Progress of Microfluidics for Biology and Medicine
Corresponding Author: Di Chen
Nano-Micro Letters,
Vol. 5 No. 1 (2013), Article Number: 66-80
Abstract
Microfluidics has been considered as a potential technology to miniaturize the conventional equipments and technologies. It offers advantages in terms of small volume, low cost, short reaction time and highthroughput. The applications in biology and medicine research and related areas are almost the most extensive and profound. With the appropriate scale that matches the scales of cells, microfluidics is well positioned to contribute significantly to cell biology. Cell culture, fusion and apoptosis were successfully performed in microfluidics. Microfluidics provides unique opportunities for rare circulating tumor cells isolation and detection from the blood of patients, which furthers the discovery of cancer stem cell biomarkers and expands the understanding of the biology of metastasis. Nucleic acid amplification in microfluidics has extended to single-molecule, high-throughput and integration treatment in one chip. DNA computer which is based on the computational model of DNA biochemical reaction will come into practice from concept in the future. In addition, microfluidics offers a versatile platform for protein-protein interactions, protein crystallization and high-throughput screening. Although microfluidics is still in its infancy, its great potential has already been demonstrated and will provide novel solutions to the high-throughput applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. M. Whitesides, “The origins and the future of microfluidics”, Nature 442, 368–373 (2006). http://dx.doi.org/10.1038/nature05058
- A. Manz, N. Graber and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing”, Sens. Actuators B 1, 244–248 (1990). http://dx.doi.org/10.1016/0925-4005(90)80209-I
- D. Lombardi and P. S. Dittrich, “Advances in microfluidics for drug discovery”, Expert Opin. Drug Dis. 5, 1081–1094 (2010). http://dx.doi.org/10.1517/17460441.2010.521149
- T. Thorsen, S. J. Maerkl and S. R. Quake, “Microfluidic large-scale integration”, Science 298, 580–584 (2002). http://dx.doi.org/10.1126/science.1076996
- A. J. Demello, “Control and detection of chemical reactions in microfluidic systems“, Nature 442, 394–402 (2006). http://dx.doi.org/10.1038/nature05062
- X. D. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis”, Nature Photon. 5, 591–597 (2011). http://dx.doi.org/10.1038/nphoton.2011.206
- A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, “Microfluidic control of cell pairing and fusion”, Nat. Methods 6, 147–152 (2009). http://dx.doi.org/10.1038/nmeth.1290
- J. D. Chen, D. Chen, T. Yuan and X. Chen, “Microfluidic PCR chips”, Nano Biomed. Eng. 3, 203–210 (2011). http://dx.doi.org/10.5101/nbe.v3i4.p203-210
- P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery”, Nat. Rev. Drug Discov. 5, 210–218 (2006). http://dx.doi.org/10.1038/nrd1985
- H. X. Du, Z. G. Wang, Z. L. Yang, D. Chen, J. D. Chen and R. J. Hu, “Separation of circulating cancer cells by uniquemicrofluidic chip in colorectal cancerr” Oncology Research 19, 487–500 (2012). http://dx.doi.org/10.3727/096504012x13286534482476
- Y. J. Song, J. Hormes and C. S. S. R. Kumar, “Microfluidic synthesis of nanomaterials”, Small 4, 698–711 (2008). http://dx.doi.org/10.1002/smll.200701029
- I. Doh, E. Y. Erdem and A. P. Pisano, “Trapping and collection of uniform size droplets for nanoparticle synthesis”, Appl. Phys. Lett. 100, 074106–074108 (2012) http://dx.doi.org/10.1063/1.3685695
- N. Yamaguchi, M. Torii, Y. Uebayashi and M. Nasu, “Rapid, semiautomated quantification of bacterial cells in freshwater by using a microfluidic device for on-chip staining and counting”, Appl. Environ. Microbiol. 77, 1536–1539 (2011). http://dx.doi.org/10.1128/aem.01765-10
- S. Neethirajan, I. Kobayashi, M. Nakajima, D. Wu, S. Nandagopal and F. Lin, “Microfluidics for food, agriculture and biosystems industries”, Lab Chip 11, 1574–1586 (2011). http://dx.doi.org/10.1039/c0lc00230e
- H. A. Stone, A. D. Stroock and A. Ajdari, “Engineering flows in small devices microfluidics toward a lab-on-a-chip”, Annu. Rev. Fluid Mech., 36, 381–411 (2004). http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
- D. J. Beebe, G. A. Mensing and G. M. Walker, “Physics and applications of microfluidics in biology”, Annu. Rev. Biomed. Eng. 4, 261–286 (2002). http://dx.doi.org/10.1146/annurev.bioeng.4.112601.125916
- G. F. Christopher and S. L. Anna, “Microfluidic methods for generating continuous droplet streams”, J. Phys. D: Appl. Phys. 40, R319–R336 (2007). http://dx.doi.org/10.1088/0022-3727/40/19/R01
- V. Hessel, H. Löwe and F. Schönfeld, “Micromixers—a review on passive and active mixing principles”, Chem. Eng. Sci. 60, 2479–2501 (2005). http://dx.doi.org/10.1016/j.ces.2004.11.033
- L. Capretto, W. Cheng, M. Hill and X. Zhang, “Micromixing within microfluidic devices”, Top. Curr. Chem. 304, 27–68 (2011). http://dx.doi.org/10.1007/128_2011_150
- P. B. Umbanhowar, V. Prasad and D. A. Weitz, “Monodisperse emulsion generation via drop break off in a coflowing stream”, Langmuir 16, 347–351 (2000). http://dx.doi.org/10.1021/la990101e
- T. Thorsen, R. W. Roberts, F. H. Arnold and S. R. Quake, “Dynamic pattern formation in a vesiclegenerating microfluidic device”, Phys. Rev. Lett. 86, 4163–4166 (2001). http://dx.doi.org/10.1103/physrevlett.86.4163
- S. L. Anna, N. Bontoux and H. A. Stone, “Formation of dispersions using “flow focusing” in microchannels”, Appl. Phys. Lett. 82, 364–366 (2003). http://dx.doi.org/10.1063/1.1537519
- C. N. Baroud, F. Gallaire and R. Dangla, “Dynamics of microfluidic droplets”, Lab Chip 10, 2032–2045 (2010). http://dx.doi.org/10.1039/c001191f
- S. Y. Teh, R. Lin, L. H. Hung and A. P. Lee, “Droplet microfluidics” Lab Chip 8, 198–220 (2008). http://dx.doi.org/10.1039/b715524g
- A. S. Utada, A. Fernandez-Nieves, H. A. Stone and D. A. Weitz, “Dripping to jetting transitions in coflowing liquid streams”, Phys. Rev. Lett. 99, 94502–94505 (2007). http://dx.doi.org/10.1103/PhysRevLett.99.094502
- X. C. I. Solvas and A. deMello, “Droplet microfluidics: recent developments and future application”, Chem. Commun. 47, 1936–1942 (2011). http://dx.doi.org/10.1039/c0cc02474k
- A. C. Hatch, J. S. Fisher, A. R. Tovar, A. T. Hsieh, R. Lin, S. L. Pentoney, D. L. Yang and A. P. Lee, “1- million droplet array with wide-field fluorescence imaging for digital PCR”, Lab Chip 11, 3838–3845 (2011). http://dx.doi.org/10.1039/c1lc20561g
- N. Bremond, A. R. Thiam and J. Bibette, “Decompressing emulsion droplets favors coalescence”, Phys. Rev. Lett. 100, 24501–24504 (2008). http://dx.doi.org/10.1103/PhysRevLett.100.024501
- L. Mazutis, J. C. Baret and A. D. Griffiths, “A fast and efficient microfluidic system for highly selective oneto- one droplet fusion”, Lab Chip 9, 2665–2672 (2009). http://dx.doi.org/10.1039/b903608c
- M. Chabert, K. D. Dorfman and J. L. Viovy, “Droplet fusion by alternating current (AC) field electrocoalescence in microchannels”, Electrophoresis 26, 3706–3715 (2005). http://dx.doi.org/0.1002/elps.200500109
- R. M. Lorenz, J. S. Edgar, G. D. M. Jeffries and D.T. Chiu, “Microfluidic and optical systems for the on-demand generation and manipulation of single femtoliter-volume aqueous droplets”, Anal. Chem. 78, 6433–6439 (2006). http://dx.doi.org/10.1021/ac060748l
- D. Link, S. L. Anna, D. A. Weitz and H. Stone, “Geometrically mediated breakup of drops in microfluidic devices”, Phys. Rev. Lett. 92, 54503–54506 (2004). http://dx.doi.org/10.1103/PhysRevLett.92.054503
- A. M. Leshansky and L. M. Pismen, “Breakup of drops in a microfluidic T junction”, Phys. Fluids 21, 023303 (2009). http://dx.doi.org/10.1063/1.3078515
- J. H. Choi, S. K. Lee, J. M. Lim, S. M. Yang and G. R. Yi, “Designed pneumatic valve actuators for controlled droplet breakup and generation”, Lab Chip 10, 456–461 (2010). http://dx.doi.org/10.1039/b915596a
- A. R. Abate and D. A. Weitz, “Faster multiple emulsification with drop splitting”, Lab Chip 11, 1911–1915 (2011). http://dx.doi.org/10.1039/c0lc00706d
- H. Song, Bringer, J. D. Tice, C. J. Gerdts and R. F. Ismagilov, “Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels”, Appl. Phys. Lett. 83, 4664–4666 (2003). http://dx.doi.org/10.1063/1.1630378
- M. R. Bringer, C. J. Gerdts, H. Song, J. D. Tice and R. F. Ismagilov, “Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets”, Phil. Trans. R. Soc. Lond. A 362, 1087–1104 (2004). http://dx.doi.org/10.1098/rsta.2003.1364
- N. T. Nguyen and Z. Wu, Microm, “Micromixers—a review”, J. Micromech. Microeng. 15, R1–R16 (2005). http://dx.doi.org/10.1088/0960-1317/15/2/R01
- A. Huebner, D. Bratton, G. Whyte, M. Yang, C. Abell and F. Hollfelder, “Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays”, Lab Chip 9, 692–698 (2009). http://dx.doi.org/10.1039/b813709a
- Y. P. Bai, X. M. He, D. S. Liu, S. N. Patil, D. Bratton, A. Huebner, F. Hollfelder, C. Abell and W. T. S. Huck, “A double droplet trap system for studying mass transport across a droplet-droplet interface”, Lab Chip 10, 1281–1285 (2010). http://dx.doi.org/10.1039/b925133b
- J. Xu, B. Ahn, H. Lee, L. F. Xu, K. Lee, R. Panchapakesan and K. W. Oh, “Droplet-based microfluidic device for multiple-droplet clustering”, Lab Chip 12, 725–730 (2012). http://dx.doi.org/10.1039/c2lc20883k
- W. B. Du, L. Li, K. P. Nichols and R. F. Ismagilov, “SlipChip”, Lab Chip 9, 2286–2292 (2009). http://dx.doi.org/10.1039/b908978k
- L. Li, W. B. Du and R. F. Ismagilov, “User-loaded SlipChip for equipment-free multiplexed nanoliterscale experiments”, J. Am. Chem. Soc. 132, 106–111 (2009). http://dx.doi.org/10.1021/ja908555n
- D. Belder, “Screening in one sweep using the SlipChip”, Angew. Chem. Int. Ed. 49, 6484–6486 (2010). http://dx.doi.org/10.1002/anie.201002059
- F. Shen, W. B. Du, J. E. Kreutz, A. Fok and R. F. Ismagilov, “Digital PCR on a SlipChip”, Lab Chip 10, 2666–2672 (2010). http://dx.doi.org/10.1039/c004521g
- F. Shen, W. B. Du, E. K. Davydova, M. A. Karymov, J. Pandey and R. F. Ismagilov, “Nanoliter multiplex PCR arrays on a SlipChip”, Anal. Chem. 82, 4606–4612 (2010). http://dx.doi.org/10.1021/ac1007249
- F. Shen, B. Sun, J. E. Kreutz, E. K. Davydova, W. B. Du, P. L. Reddy, L. J. Joseph, and R. F. Ismagilov, “Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational SlipChip tested with HIV and Hepatitis C viral load”, J. Am. Chem. Soc. 133, 17705–177712 (2011). http://dx.doi.org/10.1021/ja2060116
- W. S. Liu, D. L. Chen, W. B. Du, K. P. Nichols and R. F. Ismagilov, “SlipChip for immunoassays in nanoliter volumes”, Anal. Chem. 82, 3272–3282 (2010). http://dx.doi.org/10.1021/ac100044c
- C. Martino, M. Zagnoni, M. E. Sandison, M. Chanasakulniyom, A. R. Pitt and J. M. Cooper, “Intracellular protein determination using droplet-based immunoassays”, Anal. Chem. 83, 5361–5368 (2011). http://dx.doi.org/10.1021/ac200876q
- L. Li, W. Du and R. F. Ismagilov, “Multiparameter screening on SlipChip used for nanoliter protein crystallization combining free interface diffusion and microbatch methods”, J. Am. Chem. Soc. 132, 112–119 (2009). http://dx.doi.org/10.1021/ja908558m
- P. Mitchell, “Microfluidics—downsizing large-scale biology”, Nature Biotechnology 19, 717–721 (2001). http://dx.doi.org/10.1038/90754
- A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han and C. T. Lim, “Microfluidics for cell separation”, Med. Biol. Eng. Comput. 48, 999–1014 (2010). http://dx.doi.org/10.1007/s11517-010-0611-4
- M. Murata, Y. Okamoto, Y. S. Park, N. Kaji, M. Tokeshi and Y. Baba, “Cell separation by the combination of microfluidics and optical trapping force on a microchip”, Anal. Bioanal. Chem. 394, 277–283 (2009). http://dx.doi.org/10.1007/s00216-009-2648-5
- W. Y. Lin, Y. H. Lin and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces”, Microfluid. Nanofluid. 8, 217–229 (2010). http://dx.doi.org/10.1007/s10404-009-0457-y
- M. S. Sakar, E. B. Steager, M. J. Kim, G. J. Pappas and V. Kumar, “Single cell manipulation using ferromagnetic composite microtransporters”, Appl. Phys. Lett. 96, 043705–043707 (2010). http://dx.doi.org/10.1063/1.3293457
- T. Laurell, F. Petersson and A. Nilsson, “Chip integrated strategies for acoustic separation and manipulation of cells and particles”, Chem. Soc. Rev. 36, 492–506 (2006). http://dx.doi.org/10.1039/b601326k
- D. Di Carlo, L. Y. Wu and L. P. Lee, “Dynamic single cell culture array”, Lab Chip, 6, 1445–1449 (2006). http://dx.doi.org/10.1039/b605937f
- H. W. Wu, C. C. Lin and G. B. Lee, “Stem cells in microfluidics”, Biomicrofluidics 5, 013401–013426 (2011). http://dx.doi.org/10.1063/1.3528299
- W. Shi, L. Guo, H. Kasdan and Y.C. Tai, “Fourpart leukocyte differential count based on sheathless microflow cytometer and fluorescent dye assay”, Lab Chip 13, 1257–1265 (2013). http://dx.doi.org/10.1039/c3lc41059e
- D. M. Titmarsh, H. Chen, E. J. Wolvetang and J. J. Cooper-White, “Arrayed cellular environments for stem cells and regenerative medicine”, Biotechnol. J 8, 167–179 (2012). http://dx.doi.org/10.1002/biot.201200149
- E. Leclerc, Y. Sakai and T. Fujii, “Biomed. Cell Culture in 3-Dimensional Microfluidic Structure of PDMS (polydimethylsiloxane)”, Microdevices 5, 109–114 (2003). http://dx.doi.org/10.1023/A:1024583026925
- R. Gomez-Sjoberg, A. A. Leyrat, D. M. Pirone, C. S. Chen and S. R. Quake, Versatile, “Fully automated, microfluidic cell culture system”, Anal. Chem. 79, 8557–8563 (2007). http://dx.doi.org/10.1021/ac071311w
- N. Ye, J. H. Qin, X. Liu, W. W. Shi and B. C. Lin, “Characterizing doxorubicin-induced apoptosis in HepG2 cells using an integrated microfluidic device”, Electrophoresis 28, 1146–1153 (2007). http://dx.doi.org/10.1002/elps.200600450
- M. Srisa-Art, I. C. Bonzani, A. Williams, M. M. Stevens and J. B. Edel, “Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics”, Analyst 134, 2239–2245 (2009). http://dx.doi.org/10.1039/b910472k
- D. Bogojevic, M. D. Chamberlain, I. Barbulovic-Nad and A. R. Wheeler, “A digital microfluidic method for multiplexed cell-based apoptosis assays”, Lab Chip 12, 627–634 (2012). http://dx.doi.org/10.1039/c2lc20893h
- S. Q. Gu, Y. X. Zhang, Y. Zhu, W. B. Du, B. Yao and Q. Fang, “Multifunctional picoliter droplet manipulation platform and its application in single cell analysis”, Anal. Chem. 83, 7570–7576 (2011). http://dx.doi.org/10.1021/ac201678g
- P. Stano and P. L. Luisi, “Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells”, Chem. Commun. 46, 3639–3653 (2010). http://dx.doi.org/10.1039/b913997d
- M. Takinoue and S. Takeuchi, “Droplet microfluidics for the study of artificial cells”, Anal. Bioanal. Chem. 400, 1705–1716 (2011). http://dx.doi.org/10.1007/s00216-011-4984-5
- A. Jimenez, M. Roché, M. Pinot, P. Panizza, L. Courbin and Z. Gueroui, “Towards high throughput production of artificial egg oocytes using microfluidics”, Lab Chip 11, 429–434 (2010). http://dx.doi.org/10.1039/c0lc00046a
- S. Matosevic and B. M. Paegel, “Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line”, J. Am. Chem. Soc. 133, 2798–2800 (2011). http://dx.doi.org/10.1021/ja109137s
- J. Chen, J. Li and Y. Sun, “Microfluidic approaches for cancer cell detection, characterization, and separation”, Lab Chip 12, 1753–1767 (2012). http://dx.doi.org/10.1039/c2lc21273k
- S. Nagrath, L. V. Sequist, S. Maheswaran, et al. “Isolation of rare circulating tumour cells in cancer patients by microchip technology”, Nature 450, 1235–1239 (2007). http://dx.doi.org/10.1038/nature06385
- Z. C. Gong, H. Zhao, T. H. Zhang, et al. “Drug effects analysis on cells using a high throughput microfluidic chip”, Biomed. Microdevices 13, 215–219 (2011). http://dx.doi.org/10.1007/s10544-010-9486-2
- M. J. Jebrail, M. S. Bartsch and K. D. Patel, “Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine”, Lab Chip 12, 2452–2463 (2012). http://dx.doi.org/10.1039/c2lc40318h
- R. K. Saiki, S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich and N. Arnheim, “Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia”, Science 230, 1350–1354 (1985). http://dx.doi.org/10.1126/science.2999980
- M. A. Northrup, M. T. Ching, R. M. White and R. T. Watson. In tranducer’93, seventh international conference on solid state Sens Actuators, Yokohama, Japan. ISBN: 4-9900247-2-9. 924 (1993).
- H. Nagai, Y. Murakami, Y. Morita, K. Yokoyama and E. Tamiya, “Development of a microchamber array for picoliter PCR”, Anal. Chem. 73, 1043–1047 (2001). http://dx.doi.org/10.1021/ac000648u
- M. U. Kopp, A. J. De Mello and A. Manz, “Chemical amplification: continuous-flow PCR on a chip”, Science 280, 1046–1048 (1998). http://dx.doi.org/10.1126/science.280.5366.1046
- W. M. Wu and N.Y. Lee, “Three-dimensional onchip continuous-flow polymerase chain reaction employing a single heater”, Anal. Bioanal. Chem. 400, 2053–2060 (2011). http://dx.doi.org/10.1007/s00216-011-4947-x
- K. H. Chung, Y. H. Choi and M. Y. Jung, “Natural convection PCR in a disposable polymer chip”, IEEE SENSORS 1–3, 1217–1220 (2009). http://dx.doi.org/10.1109/ICSENS.2009.5398367
- D. Braun, “PCR by thermal convection”, Mod. Phys. Lett. B 18, 775–784 (2004). http://dx.doi.org/10.1142/S0217984904007049
- J. W. Hong, V. Studer, G. Hang, W. F. Anderson and S.R. Quake, “A nanoliter-scale nucleic acid processor with parallel architecture”, Nat. Biotechnol. 22, 435–439 (2004). http://dx.doi.org/10.1038/nbt951
- I. Schneegass, R. Brautigam and J.M. Kohler, “Miniaturized flow-through PCR with different template types in a silicon chip thermocycler”, Lab Chip 1, 42–49 (2001). http://dx.doi.org/10.1039/b103846j
- T. Fukuba, T. Yamamoto, T. Naganuma and T. Fujii, “Microfabricated flow-through device for DNA amplification—towards in situ gene analysis”, Chem. Eng. J. 101, 151–156 (2004). http://dx.doi.org/10.1016/j.cej.2003.11.016
- J. A. Kim, J. Y. Lee, S. Seong, S. H. Cha, S. H. Lee, J. J. Kim and T.H. Park, “Fabrication and characterization of a PDMS-glass hybrid continuous-flow PCR chip”, Biochem. Eng. J. 29, 91–97 (2006). http://dx.doi.org/10.1016/j.bej.2005.02.032
- M. M. Kiss, L. Ortoleva-Donnelly, N. R. Beer, et al., “High-throughput quantitative polymerase chain reaction in picoliter droplets”, Anal. Chem. 80, 8975–8981 (2008). http://dx.doi.org/10.1021/ac801276c
- M. Srisa-Art, A. J. deMello and J. B. Edel, “Highthroughput DNA droplet assays using picoliter reactor volumes”, Anal. Chem. 79, 6682–6689 (2007). http://dx.doi.org/10.1021/ac070987o
- A. L. Markey, S. Mohr and P. J. R. Day, “Highthroughput droplet PCR”, Methods 50, 277–281 (2010). http://dx.doi.org/10.1016/j.ymeth.2010.01.030
- K. Matsuda, A. Yamaguchi, C. Taira, A. Sueki, H. Koeda, F. Takagi, M. Sugano and T. Honda, “A novel high-speed droplet-polymerase chain reaction can detect human influenza virus in less than 30 min”, Clinica Chimica Acta 413, 1742–1745 (2012). http://dx.doi.org/10.1016/j.cca.2012.06.026
- A. Fallah-Araghi, J. C. Baret, M. Ryckelynck and A. D. Griffiths, “A completely in vitro ultrahighthroughput droplet-based microfluidic screening system for protein engineering and directed evolution”, Lab Chip 12, 882–891 (2012). http://dx.doi.org/10.1039/c2lc21035e
- Z. Zhu, W. H. Zhang, X. F. Leng, M. X. Zhang, Z. C. Guan, J. Q. Liu and C. J. Yang, “Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level”, Lab Chip 12, 3907–3913 (2012). http://dx.doi.org/10.1039/c2lc40461c
- L. Mazutis, A. F. Araghi, O. J. Miller, et al., “Dropletbased microfluidic systems for high-throughput single dna molecule isothermal amplification and analysis”, Anal. Chem. 81, 4813–4821 (2009). http://dx.doi.org/10.1021/ac900403z
- T. Konry, I. Smolina, J. M. Yarmush, D. Irimia and M. L. Yarmush, “Ultrasensitive detection of lowabundance surface-marker protein using isothermal rolling circle amplification in a microfluidic nanoliter platform”, Small 7, 395–400 (2011). http://dx.doi.org/10.1002/smll.201001620
- A. Gansen, A. M. Herrick, I. K. Dimov, L. P. Lee and D. T. Chiu, “Digital LAMP in a sample self-digitization (SD) chip”, Lab Chip 12, 2247–2254 (2012). http://dx.doi.org/10.1039/c2lc21247a
- B. M. Paegel, C. A. Emrich, G. J. Wedemayer, J. R. Scherer and R.A. Mathies, “High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor”, Proc. Natl. Acad. Sci. USA 99, 574–579 (2002). http://dx.doi.org/10.1073/pnas.012608699
- L. M. Adleman, “Molecular computation of solutions to combinatorial problems”, Science, New Series 266, 1021–1024 (1994). http://dx.doi.org/10.1126/science.7973651
- K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori and M. Hagiya, “Molecular computation by DNA hairpin formation”, Science 288, 1223–1226 (2000). http://dx.doi.org/10.1126/science.288.5469.1223
- A. Gehani and J. Reif, “Micro flow bio-molecular computation”, Biosystems 52, 197–216 (1999). http://dx.doi.org/10.1016/S0303-2647 (99)00048-9
- W. H. Grover and R. A. Mathies, “An integrated microfluidic processor for single nucleotide polymorphism-based DNA computing”, Lab Chip 5, 1033–1040 (2005). http://dx.doi.org/10.1039/b505840f
- H. N. Joensson and H. Andersson-Svahn, “Droplet microfluidics—a tool for protein engineering and analysis”, Lab Chip 11, 4144–4147 (2011). http://dx.doi.org/10.1039/c1lc90102h
- H. Salimi-Moosavi, P. Rathanaswami, S. Rajendran, M. Toupikov and J. Hill, “Rapid affinity measurement of protein-protein interactions in a microfluidic platform”, Anal. Biochem. 401, 134–141 (2012). http://dx.doi.org/10.1016/j.ab.2012.04.023
- B. Zheng, L. S. Roach and R. F. Ismagilov, “Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets”, J. Am. Chem. Soc. 125, 11170–11171 (2003). http://dx.doi.org/10.1021/ja037166v
- L. Li, D. Mustafi, Q. Fu, V. Tereshko, D. L. Chen, J. D. Tice and R. F. Ismagilov, “Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins”, Proc. Natl. Acad. Sci. USA 103, 19243–19248 (2006). http://dx.doi.org/10.1073/pnas.0607502103
- J. W. Choi, D. K. Kang, H. Park, A. J. deMello and S. I. Chang, “High-throughput analysis of protein-protein interactions in picoliter-volume droplets using fluorescence polarization”, Anal. Chem. 84, 3849–3854 (2012). http://dx.doi.org/10.1021/ac300414g
- R. P. Hertzberg and A. J. Pope, “High-throughput screening: new technology for the 21st century”, Curr. Opin. Chem. Biol. 4, 445–451 (2000). http://dx.doi.org/10.1016/S1367-5931(00)00110-1
- X. Z. Niu, F. Gielen, J. B. Edel and A. J. deMello, “A microdroplet dilutor for high-throughput screening”, Nature Chem. 3, 437–442 (2011). http://dx.doi.org/10.1038/nchem.1046
- L. Granieri, J. C. Baret, A. D. Griffiths and C. A. Merten, “High-throughput screening of enzymes by retroviral display using droplet-based microfluidics”, Chem. Biol. 17, 229–235 (2010). http://dx.doi.org/10.1016/j.chembiol.2010.02.011
- E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon and M. L. Samuels, “Droplet microfluidic technology for single-cell highthroughput screening”, Proc. Natl. Acad. Sci. USA 106, 14195–14200 (2009). http://dx.doi.org/10.1073/pnas.0903542106
- V. Trivedi, A. Doshi, G. Kurup, E. Ereifej, P. Vandevord and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening”, Lab Chip 10, 2433–2442 (2010). http://dx.doi.org/10.1039/c004768f
References
G. M. Whitesides, “The origins and the future of microfluidics”, Nature 442, 368–373 (2006). http://dx.doi.org/10.1038/nature05058
A. Manz, N. Graber and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing”, Sens. Actuators B 1, 244–248 (1990). http://dx.doi.org/10.1016/0925-4005(90)80209-I
D. Lombardi and P. S. Dittrich, “Advances in microfluidics for drug discovery”, Expert Opin. Drug Dis. 5, 1081–1094 (2010). http://dx.doi.org/10.1517/17460441.2010.521149
T. Thorsen, S. J. Maerkl and S. R. Quake, “Microfluidic large-scale integration”, Science 298, 580–584 (2002). http://dx.doi.org/10.1126/science.1076996
A. J. Demello, “Control and detection of chemical reactions in microfluidic systems“, Nature 442, 394–402 (2006). http://dx.doi.org/10.1038/nature05062
X. D. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis”, Nature Photon. 5, 591–597 (2011). http://dx.doi.org/10.1038/nphoton.2011.206
A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, “Microfluidic control of cell pairing and fusion”, Nat. Methods 6, 147–152 (2009). http://dx.doi.org/10.1038/nmeth.1290
J. D. Chen, D. Chen, T. Yuan and X. Chen, “Microfluidic PCR chips”, Nano Biomed. Eng. 3, 203–210 (2011). http://dx.doi.org/10.5101/nbe.v3i4.p203-210
P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery”, Nat. Rev. Drug Discov. 5, 210–218 (2006). http://dx.doi.org/10.1038/nrd1985
H. X. Du, Z. G. Wang, Z. L. Yang, D. Chen, J. D. Chen and R. J. Hu, “Separation of circulating cancer cells by uniquemicrofluidic chip in colorectal cancerr” Oncology Research 19, 487–500 (2012). http://dx.doi.org/10.3727/096504012x13286534482476
Y. J. Song, J. Hormes and C. S. S. R. Kumar, “Microfluidic synthesis of nanomaterials”, Small 4, 698–711 (2008). http://dx.doi.org/10.1002/smll.200701029
I. Doh, E. Y. Erdem and A. P. Pisano, “Trapping and collection of uniform size droplets for nanoparticle synthesis”, Appl. Phys. Lett. 100, 074106–074108 (2012) http://dx.doi.org/10.1063/1.3685695
N. Yamaguchi, M. Torii, Y. Uebayashi and M. Nasu, “Rapid, semiautomated quantification of bacterial cells in freshwater by using a microfluidic device for on-chip staining and counting”, Appl. Environ. Microbiol. 77, 1536–1539 (2011). http://dx.doi.org/10.1128/aem.01765-10
S. Neethirajan, I. Kobayashi, M. Nakajima, D. Wu, S. Nandagopal and F. Lin, “Microfluidics for food, agriculture and biosystems industries”, Lab Chip 11, 1574–1586 (2011). http://dx.doi.org/10.1039/c0lc00230e
H. A. Stone, A. D. Stroock and A. Ajdari, “Engineering flows in small devices microfluidics toward a lab-on-a-chip”, Annu. Rev. Fluid Mech., 36, 381–411 (2004). http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
D. J. Beebe, G. A. Mensing and G. M. Walker, “Physics and applications of microfluidics in biology”, Annu. Rev. Biomed. Eng. 4, 261–286 (2002). http://dx.doi.org/10.1146/annurev.bioeng.4.112601.125916
G. F. Christopher and S. L. Anna, “Microfluidic methods for generating continuous droplet streams”, J. Phys. D: Appl. Phys. 40, R319–R336 (2007). http://dx.doi.org/10.1088/0022-3727/40/19/R01
V. Hessel, H. Löwe and F. Schönfeld, “Micromixers—a review on passive and active mixing principles”, Chem. Eng. Sci. 60, 2479–2501 (2005). http://dx.doi.org/10.1016/j.ces.2004.11.033
L. Capretto, W. Cheng, M. Hill and X. Zhang, “Micromixing within microfluidic devices”, Top. Curr. Chem. 304, 27–68 (2011). http://dx.doi.org/10.1007/128_2011_150
P. B. Umbanhowar, V. Prasad and D. A. Weitz, “Monodisperse emulsion generation via drop break off in a coflowing stream”, Langmuir 16, 347–351 (2000). http://dx.doi.org/10.1021/la990101e
T. Thorsen, R. W. Roberts, F. H. Arnold and S. R. Quake, “Dynamic pattern formation in a vesiclegenerating microfluidic device”, Phys. Rev. Lett. 86, 4163–4166 (2001). http://dx.doi.org/10.1103/physrevlett.86.4163
S. L. Anna, N. Bontoux and H. A. Stone, “Formation of dispersions using “flow focusing” in microchannels”, Appl. Phys. Lett. 82, 364–366 (2003). http://dx.doi.org/10.1063/1.1537519
C. N. Baroud, F. Gallaire and R. Dangla, “Dynamics of microfluidic droplets”, Lab Chip 10, 2032–2045 (2010). http://dx.doi.org/10.1039/c001191f
S. Y. Teh, R. Lin, L. H. Hung and A. P. Lee, “Droplet microfluidics” Lab Chip 8, 198–220 (2008). http://dx.doi.org/10.1039/b715524g
A. S. Utada, A. Fernandez-Nieves, H. A. Stone and D. A. Weitz, “Dripping to jetting transitions in coflowing liquid streams”, Phys. Rev. Lett. 99, 94502–94505 (2007). http://dx.doi.org/10.1103/PhysRevLett.99.094502
X. C. I. Solvas and A. deMello, “Droplet microfluidics: recent developments and future application”, Chem. Commun. 47, 1936–1942 (2011). http://dx.doi.org/10.1039/c0cc02474k
A. C. Hatch, J. S. Fisher, A. R. Tovar, A. T. Hsieh, R. Lin, S. L. Pentoney, D. L. Yang and A. P. Lee, “1- million droplet array with wide-field fluorescence imaging for digital PCR”, Lab Chip 11, 3838–3845 (2011). http://dx.doi.org/10.1039/c1lc20561g
N. Bremond, A. R. Thiam and J. Bibette, “Decompressing emulsion droplets favors coalescence”, Phys. Rev. Lett. 100, 24501–24504 (2008). http://dx.doi.org/10.1103/PhysRevLett.100.024501
L. Mazutis, J. C. Baret and A. D. Griffiths, “A fast and efficient microfluidic system for highly selective oneto- one droplet fusion”, Lab Chip 9, 2665–2672 (2009). http://dx.doi.org/10.1039/b903608c
M. Chabert, K. D. Dorfman and J. L. Viovy, “Droplet fusion by alternating current (AC) field electrocoalescence in microchannels”, Electrophoresis 26, 3706–3715 (2005). http://dx.doi.org/0.1002/elps.200500109
R. M. Lorenz, J. S. Edgar, G. D. M. Jeffries and D.T. Chiu, “Microfluidic and optical systems for the on-demand generation and manipulation of single femtoliter-volume aqueous droplets”, Anal. Chem. 78, 6433–6439 (2006). http://dx.doi.org/10.1021/ac060748l
D. Link, S. L. Anna, D. A. Weitz and H. Stone, “Geometrically mediated breakup of drops in microfluidic devices”, Phys. Rev. Lett. 92, 54503–54506 (2004). http://dx.doi.org/10.1103/PhysRevLett.92.054503
A. M. Leshansky and L. M. Pismen, “Breakup of drops in a microfluidic T junction”, Phys. Fluids 21, 023303 (2009). http://dx.doi.org/10.1063/1.3078515
J. H. Choi, S. K. Lee, J. M. Lim, S. M. Yang and G. R. Yi, “Designed pneumatic valve actuators for controlled droplet breakup and generation”, Lab Chip 10, 456–461 (2010). http://dx.doi.org/10.1039/b915596a
A. R. Abate and D. A. Weitz, “Faster multiple emulsification with drop splitting”, Lab Chip 11, 1911–1915 (2011). http://dx.doi.org/10.1039/c0lc00706d
H. Song, Bringer, J. D. Tice, C. J. Gerdts and R. F. Ismagilov, “Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels”, Appl. Phys. Lett. 83, 4664–4666 (2003). http://dx.doi.org/10.1063/1.1630378
M. R. Bringer, C. J. Gerdts, H. Song, J. D. Tice and R. F. Ismagilov, “Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets”, Phil. Trans. R. Soc. Lond. A 362, 1087–1104 (2004). http://dx.doi.org/10.1098/rsta.2003.1364
N. T. Nguyen and Z. Wu, Microm, “Micromixers—a review”, J. Micromech. Microeng. 15, R1–R16 (2005). http://dx.doi.org/10.1088/0960-1317/15/2/R01
A. Huebner, D. Bratton, G. Whyte, M. Yang, C. Abell and F. Hollfelder, “Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays”, Lab Chip 9, 692–698 (2009). http://dx.doi.org/10.1039/b813709a
Y. P. Bai, X. M. He, D. S. Liu, S. N. Patil, D. Bratton, A. Huebner, F. Hollfelder, C. Abell and W. T. S. Huck, “A double droplet trap system for studying mass transport across a droplet-droplet interface”, Lab Chip 10, 1281–1285 (2010). http://dx.doi.org/10.1039/b925133b
J. Xu, B. Ahn, H. Lee, L. F. Xu, K. Lee, R. Panchapakesan and K. W. Oh, “Droplet-based microfluidic device for multiple-droplet clustering”, Lab Chip 12, 725–730 (2012). http://dx.doi.org/10.1039/c2lc20883k
W. B. Du, L. Li, K. P. Nichols and R. F. Ismagilov, “SlipChip”, Lab Chip 9, 2286–2292 (2009). http://dx.doi.org/10.1039/b908978k
L. Li, W. B. Du and R. F. Ismagilov, “User-loaded SlipChip for equipment-free multiplexed nanoliterscale experiments”, J. Am. Chem. Soc. 132, 106–111 (2009). http://dx.doi.org/10.1021/ja908555n
D. Belder, “Screening in one sweep using the SlipChip”, Angew. Chem. Int. Ed. 49, 6484–6486 (2010). http://dx.doi.org/10.1002/anie.201002059
F. Shen, W. B. Du, J. E. Kreutz, A. Fok and R. F. Ismagilov, “Digital PCR on a SlipChip”, Lab Chip 10, 2666–2672 (2010). http://dx.doi.org/10.1039/c004521g
F. Shen, W. B. Du, E. K. Davydova, M. A. Karymov, J. Pandey and R. F. Ismagilov, “Nanoliter multiplex PCR arrays on a SlipChip”, Anal. Chem. 82, 4606–4612 (2010). http://dx.doi.org/10.1021/ac1007249
F. Shen, B. Sun, J. E. Kreutz, E. K. Davydova, W. B. Du, P. L. Reddy, L. J. Joseph, and R. F. Ismagilov, “Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational SlipChip tested with HIV and Hepatitis C viral load”, J. Am. Chem. Soc. 133, 17705–177712 (2011). http://dx.doi.org/10.1021/ja2060116
W. S. Liu, D. L. Chen, W. B. Du, K. P. Nichols and R. F. Ismagilov, “SlipChip for immunoassays in nanoliter volumes”, Anal. Chem. 82, 3272–3282 (2010). http://dx.doi.org/10.1021/ac100044c
C. Martino, M. Zagnoni, M. E. Sandison, M. Chanasakulniyom, A. R. Pitt and J. M. Cooper, “Intracellular protein determination using droplet-based immunoassays”, Anal. Chem. 83, 5361–5368 (2011). http://dx.doi.org/10.1021/ac200876q
L. Li, W. Du and R. F. Ismagilov, “Multiparameter screening on SlipChip used for nanoliter protein crystallization combining free interface diffusion and microbatch methods”, J. Am. Chem. Soc. 132, 112–119 (2009). http://dx.doi.org/10.1021/ja908558m
P. Mitchell, “Microfluidics—downsizing large-scale biology”, Nature Biotechnology 19, 717–721 (2001). http://dx.doi.org/10.1038/90754
A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han and C. T. Lim, “Microfluidics for cell separation”, Med. Biol. Eng. Comput. 48, 999–1014 (2010). http://dx.doi.org/10.1007/s11517-010-0611-4
M. Murata, Y. Okamoto, Y. S. Park, N. Kaji, M. Tokeshi and Y. Baba, “Cell separation by the combination of microfluidics and optical trapping force on a microchip”, Anal. Bioanal. Chem. 394, 277–283 (2009). http://dx.doi.org/10.1007/s00216-009-2648-5
W. Y. Lin, Y. H. Lin and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces”, Microfluid. Nanofluid. 8, 217–229 (2010). http://dx.doi.org/10.1007/s10404-009-0457-y
M. S. Sakar, E. B. Steager, M. J. Kim, G. J. Pappas and V. Kumar, “Single cell manipulation using ferromagnetic composite microtransporters”, Appl. Phys. Lett. 96, 043705–043707 (2010). http://dx.doi.org/10.1063/1.3293457
T. Laurell, F. Petersson and A. Nilsson, “Chip integrated strategies for acoustic separation and manipulation of cells and particles”, Chem. Soc. Rev. 36, 492–506 (2006). http://dx.doi.org/10.1039/b601326k
D. Di Carlo, L. Y. Wu and L. P. Lee, “Dynamic single cell culture array”, Lab Chip, 6, 1445–1449 (2006). http://dx.doi.org/10.1039/b605937f
H. W. Wu, C. C. Lin and G. B. Lee, “Stem cells in microfluidics”, Biomicrofluidics 5, 013401–013426 (2011). http://dx.doi.org/10.1063/1.3528299
W. Shi, L. Guo, H. Kasdan and Y.C. Tai, “Fourpart leukocyte differential count based on sheathless microflow cytometer and fluorescent dye assay”, Lab Chip 13, 1257–1265 (2013). http://dx.doi.org/10.1039/c3lc41059e
D. M. Titmarsh, H. Chen, E. J. Wolvetang and J. J. Cooper-White, “Arrayed cellular environments for stem cells and regenerative medicine”, Biotechnol. J 8, 167–179 (2012). http://dx.doi.org/10.1002/biot.201200149
E. Leclerc, Y. Sakai and T. Fujii, “Biomed. Cell Culture in 3-Dimensional Microfluidic Structure of PDMS (polydimethylsiloxane)”, Microdevices 5, 109–114 (2003). http://dx.doi.org/10.1023/A:1024583026925
R. Gomez-Sjoberg, A. A. Leyrat, D. M. Pirone, C. S. Chen and S. R. Quake, Versatile, “Fully automated, microfluidic cell culture system”, Anal. Chem. 79, 8557–8563 (2007). http://dx.doi.org/10.1021/ac071311w
N. Ye, J. H. Qin, X. Liu, W. W. Shi and B. C. Lin, “Characterizing doxorubicin-induced apoptosis in HepG2 cells using an integrated microfluidic device”, Electrophoresis 28, 1146–1153 (2007). http://dx.doi.org/10.1002/elps.200600450
M. Srisa-Art, I. C. Bonzani, A. Williams, M. M. Stevens and J. B. Edel, “Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics”, Analyst 134, 2239–2245 (2009). http://dx.doi.org/10.1039/b910472k
D. Bogojevic, M. D. Chamberlain, I. Barbulovic-Nad and A. R. Wheeler, “A digital microfluidic method for multiplexed cell-based apoptosis assays”, Lab Chip 12, 627–634 (2012). http://dx.doi.org/10.1039/c2lc20893h
S. Q. Gu, Y. X. Zhang, Y. Zhu, W. B. Du, B. Yao and Q. Fang, “Multifunctional picoliter droplet manipulation platform and its application in single cell analysis”, Anal. Chem. 83, 7570–7576 (2011). http://dx.doi.org/10.1021/ac201678g
P. Stano and P. L. Luisi, “Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells”, Chem. Commun. 46, 3639–3653 (2010). http://dx.doi.org/10.1039/b913997d
M. Takinoue and S. Takeuchi, “Droplet microfluidics for the study of artificial cells”, Anal. Bioanal. Chem. 400, 1705–1716 (2011). http://dx.doi.org/10.1007/s00216-011-4984-5
A. Jimenez, M. Roché, M. Pinot, P. Panizza, L. Courbin and Z. Gueroui, “Towards high throughput production of artificial egg oocytes using microfluidics”, Lab Chip 11, 429–434 (2010). http://dx.doi.org/10.1039/c0lc00046a
S. Matosevic and B. M. Paegel, “Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line”, J. Am. Chem. Soc. 133, 2798–2800 (2011). http://dx.doi.org/10.1021/ja109137s
J. Chen, J. Li and Y. Sun, “Microfluidic approaches for cancer cell detection, characterization, and separation”, Lab Chip 12, 1753–1767 (2012). http://dx.doi.org/10.1039/c2lc21273k
S. Nagrath, L. V. Sequist, S. Maheswaran, et al. “Isolation of rare circulating tumour cells in cancer patients by microchip technology”, Nature 450, 1235–1239 (2007). http://dx.doi.org/10.1038/nature06385
Z. C. Gong, H. Zhao, T. H. Zhang, et al. “Drug effects analysis on cells using a high throughput microfluidic chip”, Biomed. Microdevices 13, 215–219 (2011). http://dx.doi.org/10.1007/s10544-010-9486-2
M. J. Jebrail, M. S. Bartsch and K. D. Patel, “Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine”, Lab Chip 12, 2452–2463 (2012). http://dx.doi.org/10.1039/c2lc40318h
R. K. Saiki, S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich and N. Arnheim, “Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia”, Science 230, 1350–1354 (1985). http://dx.doi.org/10.1126/science.2999980
M. A. Northrup, M. T. Ching, R. M. White and R. T. Watson. In tranducer’93, seventh international conference on solid state Sens Actuators, Yokohama, Japan. ISBN: 4-9900247-2-9. 924 (1993).
H. Nagai, Y. Murakami, Y. Morita, K. Yokoyama and E. Tamiya, “Development of a microchamber array for picoliter PCR”, Anal. Chem. 73, 1043–1047 (2001). http://dx.doi.org/10.1021/ac000648u
M. U. Kopp, A. J. De Mello and A. Manz, “Chemical amplification: continuous-flow PCR on a chip”, Science 280, 1046–1048 (1998). http://dx.doi.org/10.1126/science.280.5366.1046
W. M. Wu and N.Y. Lee, “Three-dimensional onchip continuous-flow polymerase chain reaction employing a single heater”, Anal. Bioanal. Chem. 400, 2053–2060 (2011). http://dx.doi.org/10.1007/s00216-011-4947-x
K. H. Chung, Y. H. Choi and M. Y. Jung, “Natural convection PCR in a disposable polymer chip”, IEEE SENSORS 1–3, 1217–1220 (2009). http://dx.doi.org/10.1109/ICSENS.2009.5398367
D. Braun, “PCR by thermal convection”, Mod. Phys. Lett. B 18, 775–784 (2004). http://dx.doi.org/10.1142/S0217984904007049
J. W. Hong, V. Studer, G. Hang, W. F. Anderson and S.R. Quake, “A nanoliter-scale nucleic acid processor with parallel architecture”, Nat. Biotechnol. 22, 435–439 (2004). http://dx.doi.org/10.1038/nbt951
I. Schneegass, R. Brautigam and J.M. Kohler, “Miniaturized flow-through PCR with different template types in a silicon chip thermocycler”, Lab Chip 1, 42–49 (2001). http://dx.doi.org/10.1039/b103846j
T. Fukuba, T. Yamamoto, T. Naganuma and T. Fujii, “Microfabricated flow-through device for DNA amplification—towards in situ gene analysis”, Chem. Eng. J. 101, 151–156 (2004). http://dx.doi.org/10.1016/j.cej.2003.11.016
J. A. Kim, J. Y. Lee, S. Seong, S. H. Cha, S. H. Lee, J. J. Kim and T.H. Park, “Fabrication and characterization of a PDMS-glass hybrid continuous-flow PCR chip”, Biochem. Eng. J. 29, 91–97 (2006). http://dx.doi.org/10.1016/j.bej.2005.02.032
M. M. Kiss, L. Ortoleva-Donnelly, N. R. Beer, et al., “High-throughput quantitative polymerase chain reaction in picoliter droplets”, Anal. Chem. 80, 8975–8981 (2008). http://dx.doi.org/10.1021/ac801276c
M. Srisa-Art, A. J. deMello and J. B. Edel, “Highthroughput DNA droplet assays using picoliter reactor volumes”, Anal. Chem. 79, 6682–6689 (2007). http://dx.doi.org/10.1021/ac070987o
A. L. Markey, S. Mohr and P. J. R. Day, “Highthroughput droplet PCR”, Methods 50, 277–281 (2010). http://dx.doi.org/10.1016/j.ymeth.2010.01.030
K. Matsuda, A. Yamaguchi, C. Taira, A. Sueki, H. Koeda, F. Takagi, M. Sugano and T. Honda, “A novel high-speed droplet-polymerase chain reaction can detect human influenza virus in less than 30 min”, Clinica Chimica Acta 413, 1742–1745 (2012). http://dx.doi.org/10.1016/j.cca.2012.06.026
A. Fallah-Araghi, J. C. Baret, M. Ryckelynck and A. D. Griffiths, “A completely in vitro ultrahighthroughput droplet-based microfluidic screening system for protein engineering and directed evolution”, Lab Chip 12, 882–891 (2012). http://dx.doi.org/10.1039/c2lc21035e
Z. Zhu, W. H. Zhang, X. F. Leng, M. X. Zhang, Z. C. Guan, J. Q. Liu and C. J. Yang, “Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level”, Lab Chip 12, 3907–3913 (2012). http://dx.doi.org/10.1039/c2lc40461c
L. Mazutis, A. F. Araghi, O. J. Miller, et al., “Dropletbased microfluidic systems for high-throughput single dna molecule isothermal amplification and analysis”, Anal. Chem. 81, 4813–4821 (2009). http://dx.doi.org/10.1021/ac900403z
T. Konry, I. Smolina, J. M. Yarmush, D. Irimia and M. L. Yarmush, “Ultrasensitive detection of lowabundance surface-marker protein using isothermal rolling circle amplification in a microfluidic nanoliter platform”, Small 7, 395–400 (2011). http://dx.doi.org/10.1002/smll.201001620
A. Gansen, A. M. Herrick, I. K. Dimov, L. P. Lee and D. T. Chiu, “Digital LAMP in a sample self-digitization (SD) chip”, Lab Chip 12, 2247–2254 (2012). http://dx.doi.org/10.1039/c2lc21247a
B. M. Paegel, C. A. Emrich, G. J. Wedemayer, J. R. Scherer and R.A. Mathies, “High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor”, Proc. Natl. Acad. Sci. USA 99, 574–579 (2002). http://dx.doi.org/10.1073/pnas.012608699
L. M. Adleman, “Molecular computation of solutions to combinatorial problems”, Science, New Series 266, 1021–1024 (1994). http://dx.doi.org/10.1126/science.7973651
K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori and M. Hagiya, “Molecular computation by DNA hairpin formation”, Science 288, 1223–1226 (2000). http://dx.doi.org/10.1126/science.288.5469.1223
A. Gehani and J. Reif, “Micro flow bio-molecular computation”, Biosystems 52, 197–216 (1999). http://dx.doi.org/10.1016/S0303-2647 (99)00048-9
W. H. Grover and R. A. Mathies, “An integrated microfluidic processor for single nucleotide polymorphism-based DNA computing”, Lab Chip 5, 1033–1040 (2005). http://dx.doi.org/10.1039/b505840f
H. N. Joensson and H. Andersson-Svahn, “Droplet microfluidics—a tool for protein engineering and analysis”, Lab Chip 11, 4144–4147 (2011). http://dx.doi.org/10.1039/c1lc90102h
H. Salimi-Moosavi, P. Rathanaswami, S. Rajendran, M. Toupikov and J. Hill, “Rapid affinity measurement of protein-protein interactions in a microfluidic platform”, Anal. Biochem. 401, 134–141 (2012). http://dx.doi.org/10.1016/j.ab.2012.04.023
B. Zheng, L. S. Roach and R. F. Ismagilov, “Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets”, J. Am. Chem. Soc. 125, 11170–11171 (2003). http://dx.doi.org/10.1021/ja037166v
L. Li, D. Mustafi, Q. Fu, V. Tereshko, D. L. Chen, J. D. Tice and R. F. Ismagilov, “Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins”, Proc. Natl. Acad. Sci. USA 103, 19243–19248 (2006). http://dx.doi.org/10.1073/pnas.0607502103
J. W. Choi, D. K. Kang, H. Park, A. J. deMello and S. I. Chang, “High-throughput analysis of protein-protein interactions in picoliter-volume droplets using fluorescence polarization”, Anal. Chem. 84, 3849–3854 (2012). http://dx.doi.org/10.1021/ac300414g
R. P. Hertzberg and A. J. Pope, “High-throughput screening: new technology for the 21st century”, Curr. Opin. Chem. Biol. 4, 445–451 (2000). http://dx.doi.org/10.1016/S1367-5931(00)00110-1
X. Z. Niu, F. Gielen, J. B. Edel and A. J. deMello, “A microdroplet dilutor for high-throughput screening”, Nature Chem. 3, 437–442 (2011). http://dx.doi.org/10.1038/nchem.1046
L. Granieri, J. C. Baret, A. D. Griffiths and C. A. Merten, “High-throughput screening of enzymes by retroviral display using droplet-based microfluidics”, Chem. Biol. 17, 229–235 (2010). http://dx.doi.org/10.1016/j.chembiol.2010.02.011
E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon and M. L. Samuels, “Droplet microfluidic technology for single-cell highthroughput screening”, Proc. Natl. Acad. Sci. USA 106, 14195–14200 (2009). http://dx.doi.org/10.1073/pnas.0903542106
V. Trivedi, A. Doshi, G. Kurup, E. Ereifej, P. Vandevord and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening”, Lab Chip 10, 2433–2442 (2010). http://dx.doi.org/10.1039/c004768f