Two-Dimensional Cr5Te8@Graphite Heterostructure for Efficient Electromagnetic Microwave Absorption
Corresponding Author: Qinghai Shu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 60
Abstract
Two-dimensional (2D) transition metal chalcogenides (TMCs) hold great promise as novel microwave absorption materials owing to their interlayer interactions and unique magnetoelectric properties. However, overcoming the impedance mismatch at the low loading is still a challenge for TMCs due to the restricted loss pathways caused by their high-density characteristic. Here, an interface engineering based on the heterostructure of 2D Cr5Te8 and graphite is in situ constructed via a one-step chemical vapor deposit to modulate impedance matching and introduce multiple attenuation mechanisms. Intriguingly, the Cr5Te8@EG (ECT) heterostructure exhibits a minimum reflection loss of up to − 57.6 dB at 15.4 GHz with a thin thickness of only 1.4 mm under a low filling rate of 10%. The density functional theory calculations confirm that the splendid performance of ECT heterostructure primarily derives from charge redistribution at the abundant intimate interfaces, thereby reinforcing interfacial polarization loss. Furthermore, the ECT coating displays a remarkable radar cross section reduction of 31.9 dB m2, demonstrating a great radar microwave scattering ability. This work sheds light on the interfacial coupled stimulus response mechanism of TMC-based heterogeneous structures and provides a feasible strategy to manipulate high-quality TMCs for excellent microwave absorbers.
Highlights:
1 A Cr5Te8@expanded graphite heterostructure is fabricated by chemical vapor deposition, exhibiting remarkable microwave absorption performance with a minimum reflection loss of up to − 57.6 dB at a thin thickness of only 1.4 mm under a low filling rate of 10%.
2 Density functional theory calculations deeply reveal the polarization loss mechanism triggered by heterogeneous interfaces.
3 The heterostructure coating displays a remarkable radar cross section reduction of 31.9 dB m2, demonstrating a great electromagnetic microwave scattering ability and radar stealth capability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Wu, H.W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), 2107538 (2022). https://doi.org/10.1002/adma.202107538
- J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy? Adv. Funct. Mater. 32(23), 2200123 (2022). https://doi.org/10.1002/adfm.202200123
- Z. Tang, L. Xu, C. Xie, L. Guo, L. Zhang et al., Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat. Commun. 14, 5951 (2023). https://doi.org/10.1038/s41467-023-41697-6
- Y. Liu, X.F. Zhou, Z.R. Jia, H.J. Wu, G.L. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32(34), 2204499 (2022). https://doi.org/10.1002/adfm.202204499
- X. Li, Z. Wu, W. You, L. Yang, R. Che, Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 14, 73 (2022). https://doi.org/10.1007/s40820-022-00811-x
- M. Han, D. Zhang, C.E. Shuck, B. McBride, T. Zhang et al., Electrochemically modulated interaction of MXenes with microwaves. Nat. Nanotechnol. 18(4), 373–379 (2023). https://doi.org/10.1038/s41565-022-01308-9
- Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
- Z.X. Li, W. Yang, B. Jiang, C.A. Wang, C.X. Zhang et al., Engineering of the core-shell boron nitride@nitrogen-doped carbon heterogeneous interface for efficient heat dissipation and electromagnetic wave absorption. ACS Appl. Mater. Interfaces 15(5), 7578–7591 (2023). https://doi.org/10.1021/acsami.2c20766
- K. Yang, Y.H. Cui, L.Y. Wan, Y.B. Wang, M.R. Tariq et al., Preparation of three-dimensional Mo2C/NC@MXene and its efficient electromagnetic absorption properties. ACS Appl. Mater. Interfaces 14(5), 7109–7120 (2022). https://doi.org/10.1021/acsami.1c19033
- M.Q. Huang, L. Wang, B. Zhao, G.Y. Chen, R.C. Che, Engineering the electronic structure on MXenes via multidimensional component interlayer insertion for enhanced electromagnetic shielding. J. Mater. Sci. Technol. 138, 149–156 (2023). https://doi.org/10.1016/j.jmst.2022.07.047
- G.H. Dai, R.X. Deng, X. You, T. Zhang, Y. Yu et al., Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases. J. Mater. Sci. Technol. 116, 11–21 (2022). https://doi.org/10.1016/j.jmst.2021.11.032
- Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 32(18), 2112294 (2022). https://doi.org/10.1002/adfm.202112294
- P. Liu, G. Zhang, H. Xu, S. Cheng, Y. Huang et al., Synergistic dielectric-magnetic enhancement via phase-evolution engineering and dynamic magnetic resonance. Adv. Funct. Mater. 33(13), 2211298 (2023). https://doi.org/10.1002/adfm.202211298
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
- T. Heine, Transition metal chalcogenides: Ultrathin inorganic materials with tunable electronic properties. Acc. Chem. Res. 48(1), 65–72 (2014). https://doi.org/10.1021/ar500277z
- C. Chen, X. Chen, C. Wu, X. Wang, Y. Ping et al., Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv. Mater. 34(2), 2107512 (2022). https://doi.org/10.1002/adma.202107512
- B. Tang, X. Wang, M. Han, X. Xu, Z. Zhang et al., Phase engineering of Cr5Te8 with colossal anomalous hall effect. Nat. Electron. 5(4), 224–232 (2022). https://doi.org/10.1038/s41928-022-00754-6
- G. Li, S. Ma, Z. Li, Y. Zhang, J. Diao et al., High-quality ferromagnet Fe3GeTe2 for high-efficiency electromagnetic wave absorption and shielding with wideband radar cross section reduction. ACS Nano 16(5), 7861–7879 (2022). https://doi.org/10.1021/acsnano.2c00512
- G. Li, S. Ma, Z. Li, Y. Zhang, Y. Cao et al., Temperature-induced self-decomposition doping of Fe3GeTe2 to achieve ultra-high Tc of 496 K for multispectral compatible strong electromagnetic wave absorption. Adv. Funct. Mater. 33(15), 2210578 (2023). https://doi.org/10.1002/adma.202106195
- H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32(6), 2108194 (2022). https://doi.org/10.1002/adfm.202108194
- L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), 2106195 (2022). https://doi.org/10.1002/adma.202106195
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
- P. Liu, Y. Wang, G. Zhang, Y. Huang, R. Zhang et al., Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 32(33), 2202588 (2022). https://doi.org/10.1002/adfm.202202588
- B.J. Wang, F.Z. Huang, H. Wu, Z.J. Xu, S.P. Wang et al., Enhanced interfacial polarization of defective porous carbon confined CoP nanops forming Mott-Schottky heterojunction for efficient electromagnetic wave absorption. Nano Res. 16(3), 4160–4169 (2022). https://doi.org/10.1007/s12274-022-4779-3
- Z.T. Yang, T. Wang, J.F. Wang, Z.X. Luo, Q.Y. Zhang et al., Heterogeneous N-doped carbon composite NiSe2-FeSe double-shell hollow nanorods for tunable and high-efficient microwave attenuation. Carbon 201, 491–503 (2023). https://doi.org/10.1016/j.carbon.2022.09.023
- T. Guo, S. Chang, Y. Akinay, Synthesis of PPy@Ba0.5Sr0.5Fe12O19/CNFs by reverse in-situ polymerization method for microwave absorption applications. Synth. Met. 266, 116387 (2020). https://doi.org/10.1016/j.synthmet.2020.116387
- C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16(1), 1150–1159 (2022). https://doi.org/10.1021/acsnano.1c08957
- R.C. Che, C.Y. Zhi, C.Y. Liang, X.G. Zhou, Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 88(3), 033105 (2006). https://doi.org/10.1063/1.2165276
- C. Li, D. Li, L. Zhang, Y. Zhang, L. Zhang et al., Boosted microwave absorption performance of transition metal doped TiN fibers at elevated temperature. Nano Res. 16(2), 3570–3579 (2022). https://doi.org/10.1007/s12274-023-5398-3
- H. Sun, R. Che, X. You, Y. Jiang, Z. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
- G. Kresse, J. Furthmiiller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671–6687 (1992). https://doi.org/10.1103/PhysRevB.46.6671
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Comp. Mater. Sci. 36(3), 354–360 (2006). https://doi.org/10.1016/j.commatsci.2005.04.010
- S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an lsda+u study. Phys. Rev. B 57(3), 1505–1509 (1998). https://doi.org/10.1103/PhysRevB.57.1505
- H. Zhao, X. Xu, Y. Wang, D. Fan, D. Liu et al., Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 16(43), 2003407 (2020). https://doi.org/10.1002/smll.202003407
- M. Bian, L. Zhu, X. Wang, J. Choi, R.V. Chopdekar et al., Dative epitaxy of commensurate monocrystalline covalent Van der waals moiré supercrystal. Adv. Mater. 34(17), 2200117 (2022). https://doi.org/10.1002/adma.202200117
- B. Tang, J. Zhou, P. Sun, X. Wang, L. Ba et al., Phase-controlled synthesis of monolayer ternary telluride with a random local displacement of tellurium atoms. Adv. Mater. 31(23), 1900862 (2019). https://doi.org/10.1002/adma.201900862
- J.C. Shu, W.Q. Cao, M.S. Cao, Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 31(23), 2100470 (2021). https://doi.org/10.1002/adfm.202100470
- X. Zhang, X.L. Tian, Y. Qin, J. Qiao, F. Pan et al., Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 17(13), 12510–12518 (2023). https://doi.org/10.1021/acsnano.3c02170
- J. Tao, L. Xu, H. Jin, Y. Gu, J. Zhou et al., Selective coding dielectric genes based on proton tailoring to improve microwave absorption of MOFs. Adv. Powder Mater. 2(1), 100091 (2023). https://doi.org/10.1016/j.apmate.2022.100091
- Y.X. Xie, Y.Y. Guo, T.T. Cheng, L.B. Zhao, T. Wang et al., Efficient electromagnetic wave absorption performances dominated by exchanged resonance of lightweight PC/Fe3O4@PDA hybrid nanocomposite. Chem. Eng. J. 457, 141205 (2023). https://doi.org/10.1016/j.cej.2022.141205
- C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanops synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15, 13 (2022). https://doi.org/10.1007/s40820-022-00986-3
- M.H. Li, W.J. Zhu, X. Li, H.L. Xu, X.M. Fan et al., Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption. Adv. Sci. 9(16), 2201118 (2022). https://doi.org/10.1002/advs.202201118
- F. Pan, L. Cai, Y.Y. Shi, Y.Y. Dong, X.J. Zhu et al., Phase engineering reinforced multiple loss network in apple tree-like liquid metal/Ni-Ni3P/N-doped carbon fiber composites for high-performance microwave absorption. Chem. Eng. J. 435, 135009 (2022). https://doi.org/10.1016/j.cej.2022.135009
- H. Niu, P. Liu, F. Qin, X. Liu, Y. Akinay, PEDOT coated Cu-BTC metal-organic frameworks decorated with Fe3O4 nanops and their enhanced electromagnetic wave absorption. Mater. Chem. Phys. 253, 123458 (2020). https://doi.org/10.1016/j.matchemphys.2020.123458
- Y. Cao, A.M. Mohamed, M. Mousavi, Y. Akinay, Poly(pyrrole-co-styrene sulfonate)-encapsulated MWCNT/Fe-Ni alloy/NiFe2O4 nanocomposites for microwave absorption. Mater. Chem. Phys. 259, 124169 (2021). https://doi.org/10.1016/j.matchemphys.2020.124169
- J. Cheng, H. Zhang, H. Wang, Z. Huang, H. Raza et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 32(24), 2201129 (2022). https://doi.org/10.1002/adfm.202201129
- Y.H. Wu, G.D. Wang, X.X. Yuan, G. Fang, P. Li et al., Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption. Nano Res. 16(2), 2611–2621 (2022). https://doi.org/10.1007/s12274-022-5263-9
- W.-L. Song, M.-S. Cao, Z.-L. Hou, X.-Y. Fang, X.-L. Shi et al., High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94(23), 233110 (2009). https://doi.org/10.1063/1.3152764
- B. Zhao, Y.Q. Du, Z.K. Yan, L.J. Rao, G.Y. Chen et al., Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 33(1), 2209924 (2023). https://doi.org/10.1002/adfm.202209924
- J.M. Crowley, J. Tahir-Kheli, W.A. Goddard, Resolution of the band gap prediction problem for materials design. J. Phys. Chem. Lett. 7(7), 1198–1203 (2016). https://doi.org/10.1021/acs.jpclett.5b02870
- J.L. Bai, S.J. Huang, X.M. Yao, X.J. Liu, Z.R. Huang, Surface engineering of nanoflower-like MoS2 decorated porous Si3N4 ceramics for electromagnetic wave absorption. J. Mater. Chem. A 11(12), 6274–6285 (2023). https://doi.org/10.1039/d3ta00122a
- Y. Wang, X.C. Di, Z. Lu, R.R. Cheng, X.M. Wu et al., Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal-organic frameworks for high-efficiency microwave attenuation. Carbon 187, 404–414 (2022). https://doi.org/10.1016/j.carbon.2021.11.027
- R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
- Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29(28), 1901448 (2019). https://doi.org/10.1002/adfm.201901448
- W.J. Ma, P. He, J. Xu, X.Y. Liu, S.L. Lin et al., Self-assembly magnetized 3D hierarchical graphite carbon-based heterogeneous yolk-shell nanoboxes with enhanced microwave absorption. J. Mater. Chem. A 10(21), 11405–11413 (2022). https://doi.org/10.1039/d2ta01798a
- Y. Liu, Z.R. Jia, Q.Q. Zhan, Y.H. Dong, Q.M. Xu et al., Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 15(6), 5590–5600 (2022). https://doi.org/10.1007/s12274-022-4287-5
- L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
- J. Liu, M.-S. Cao, Q. Luo, H.-L. Shi, W.-Z. Wang et al., Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 8(34), 22615–22622 (2016). https://doi.org/10.1021/acsami.6b05480
- Y. Akinay, F. Hayat, M. Çakir, E. Akin, Magnetic and microwave absorption properties of PVB/Fe3O4 and PVB/NiFe2O4 composites. Polym. Compos. 39(10), 3418–3423 (2018). https://doi.org/10.1002/pc.24359
- Y. Akinay, B. Çolak, M.E. Turan, I.N. Akkuş, H.Ç. Kazici et al., The electromagnetic wave absorption properties of woven glass fiber composites filled with Sb2O3 and SnO2 nanops doped mica pigments. Polym. Compos. 43(12), 8784–8794 (2022). https://doi.org/10.1002/pc.27061
- Y. Akinay, U. Gunes, B. Çolak, T. Cetin, Recent progress of electromagnetic wave absorbers: a systematic review and bibliometric approach. ChemPhysMater 2(3), 197–206 (2023). https://doi.org/10.1016/j.chphma.2022.10.002
- X. Huang, J. Wei, Y. Zhang, B. Qian, Q. Jia et al., Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 14, 107 (2022). https://doi.org/10.1007/s40820-022-00851-3
References
Z. Wu, H.W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), 2107538 (2022). https://doi.org/10.1002/adma.202107538
J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy? Adv. Funct. Mater. 32(23), 2200123 (2022). https://doi.org/10.1002/adfm.202200123
Z. Tang, L. Xu, C. Xie, L. Guo, L. Zhang et al., Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat. Commun. 14, 5951 (2023). https://doi.org/10.1038/s41467-023-41697-6
Y. Liu, X.F. Zhou, Z.R. Jia, H.J. Wu, G.L. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32(34), 2204499 (2022). https://doi.org/10.1002/adfm.202204499
X. Li, Z. Wu, W. You, L. Yang, R. Che, Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 14, 73 (2022). https://doi.org/10.1007/s40820-022-00811-x
M. Han, D. Zhang, C.E. Shuck, B. McBride, T. Zhang et al., Electrochemically modulated interaction of MXenes with microwaves. Nat. Nanotechnol. 18(4), 373–379 (2023). https://doi.org/10.1038/s41565-022-01308-9
Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
Z.X. Li, W. Yang, B. Jiang, C.A. Wang, C.X. Zhang et al., Engineering of the core-shell boron nitride@nitrogen-doped carbon heterogeneous interface for efficient heat dissipation and electromagnetic wave absorption. ACS Appl. Mater. Interfaces 15(5), 7578–7591 (2023). https://doi.org/10.1021/acsami.2c20766
K. Yang, Y.H. Cui, L.Y. Wan, Y.B. Wang, M.R. Tariq et al., Preparation of three-dimensional Mo2C/NC@MXene and its efficient electromagnetic absorption properties. ACS Appl. Mater. Interfaces 14(5), 7109–7120 (2022). https://doi.org/10.1021/acsami.1c19033
M.Q. Huang, L. Wang, B. Zhao, G.Y. Chen, R.C. Che, Engineering the electronic structure on MXenes via multidimensional component interlayer insertion for enhanced electromagnetic shielding. J. Mater. Sci. Technol. 138, 149–156 (2023). https://doi.org/10.1016/j.jmst.2022.07.047
G.H. Dai, R.X. Deng, X. You, T. Zhang, Y. Yu et al., Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases. J. Mater. Sci. Technol. 116, 11–21 (2022). https://doi.org/10.1016/j.jmst.2021.11.032
Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 32(18), 2112294 (2022). https://doi.org/10.1002/adfm.202112294
P. Liu, G. Zhang, H. Xu, S. Cheng, Y. Huang et al., Synergistic dielectric-magnetic enhancement via phase-evolution engineering and dynamic magnetic resonance. Adv. Funct. Mater. 33(13), 2211298 (2023). https://doi.org/10.1002/adfm.202211298
S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
T. Heine, Transition metal chalcogenides: Ultrathin inorganic materials with tunable electronic properties. Acc. Chem. Res. 48(1), 65–72 (2014). https://doi.org/10.1021/ar500277z
C. Chen, X. Chen, C. Wu, X. Wang, Y. Ping et al., Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv. Mater. 34(2), 2107512 (2022). https://doi.org/10.1002/adma.202107512
B. Tang, X. Wang, M. Han, X. Xu, Z. Zhang et al., Phase engineering of Cr5Te8 with colossal anomalous hall effect. Nat. Electron. 5(4), 224–232 (2022). https://doi.org/10.1038/s41928-022-00754-6
G. Li, S. Ma, Z. Li, Y. Zhang, J. Diao et al., High-quality ferromagnet Fe3GeTe2 for high-efficiency electromagnetic wave absorption and shielding with wideband radar cross section reduction. ACS Nano 16(5), 7861–7879 (2022). https://doi.org/10.1021/acsnano.2c00512
G. Li, S. Ma, Z. Li, Y. Zhang, Y. Cao et al., Temperature-induced self-decomposition doping of Fe3GeTe2 to achieve ultra-high Tc of 496 K for multispectral compatible strong electromagnetic wave absorption. Adv. Funct. Mater. 33(15), 2210578 (2023). https://doi.org/10.1002/adma.202106195
H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32(6), 2108194 (2022). https://doi.org/10.1002/adfm.202108194
L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), 2106195 (2022). https://doi.org/10.1002/adma.202106195
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
P. Liu, Y. Wang, G. Zhang, Y. Huang, R. Zhang et al., Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 32(33), 2202588 (2022). https://doi.org/10.1002/adfm.202202588
B.J. Wang, F.Z. Huang, H. Wu, Z.J. Xu, S.P. Wang et al., Enhanced interfacial polarization of defective porous carbon confined CoP nanops forming Mott-Schottky heterojunction for efficient electromagnetic wave absorption. Nano Res. 16(3), 4160–4169 (2022). https://doi.org/10.1007/s12274-022-4779-3
Z.T. Yang, T. Wang, J.F. Wang, Z.X. Luo, Q.Y. Zhang et al., Heterogeneous N-doped carbon composite NiSe2-FeSe double-shell hollow nanorods for tunable and high-efficient microwave attenuation. Carbon 201, 491–503 (2023). https://doi.org/10.1016/j.carbon.2022.09.023
T. Guo, S. Chang, Y. Akinay, Synthesis of PPy@Ba0.5Sr0.5Fe12O19/CNFs by reverse in-situ polymerization method for microwave absorption applications. Synth. Met. 266, 116387 (2020). https://doi.org/10.1016/j.synthmet.2020.116387
C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16(1), 1150–1159 (2022). https://doi.org/10.1021/acsnano.1c08957
R.C. Che, C.Y. Zhi, C.Y. Liang, X.G. Zhou, Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 88(3), 033105 (2006). https://doi.org/10.1063/1.2165276
C. Li, D. Li, L. Zhang, Y. Zhang, L. Zhang et al., Boosted microwave absorption performance of transition metal doped TiN fibers at elevated temperature. Nano Res. 16(2), 3570–3579 (2022). https://doi.org/10.1007/s12274-023-5398-3
H. Sun, R. Che, X. You, Y. Jiang, Z. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
G. Kresse, J. Furthmiiller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671–6687 (1992). https://doi.org/10.1103/PhysRevB.46.6671
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Comp. Mater. Sci. 36(3), 354–360 (2006). https://doi.org/10.1016/j.commatsci.2005.04.010
S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an lsda+u study. Phys. Rev. B 57(3), 1505–1509 (1998). https://doi.org/10.1103/PhysRevB.57.1505
H. Zhao, X. Xu, Y. Wang, D. Fan, D. Liu et al., Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 16(43), 2003407 (2020). https://doi.org/10.1002/smll.202003407
M. Bian, L. Zhu, X. Wang, J. Choi, R.V. Chopdekar et al., Dative epitaxy of commensurate monocrystalline covalent Van der waals moiré supercrystal. Adv. Mater. 34(17), 2200117 (2022). https://doi.org/10.1002/adma.202200117
B. Tang, J. Zhou, P. Sun, X. Wang, L. Ba et al., Phase-controlled synthesis of monolayer ternary telluride with a random local displacement of tellurium atoms. Adv. Mater. 31(23), 1900862 (2019). https://doi.org/10.1002/adma.201900862
J.C. Shu, W.Q. Cao, M.S. Cao, Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 31(23), 2100470 (2021). https://doi.org/10.1002/adfm.202100470
X. Zhang, X.L. Tian, Y. Qin, J. Qiao, F. Pan et al., Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 17(13), 12510–12518 (2023). https://doi.org/10.1021/acsnano.3c02170
J. Tao, L. Xu, H. Jin, Y. Gu, J. Zhou et al., Selective coding dielectric genes based on proton tailoring to improve microwave absorption of MOFs. Adv. Powder Mater. 2(1), 100091 (2023). https://doi.org/10.1016/j.apmate.2022.100091
Y.X. Xie, Y.Y. Guo, T.T. Cheng, L.B. Zhao, T. Wang et al., Efficient electromagnetic wave absorption performances dominated by exchanged resonance of lightweight PC/Fe3O4@PDA hybrid nanocomposite. Chem. Eng. J. 457, 141205 (2023). https://doi.org/10.1016/j.cej.2022.141205
C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanops synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15, 13 (2022). https://doi.org/10.1007/s40820-022-00986-3
M.H. Li, W.J. Zhu, X. Li, H.L. Xu, X.M. Fan et al., Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption. Adv. Sci. 9(16), 2201118 (2022). https://doi.org/10.1002/advs.202201118
F. Pan, L. Cai, Y.Y. Shi, Y.Y. Dong, X.J. Zhu et al., Phase engineering reinforced multiple loss network in apple tree-like liquid metal/Ni-Ni3P/N-doped carbon fiber composites for high-performance microwave absorption. Chem. Eng. J. 435, 135009 (2022). https://doi.org/10.1016/j.cej.2022.135009
H. Niu, P. Liu, F. Qin, X. Liu, Y. Akinay, PEDOT coated Cu-BTC metal-organic frameworks decorated with Fe3O4 nanops and their enhanced electromagnetic wave absorption. Mater. Chem. Phys. 253, 123458 (2020). https://doi.org/10.1016/j.matchemphys.2020.123458
Y. Cao, A.M. Mohamed, M. Mousavi, Y. Akinay, Poly(pyrrole-co-styrene sulfonate)-encapsulated MWCNT/Fe-Ni alloy/NiFe2O4 nanocomposites for microwave absorption. Mater. Chem. Phys. 259, 124169 (2021). https://doi.org/10.1016/j.matchemphys.2020.124169
J. Cheng, H. Zhang, H. Wang, Z. Huang, H. Raza et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 32(24), 2201129 (2022). https://doi.org/10.1002/adfm.202201129
Y.H. Wu, G.D. Wang, X.X. Yuan, G. Fang, P. Li et al., Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption. Nano Res. 16(2), 2611–2621 (2022). https://doi.org/10.1007/s12274-022-5263-9
W.-L. Song, M.-S. Cao, Z.-L. Hou, X.-Y. Fang, X.-L. Shi et al., High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94(23), 233110 (2009). https://doi.org/10.1063/1.3152764
B. Zhao, Y.Q. Du, Z.K. Yan, L.J. Rao, G.Y. Chen et al., Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 33(1), 2209924 (2023). https://doi.org/10.1002/adfm.202209924
J.M. Crowley, J. Tahir-Kheli, W.A. Goddard, Resolution of the band gap prediction problem for materials design. J. Phys. Chem. Lett. 7(7), 1198–1203 (2016). https://doi.org/10.1021/acs.jpclett.5b02870
J.L. Bai, S.J. Huang, X.M. Yao, X.J. Liu, Z.R. Huang, Surface engineering of nanoflower-like MoS2 decorated porous Si3N4 ceramics for electromagnetic wave absorption. J. Mater. Chem. A 11(12), 6274–6285 (2023). https://doi.org/10.1039/d3ta00122a
Y. Wang, X.C. Di, Z. Lu, R.R. Cheng, X.M. Wu et al., Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal-organic frameworks for high-efficiency microwave attenuation. Carbon 187, 404–414 (2022). https://doi.org/10.1016/j.carbon.2021.11.027
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29(28), 1901448 (2019). https://doi.org/10.1002/adfm.201901448
W.J. Ma, P. He, J. Xu, X.Y. Liu, S.L. Lin et al., Self-assembly magnetized 3D hierarchical graphite carbon-based heterogeneous yolk-shell nanoboxes with enhanced microwave absorption. J. Mater. Chem. A 10(21), 11405–11413 (2022). https://doi.org/10.1039/d2ta01798a
Y. Liu, Z.R. Jia, Q.Q. Zhan, Y.H. Dong, Q.M. Xu et al., Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 15(6), 5590–5600 (2022). https://doi.org/10.1007/s12274-022-4287-5
L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
J. Liu, M.-S. Cao, Q. Luo, H.-L. Shi, W.-Z. Wang et al., Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 8(34), 22615–22622 (2016). https://doi.org/10.1021/acsami.6b05480
Y. Akinay, F. Hayat, M. Çakir, E. Akin, Magnetic and microwave absorption properties of PVB/Fe3O4 and PVB/NiFe2O4 composites. Polym. Compos. 39(10), 3418–3423 (2018). https://doi.org/10.1002/pc.24359
Y. Akinay, B. Çolak, M.E. Turan, I.N. Akkuş, H.Ç. Kazici et al., The electromagnetic wave absorption properties of woven glass fiber composites filled with Sb2O3 and SnO2 nanops doped mica pigments. Polym. Compos. 43(12), 8784–8794 (2022). https://doi.org/10.1002/pc.27061
Y. Akinay, U. Gunes, B. Çolak, T. Cetin, Recent progress of electromagnetic wave absorbers: a systematic review and bibliometric approach. ChemPhysMater 2(3), 197–206 (2023). https://doi.org/10.1016/j.chphma.2022.10.002
X. Huang, J. Wei, Y. Zhang, B. Qian, Q. Jia et al., Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 14, 107 (2022). https://doi.org/10.1007/s40820-022-00851-3