
- K. Li, B. Liu, Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 43(18), 6570–6597 (2014). https://doi.org/10.1039/c4cs00014e
- C. Li, A targeted approach to cancer imaging and therapy. Nat. Mater. 13(2), 110–115 (2014). https://doi.org/10.1038/nmat3877
- MathSciNet
- M. Chen, X.X. He, K.M. Wang, D.G. He, X.H. Yang, H. Shi, Inorganic fluorescent nanoprobes for cellular and subcellular imaging. Trends Analyt. Chem. 58, 120–129 (2014). https://doi.org/10.1016/j.trac.2014.03.003
- A. Bernardos, L. Mondragon, E. Aznar, M.D. Marcos, R. Martinez-Manez, F. Sancenon, J. Soto, J.M. Barat, E. Perez-Paya, C. Guillem, P. Amoros, Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano 4(11), 6353–6368 (2010). https://doi.org/10.1021/nn101499d
- X. Jia, Y. Zhang, Y. Zou, Y. Wang, D. Niu et al., Dual intratumoral redox/enzyme-responsive NO-releasing nanomedicine for the specific, high-efficacy, and low-toxic cancer therapy. Adv. Mater. 30(30), 1704490 (2018). https://doi.org/10.1002/adma.201704490
- C.H. Lee, S.H. Cheng, I.P. Huang, J.S. Souris, C.S. Yang, C.Y. Mou, L.W. Lo, Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew. Chem. Int. Ed. 49(44), 8214–8219 (2010). https://doi.org/10.1002/anie.201002639
- J. Kim, C. Jo, W.G. Lim, S. Jung, Y.M. Lee, J. Lim, H. Lee, J. Lee, W.J. Kim, Programmed nanoparticle-loaded nanoparticles for deep-penetrating 3D cancer therapy. Adv. Mater. 30(29), 1707557 (2018). https://doi.org/10.1002/adma.201707557
- J. Yu, X. Diao, X. Zhang, X. Chen, X. Hao, W. Li, X. Zhang, C.S. Lee, Water-dispersible, pH-stable and highly-luminescent organic dye nanoparticles with amplified emissions for in vitro and in vivo bioimaging. Small 10(6), 1125–1132 (2014). https://doi.org/10.1002/smll.201302230
- J. Li, F. Liu, Q. Shao, Y. Min, M. Costa, E.K. Yeow, B. Xing, Enzyme-responsive cell-penetrating peptide conjugated mesoporous silica quantum dot nanocarriers for controlled release of nucleus-targeted drug molecules and real-time intracellular fluorescence imaging of tumor cells. Adv. Healthc. Mater. 3(8), 1230–1239 (2014). https://doi.org/10.1002/adhm.201300613
- X. Zhu, J. Li, X. Qiu, Y. Liu, W. Feng, F. Li, Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature. Nat. Commun. 9(1), 2176 (2018). https://doi.org/10.1038/s41467-018-04571-4
- M.K. Gnanasammandhan, N.M. Idris, A. Bansal, K. Huang, Y. Zhang, Near-IR photoactivation using mesoporous silica-coated NaYF4:Yb, Er/Tm upconversion nanoparticles. Nat. Protoc. 11(4), 688–713 (2016). https://doi.org/10.1038/nprot.2016.035
- O.S. Wolfbeis, An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 44(14), 4743–4768 (2015). https://doi.org/10.1039/c4cs00392f
- Y. Zhang, Y. Shen, X. Teng, M. Yan, H. Bi, P.C. Morais, Mitochondria-targeting nanoplatform with fluorescent carbon dots for long time imaging and magnetic field-enhanced cellular uptake. ACS Appl. Mater. Interfaces 7(19), 10201–10212 (2015). https://doi.org/10.1021/acsami.5b00405
- Y. Choi, S. Kim, M.H. Choi, S.R. Ryoo, J. Park, D.H. Min, B.S. Kim, Highly biocompatible carbon nanodots for simultaneous bioimaging and targeted photodynamic therapy in vitro and in vivo. Adv. Funct. Mater. 24(37), 5781–5789 (2014). https://doi.org/10.1002/adfm.201400961
- G. Gao, Y.W. Jiang, J. Yang, F.G. Wu, Mitochondria-targetable carbon quantum dots for differentiating cancerous cells from normal cells. Nanoscale 9(46), 18368–18378 (2017). https://doi.org/10.1039/c7nr06764j
- C. Ding, A. Zhu, Y. Tian, Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 47(1), 20–30 (2014). https://doi.org/10.1021/ar400023s
- Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A. Fernando et al., Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128(24), 7756–7757 (2006). https://doi.org/10.1021/ja062677d
- X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126(40), 12736–12737 (2004). https://doi.org/10.1021/ja040082h
- M. Hassan, V.G. Gomes, A. Dehghani, S.M. Ardekani, Engineering carbon quantum dots for photomediated theranostics. Nano Res. 11(1), 1–41 (2018). https://doi.org/10.1007/s12274-017-1616-1
- J. Ge, Q. Jia, W. Liu, L. Guo, Q. Liu, M. Lan, H. Zhang, X. Meng, P. Wang, Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv. Mater. 27(28), 4169–4177 (2015). https://doi.org/10.1002/adma.201500323
- L. Pan, S. Sun, A. Zhang, K. Jiang, L. Zhang, C. Dong, Q. Huang, A. Wu, H. Lin, Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv. Mater. 27(47), 7782–7787 (2015). https://doi.org/10.1002/adma.201503821
- K. Jiang, S. Sun, L. Zhang, Y. Lu, A. Wu, C. Cai, H. Lin, Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed. 54(18), 5360–5363 (2015). https://doi.org/10.1002/anie.201501193
- S. Sun, L. Zhang, K. Jiang, A.G. Wu, H.W. Lin, Toward high-efficient red emissive carbon dots: facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem. Mater. 28(23), 8659–8668 (2016). https://doi.org/10.1021/acs.chemmater.6b03695
- Z. Liu, X. Chen, X. Zhang, J.J. Gooding, Y. Zhou, Carbon-quantum-dots-loaded mesoporous silica nanocarriers with pH-switchable zwitterionic surface and enzyme-responsive pore-cap for targeted imaging and drug delivery to tumor. Adv. Healthc. Mater. 5(12), 1401–1407 (2016). https://doi.org/10.1002/adhm.201600002
- H. Wang, K. Wang, B. Tian, R. Revia, Q.X. Mu, M. Jeon, F.C. Chang, M.Q. Zhang, Preloading of hydrophobic anticancer drug into multifunctional nanocarrier for multimodal imaging, NIR-responsive drug release, and synergistic therapy. Small 12(46), 6388–6397 (2016). https://doi.org/10.1002/smll.201602263
- J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, G. Zheng, Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. Adv. Mater. 25(45), 6569–6574 (2013). https://doi.org/10.1002/adma.201303124
- R. Prasad, S. Aiyer, D.S. Chauhan, R. Srivastava, K. Selvaraj, Bioresponsive carbon nano-gated multifunctional mesoporous silica for cancer theranostics. Nanoscale 8(8), 4537–4546 (2016). https://doi.org/10.1039/c5nr06756a
- S.K. Bhunia, A.R. Maity, S. Nandi, D. Stepensky, R. Jelinek, Imaging cancer cells expressing the folate receptor with carbon dots produced from folic acid. ChemBioChem 17(7), 614–619 (2016). https://doi.org/10.1002/cbic.201500694
- H. Liu, Z. Li, Y. Sun, X. Geng, Y. Hu, H. Meng, J. Ge, L. Qu, Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability. Sci. Rep. 8(1), 1086 (2018). https://doi.org/10.1038/s41598-018-19373-3
- X. Lv, L. Zhang, F.F. Xing, H.W. Lin, Controlled synthesis of monodispersed mesoporous silica nanoparticles: particle size tuning and formation mechanism investigation. Microporous Mesoporous Mater. 225, 238–244 (2016). https://doi.org/10.1016/j.micromeso.2015.12.024
- Q. Qu, X. Ma, Y. Zhao, Anticancer effect of alpha-tocopheryl succinate delivered by mitochondria-targeted mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 8(50), 34261–34269 (2016). https://doi.org/10.1021/acsami.6b13974
- M. Grün, I. Lauer, K.K. Unger, The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv. Mater. 9(3), 254–257 (1997). https://doi.org/10.1002/adma.19970090317
- Q. Qu, X. Ma, Y. Zhao, Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers. Nanoscale 7(40), 16677–16686 (2015). https://doi.org/10.1039/c5nr05139h
- W. Cheng, C. Liang, L. Xu, G. Liu, N. Gao et al., TPGS-functionalized polydopamine-modified mesoporous silica as drug nanocarriers for enhanced lung cancer chemotherapy against multidrug resistance. Small 13(29), 1700623 (2017). https://doi.org/10.1002/smll.201700623
- L. Xing, H. Zheng, Y. Cao, S. Che, Coordination polymer coated mesoporous silica nanoparticles for pH-responsive drug release. Adv. Mater. 24(48), 6433–6437 (2012). https://doi.org/10.1002/adma.201201742
References
L.A. Torre, F. Bray, R.L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, Global cancer statistics, 2012. CA Cancer J. Clin. 65(2), 87–108 (2015). https://doi.org/10.3322/caac.21262
B.A. Chabner, T.G. Roberts Jr., Timeline: chemotherapy and the war on cancer. Nat. Rev. Cancer 5(1), 65–72 (2005). https://doi.org/10.1038/nrc1529
M.M. Gottesman, T. Fojo, S.E. Bates, Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2(1), 48–58 (2002). https://doi.org/10.1038/nrc706
O.S. Fenton, K.N. Olafson, P.S. Pillai, M.J. Mitchell, R. Langer, Advances in biomaterials for drug delivery. Adv. Mater. 30(29), 1705328 (2018). https://doi.org/10.1002/adma.201705328
L. Pan, J. Liu, Q. He, J. Shi, MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression. Adv. Mater. 26(39), 6742–6748 (2014). https://doi.org/10.1002/adma.201402752
L. Pan, Q. He, J. Liu, Y. Chen, M. Ma, L. Zhang, J. Shi, Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 134(13), 5722–5725 (2012). https://doi.org/10.1021/ja211035w
Q. Sun, M. Radosz, Y. Shen, Challenges in design of translational nanocarriers. J. Control. Release 164(2), 156–169 (2012). https://doi.org/10.1016/j.jconrel.2012.05.042
L. Cheng, W.W. He, H. Gong, C. Wang, Q. Chen, Z.P. Cheng, Z. Liu, PEGylated micelle nanoparticles encapsulating a non-fluorescent near-infrared organic dye as a safe and highly-effective photothermal agent for in vivo cancer therapy. Adv. Funct. Mater. 23(47), 5893–5902 (2013). https://doi.org/10.1002/adfm.201301045
W. Chen, S. Zhou, L. Ge, W. Wu, X. Jiang, Translatable high drug loading drug delivery systems based on biocompatible polymer nanocarriers. Biomacromol 19(6), 1732–1745 (2018). https://doi.org/10.1021/acs.biomac.8b00218
P. Zhang, L. Zhang, Z. Qin, S. Hua, Z. Guo et al., Genetically engineered liposome-like nanovesicles as active targeted transport platform. Adv. Mater. 30(7), 1705350 (2018). https://doi.org/10.1002/adma.201705350
Y. Deng, J. Ling, M.H. Li, Physical stimuli-responsive liposomes and polymersomes as drug delivery vehicles based on phase transitions in the membrane. Nanoscale 10(15), 6781–6800 (2018). https://doi.org/10.1039/c8nr00923f
W. Shan, R. Chen, Q. Zhang, J. Zhao, B. Chen et al., Improved stable indocyanine green (ICG)-mediated cancer optotheranostics with naturalized hepatitis b core particles. Adv. Mater. 30(28), 1707567 (2018). https://doi.org/10.1002/adma.201707567
W. Shan, D. Zhang, Y. Wu, X. Lv, B. Hu et al., Modularized peptides modified HBc virus-like particles for encapsulation and tumor-targeted delivery of doxorubicin. Nanomedicine 14(3), 725–734 (2018). https://doi.org/10.1016/j.nano.2017.12.002
R. Lv, P. Yang, F. He, S. Gai, C. Li, Y. Dai, G. Yang, J. Lin, A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light. ACS Nano 9(2), 1630–1647 (2015). https://doi.org/10.1021/nn5063613
J. Xie, C. Yang, Q. Liu, J. Li, R. Liang et al., Encapsulation of hydrophilic and hydrophobic peptides into hollow mesoporous silica nanoparticles for enhancement of antitumor immune response. Small 13(40), 1701741 (2017). https://doi.org/10.1002/smll.201701741
M. Bjornmalm, K.J. Thurecht, M. Michael, A.M. Scott, F. Caruso, Bridging bio-nano science and cancer nanomedicine. ACS Nano 11(10), 9594–9613 (2017). https://doi.org/10.1021/acsnano.7b04855
Q. Sun, Z. Zhou, N. Qiu, Y. Shen, Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv. Mater. 29(14), 1606628 (2017). https://doi.org/10.1002/adma.201606628
Y. Wang, S. Sun, Z. Zhang, D. Shi, Nanomaterials for cancer precision medicine. Adv. Mater. 30(17), 1705660 (2018). https://doi.org/10.1002/adma.201705660
X. Du, F. Kleitz, X.Y. Li, H.W. Huang, X.J. Zhang, S.Z. Qiao, Disulfide-bridged organosilica frameworks: designed, synthesis, redox-triggered biodegradation, and nanobiomedical applications. Adv. Funct. Mater. 28(26), 1707325 (2018). https://doi.org/10.1002/Adfm.201707325
J.G. Croissant, Y. Fatieiev, A. Almalik, N.M. Khashab, Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv. Healthc. Mater. 7(4), 1700831 (2018). https://doi.org/10.1002/adhm.201700831
F. Tang, L. Li, D. Chen, Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24(12), 1504–1534 (2012). https://doi.org/10.1002/adma.201104763
S.H. Wu, C.Y. Mou, H.P. Lin, Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 42(9), 3862–3875 (2013). https://doi.org/10.1039/c3cs35405a
N. Lu, W. Fan, X. Yi, S. Wang, Z. Wang et al., Biodegradable hollow mesoporous organosilica nanotheranostics for mild hyperthermia-induced bubble-enhanced oxygen-sensitized radiotherapy. ACS Nano 12(2), 1580–1591 (2018). https://doi.org/10.1021/acsnano.7b08103
B.R. Smith, S.S. Gambhir, Nanomaterials for in vivo imaging. Chem. Rev. 117(3), 901–986 (2017). https://doi.org/10.1021/acs.chemrev.6b00073
J. Kim, H.R. Cho, H. Jeon, D. Kim, C. Song, N. Lee, S.H. Choi, T. Hyeon, Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J. Am. Chem. Soc. 139(32), 10992–10995 (2017). https://doi.org/10.1021/jacs.7b05559
M.-K. Tsang, Y.-T. Wong, J. Hao, Cutting-edge nanomaterials for advanced multimodal bioimaging applications. Small Methods 2(1), 1700265 (2018). https://doi.org/10.1002/smtd.201700265
H. Kobayashi, M. Ogawa, R. Alford, P.L. Choyke, Y. Urano, New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110(5), 2620–2640 (2010). https://doi.org/10.1021/cr900263j
K. Li, B. Liu, Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 43(18), 6570–6597 (2014). https://doi.org/10.1039/c4cs00014e
C. Li, A targeted approach to cancer imaging and therapy. Nat. Mater. 13(2), 110–115 (2014). https://doi.org/10.1038/nmat3877
MathSciNet
M. Chen, X.X. He, K.M. Wang, D.G. He, X.H. Yang, H. Shi, Inorganic fluorescent nanoprobes for cellular and subcellular imaging. Trends Analyt. Chem. 58, 120–129 (2014). https://doi.org/10.1016/j.trac.2014.03.003
A. Bernardos, L. Mondragon, E. Aznar, M.D. Marcos, R. Martinez-Manez, F. Sancenon, J. Soto, J.M. Barat, E. Perez-Paya, C. Guillem, P. Amoros, Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano 4(11), 6353–6368 (2010). https://doi.org/10.1021/nn101499d
X. Jia, Y. Zhang, Y. Zou, Y. Wang, D. Niu et al., Dual intratumoral redox/enzyme-responsive NO-releasing nanomedicine for the specific, high-efficacy, and low-toxic cancer therapy. Adv. Mater. 30(30), 1704490 (2018). https://doi.org/10.1002/adma.201704490
C.H. Lee, S.H. Cheng, I.P. Huang, J.S. Souris, C.S. Yang, C.Y. Mou, L.W. Lo, Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew. Chem. Int. Ed. 49(44), 8214–8219 (2010). https://doi.org/10.1002/anie.201002639
J. Kim, C. Jo, W.G. Lim, S. Jung, Y.M. Lee, J. Lim, H. Lee, J. Lee, W.J. Kim, Programmed nanoparticle-loaded nanoparticles for deep-penetrating 3D cancer therapy. Adv. Mater. 30(29), 1707557 (2018). https://doi.org/10.1002/adma.201707557
J. Yu, X. Diao, X. Zhang, X. Chen, X. Hao, W. Li, X. Zhang, C.S. Lee, Water-dispersible, pH-stable and highly-luminescent organic dye nanoparticles with amplified emissions for in vitro and in vivo bioimaging. Small 10(6), 1125–1132 (2014). https://doi.org/10.1002/smll.201302230
J. Li, F. Liu, Q. Shao, Y. Min, M. Costa, E.K. Yeow, B. Xing, Enzyme-responsive cell-penetrating peptide conjugated mesoporous silica quantum dot nanocarriers for controlled release of nucleus-targeted drug molecules and real-time intracellular fluorescence imaging of tumor cells. Adv. Healthc. Mater. 3(8), 1230–1239 (2014). https://doi.org/10.1002/adhm.201300613
X. Zhu, J. Li, X. Qiu, Y. Liu, W. Feng, F. Li, Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature. Nat. Commun. 9(1), 2176 (2018). https://doi.org/10.1038/s41467-018-04571-4
M.K. Gnanasammandhan, N.M. Idris, A. Bansal, K. Huang, Y. Zhang, Near-IR photoactivation using mesoporous silica-coated NaYF4:Yb, Er/Tm upconversion nanoparticles. Nat. Protoc. 11(4), 688–713 (2016). https://doi.org/10.1038/nprot.2016.035
O.S. Wolfbeis, An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 44(14), 4743–4768 (2015). https://doi.org/10.1039/c4cs00392f
Y. Zhang, Y. Shen, X. Teng, M. Yan, H. Bi, P.C. Morais, Mitochondria-targeting nanoplatform with fluorescent carbon dots for long time imaging and magnetic field-enhanced cellular uptake. ACS Appl. Mater. Interfaces 7(19), 10201–10212 (2015). https://doi.org/10.1021/acsami.5b00405
Y. Choi, S. Kim, M.H. Choi, S.R. Ryoo, J. Park, D.H. Min, B.S. Kim, Highly biocompatible carbon nanodots for simultaneous bioimaging and targeted photodynamic therapy in vitro and in vivo. Adv. Funct. Mater. 24(37), 5781–5789 (2014). https://doi.org/10.1002/adfm.201400961
G. Gao, Y.W. Jiang, J. Yang, F.G. Wu, Mitochondria-targetable carbon quantum dots for differentiating cancerous cells from normal cells. Nanoscale 9(46), 18368–18378 (2017). https://doi.org/10.1039/c7nr06764j
C. Ding, A. Zhu, Y. Tian, Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 47(1), 20–30 (2014). https://doi.org/10.1021/ar400023s
Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A. Fernando et al., Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128(24), 7756–7757 (2006). https://doi.org/10.1021/ja062677d
X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126(40), 12736–12737 (2004). https://doi.org/10.1021/ja040082h
M. Hassan, V.G. Gomes, A. Dehghani, S.M. Ardekani, Engineering carbon quantum dots for photomediated theranostics. Nano Res. 11(1), 1–41 (2018). https://doi.org/10.1007/s12274-017-1616-1
J. Ge, Q. Jia, W. Liu, L. Guo, Q. Liu, M. Lan, H. Zhang, X. Meng, P. Wang, Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv. Mater. 27(28), 4169–4177 (2015). https://doi.org/10.1002/adma.201500323
L. Pan, S. Sun, A. Zhang, K. Jiang, L. Zhang, C. Dong, Q. Huang, A. Wu, H. Lin, Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv. Mater. 27(47), 7782–7787 (2015). https://doi.org/10.1002/adma.201503821
K. Jiang, S. Sun, L. Zhang, Y. Lu, A. Wu, C. Cai, H. Lin, Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed. 54(18), 5360–5363 (2015). https://doi.org/10.1002/anie.201501193
S. Sun, L. Zhang, K. Jiang, A.G. Wu, H.W. Lin, Toward high-efficient red emissive carbon dots: facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem. Mater. 28(23), 8659–8668 (2016). https://doi.org/10.1021/acs.chemmater.6b03695
Z. Liu, X. Chen, X. Zhang, J.J. Gooding, Y. Zhou, Carbon-quantum-dots-loaded mesoporous silica nanocarriers with pH-switchable zwitterionic surface and enzyme-responsive pore-cap for targeted imaging and drug delivery to tumor. Adv. Healthc. Mater. 5(12), 1401–1407 (2016). https://doi.org/10.1002/adhm.201600002
H. Wang, K. Wang, B. Tian, R. Revia, Q.X. Mu, M. Jeon, F.C. Chang, M.Q. Zhang, Preloading of hydrophobic anticancer drug into multifunctional nanocarrier for multimodal imaging, NIR-responsive drug release, and synergistic therapy. Small 12(46), 6388–6397 (2016). https://doi.org/10.1002/smll.201602263
J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, G. Zheng, Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. Adv. Mater. 25(45), 6569–6574 (2013). https://doi.org/10.1002/adma.201303124
R. Prasad, S. Aiyer, D.S. Chauhan, R. Srivastava, K. Selvaraj, Bioresponsive carbon nano-gated multifunctional mesoporous silica for cancer theranostics. Nanoscale 8(8), 4537–4546 (2016). https://doi.org/10.1039/c5nr06756a
S.K. Bhunia, A.R. Maity, S. Nandi, D. Stepensky, R. Jelinek, Imaging cancer cells expressing the folate receptor with carbon dots produced from folic acid. ChemBioChem 17(7), 614–619 (2016). https://doi.org/10.1002/cbic.201500694
H. Liu, Z. Li, Y. Sun, X. Geng, Y. Hu, H. Meng, J. Ge, L. Qu, Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability. Sci. Rep. 8(1), 1086 (2018). https://doi.org/10.1038/s41598-018-19373-3
X. Lv, L. Zhang, F.F. Xing, H.W. Lin, Controlled synthesis of monodispersed mesoporous silica nanoparticles: particle size tuning and formation mechanism investigation. Microporous Mesoporous Mater. 225, 238–244 (2016). https://doi.org/10.1016/j.micromeso.2015.12.024
Q. Qu, X. Ma, Y. Zhao, Anticancer effect of alpha-tocopheryl succinate delivered by mitochondria-targeted mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 8(50), 34261–34269 (2016). https://doi.org/10.1021/acsami.6b13974
M. Grün, I. Lauer, K.K. Unger, The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv. Mater. 9(3), 254–257 (1997). https://doi.org/10.1002/adma.19970090317
Q. Qu, X. Ma, Y. Zhao, Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers. Nanoscale 7(40), 16677–16686 (2015). https://doi.org/10.1039/c5nr05139h
W. Cheng, C. Liang, L. Xu, G. Liu, N. Gao et al., TPGS-functionalized polydopamine-modified mesoporous silica as drug nanocarriers for enhanced lung cancer chemotherapy against multidrug resistance. Small 13(29), 1700623 (2017). https://doi.org/10.1002/smll.201700623
L. Xing, H. Zheng, Y. Cao, S. Che, Coordination polymer coated mesoporous silica nanoparticles for pH-responsive drug release. Adv. Mater. 24(48), 6433–6437 (2012). https://doi.org/10.1002/adma.201201742