Continuous Fabrication of Ti3C2Tx MXene-Based Braided Coaxial Zinc-Ion Hybrid Supercapacitors with Improved Performance
Corresponding Author: Guozhen Shen
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 34
Abstract
Zinc-ion hybrid fiber supercapacitors (FSCs) are promising energy storages for wearable electronics owing to their high energy density, good flexibility, and weavability. However, it is still a critical challenge to optimize the structure of the designed FSC to improve energy density and realize the continuous fabrication of super-long FSCs. Herein, we propose a braided coaxial zinc-ion hybrid FSC with several meters of Ti3C2Tx MXene cathode as core electrodes, and shell zinc fiber anode was braided on the surface of the Ti3C2Tx MXene fibers across the solid electrolytes. According to the simulated results using ANSYS Maxwell software, the braided structures revealed a higher capacitance compared to the spring-like structures. The resulting FSCs exhibited a high areal capacitance of 214 mF cm–2, the energy density of 42.8 μWh cm−2 at 5 mV s−1, and excellent cycling stability with 83.58% capacity retention after 5000 cycles. The coaxial FSC was tied several kinds of knots, proving a shape-controllable fiber energy storage. Furthermore, the knitted FSC showed superior stability and weavability, which can be woven into watch belts or embedded into textiles to power smart watches and LED arrays for a few days.
Highlights:
1 Ti3C2Tx MXene-based coaxial zinc-ion hybrid fiber supercapacitors (FSCs) were fabricated with braided structure, which can be prepared continuously and present excellent flexibility and ultrastability.
2 A sports watch driven by the watch belts which weaved uses the obtained zinc-ion hybrid FSC and LED arrays lighted by the FSCs under embedding into textiles, demonstrating the great potential application in smart wearable textiles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Ma, R. Wu, A. Patil, S. Zhu, Z. Meng et al., Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 29, 1904549 (2019). https://doi.org/10.1002/adfm.201904549
- J. Xiong, J. Chen, P. Lee, Functional fibers and fabrics for soft robotics, wearables, and human robot interface. Adv. Mater. (2020). https://doi.org/10.1002/adma.202002640
- J. An, Y. Ma, M. He, J. Yan, C. Zhang et al., A wearable and highly sensitive textile-based pressure sensor with Ti3C2Tx nanosheets. Sensor Actuat. A-Phys. 311, 112081 (2020). https://doi.org/10.1016/j.sna.2020.112081
- J. Shirley, S. Florence, B. Sreeja, G. Padmalaya, S. Radha, Zinc oxide nanostructure-based textile pressure sensor for wearable applications. J. Mater. Sci. Mater. El. 31, 16519–16530 (2020). https://doi.org/10.1007/s10854-020-04206-9
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 10, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
- L. Li, D. Chen, G.Z. Shen, All-Ti3C2TxMXene based flexible on-chip microsupercapacitor array. Chem. Res. Chinese Univ. 36, 694–698 (2020). https://doi.org/10.1007/s40242-020-0197-9
- L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zin cion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
- X. Chen, L. Qiu, J. Ren, G. Guan, H. Lin et al., Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 25, 6436 (2013). https://doi.org/10.1002/adma.201301519
- H. Wang, M. Wang, Y. Tang, A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 13, 1–7 (2018). https://doi.org/10.1016/j.ensm.2017.12.022
- S. Seyedin, S. Uzun, A. Levitt, B. Anasori, G. Dion et al., MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv. Funct. Mater. 30, 1910504 (2020). https://doi.org/10.1002/adfm.201910504
- L. Li, W. Liu, K. Jiang, D. Chen, F. Qu et al., In-situ annealed Ti3C2Tx MXene based all-solid-state flexible zn-ion hybrid micro supercapacitor array with enhanced stability. Nano-Micro Lett. 13, 100 (2021). https://doi.org/10.1007/s40820-021-00634-2
- J. Zhang, S. Seyedin, Z. Gu, W. Yang, X. Wang, MXene: a potential candidate for yarn supercapacitors. Nanoscale 9, 18604–18608 (2017). https://doi.org/10.1039/c7nr06619h
- S. Seyedin, E. Yanza, J. Razal, Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. J. Mater. Chem. A 5, 24076–24082 (2017). https://doi.org/10.1039/c7ta08355f
- S. Uzun, S. Seyedin, A. Stoltzfus, A. Levitt, M. Alhabeb et al., Knittable and washable multifunctional MXene-coated cellulose yarns. Adv. Funct. Mater. 29, 1905015 (2019). https://doi.org/10.1002/adfm.201905015
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- M. Lukatskaya, O. Mashtalir, C. Ren, Y. Dall’ Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two dimensional titanium carbide. Science. 341, 1502 (2013). https://doi.org/10.1126/science.1241488
- Z. Ling, C. Ren, M. Zhao, J. Yang, J. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 111, 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
- M. Levi, M. Lukatskaya, S. Sigalov, M. Beidaghi, N. Shpigel et al., Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv. Energy Mater. 5, 1400815 (2015). https://doi.org/10.1002/aenm.201400815
- M. Lukatskaya, S. Bak, X. Yu, X. Yang, M. Barsoum et al., Probing the meshanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 5, 1500589 (2015). https://doi.org/10.1002/aenm.201500589
- N. Wang, J. Liu, Y. Zhao, M. Hu, R. Qin et al., Laser-cutting fabrication of mxene-based flexible micro-supercapacitors with high areal capacitance. ChemNanoMat 5, 658–665 (2019). https://doi.org/10.1002/cnma.201800674
- H. Lv, Q. Pan, Y. Song, X. Liu, T. Liu, A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors. Nano-Micro Lett. 12, 118 (2020). https://doi.org/10.1007/s40820-020-00451-z
- C. Li, X. Zhang, K. Wang, F. Su, C. Chen et al., Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. J. Energy Chem. 54, 352–367 (2021). https://doi.org/10.1016/j.jechem.2020.05.058
- C. Li, X. Zhang, Z. Lv, K. Wang, X. Sun et al., Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors. Chem. Eng. J. 414, 128781 (2021). https://doi.org/10.1016/j.cej.2021.128781
- Z. Yang, J. Deng, X. Chen, J. Ren, H.S. Peng, A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed. 52, 13453–13457 (2013). https://doi.org/10.1002/anie.201307619
- H. Sun, Y. Zhang, J. Zhang, X. Sun, H. Peng, Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2, 17023 (2017). https://doi.org/10.1038/natrevmats.2017.23
- Y. Meng, Y. Zhao, C. Hu, H. Cheng, Z. Zhang et al., All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25, 2326–2331 (2013). https://doi.org/10.1002/adma.201300132
- X. Wang, Z. Zhou, Z. Sun, J. Hah, Y. Yao et al., Atomic modulation of 3D conductive frameworks boost performance of MnO2 for coaxial fiber-shaped supercapacitors. Nano-Micro Lett. 13, 4 (2021). https://doi.org/10.1007/s40820-020-00529-8
- C. Choi, J. Lee, A. Choi, Y. Kim, X. Lepro et al., Flexible Supercapacitor Made of Carbon Nanotube Yarn with Internal Pores. Adv. Mater. 26, 2059–2065 (2014). https://doi.org/10.1002/adma.201304736
- L. Li, Z. Lou, D. Chen, G.Z. Shen, Hollow polypyrrole sleeve based coaxial fiber supercapacitors for wearable integrated photosensing system. Adv. Mater. Technol. 3, 1800115 (2018). https://doi.org/10.1002/admt.201800115
- L. Wang, D. Shao, J. Guo, S. Zhang, Y. Lu, A MXene-coated activated carbon cloth for flexible solid-state supercapacitor. Energy Technol. Ger. 8, 1901003 (2020). https://doi.org/10.1002/ente.201901003
- M. Hu, T. Hu, R. Cheng, J. Yang, C. Cui et al., MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application. Energy Chem. 27, 161–166 (2018). https://doi.org/10.1016/j.jechem.2017.10.030
- L. Weng, F. Qi, Y. Min, The Ti3C2Tx MXene coated metal mesh electrodes for stretchable supercapacitors. Mater. Lett. 278, 128235 (2020). https://doi.org/10.1016/j.matlet.2020.128235
- A. Levitt, D. Hegh, P. Phillips, S. Uzun, M. Anayee et al., 3D knitted energy storage textiles using MXene-coated yarns. Mater. Today 34, 17–29 (2020). https://doi.org/10.1016/j.mattod.2020.02.005
- M. Hu, Z. Li, G. Li, T. Hu, C. Zhang et al., All solid state flexible fiber-based MXene supercapacitors. Adv. Mater. Technol. US. 2, 1700143 (2017). https://doi.org/10.1002/admt.201700143
- N. Wang, J. Liu, Y. Zhao, M. Hua, R. Qin et al., Laser-cutting fabrication of MXene-based flexible micro-supercapacitors with high areal capacitance. ChemNanoMat 5, 658–665 (2019). https://doi.org/10.1002/cnma.201800674
- X. Zheng, X. Zhou, J. Xu, L. Zou, W. Nie et al., Highly stretchable CNT/MnO2 nanosheets fiber supercapacitors with high energy density. J Mater. Sci. 19, 8251–8263 (2020). https://doi.org/10.1007/s10853-020-04608-4
- G. Lee, J. Kim, H. Park, J. Lee, H. Lee et al., Skin-like, dynamically stretchable, planar supercapacitors with buckled carbon nanotube/Mn−Mo mixed oxide electrodes and air-stable organic electrolyte. ACS Nano 13, 855–866 (2019). https://doi.org/10.1021/acsnano.8b08645
- H. Xiao, Z. Wu, F. Zhou, S. Zheng, D. Sui et al., Stretchable tandem micro-supercapacitors with high voltage output and exceptional mechanical robustness. Energy Storage Mater. 13, 233–240 (2018). https://doi.org/10.1016/j.ensm.2018.01.019
- J. Yun, C. Song, H. Lee, H. Park, Y. Jeong et al., Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy 49, 644–654 (2018). https://doi.org/10.1016/j.nanoen.2018.05.017
References
L. Ma, R. Wu, A. Patil, S. Zhu, Z. Meng et al., Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 29, 1904549 (2019). https://doi.org/10.1002/adfm.201904549
J. Xiong, J. Chen, P. Lee, Functional fibers and fabrics for soft robotics, wearables, and human robot interface. Adv. Mater. (2020). https://doi.org/10.1002/adma.202002640
J. An, Y. Ma, M. He, J. Yan, C. Zhang et al., A wearable and highly sensitive textile-based pressure sensor with Ti3C2Tx nanosheets. Sensor Actuat. A-Phys. 311, 112081 (2020). https://doi.org/10.1016/j.sna.2020.112081
J. Shirley, S. Florence, B. Sreeja, G. Padmalaya, S. Radha, Zinc oxide nanostructure-based textile pressure sensor for wearable applications. J. Mater. Sci. Mater. El. 31, 16519–16530 (2020). https://doi.org/10.1007/s10854-020-04206-9
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 10, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
L. Li, D. Chen, G.Z. Shen, All-Ti3C2TxMXene based flexible on-chip microsupercapacitor array. Chem. Res. Chinese Univ. 36, 694–698 (2020). https://doi.org/10.1007/s40242-020-0197-9
L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zin cion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
X. Chen, L. Qiu, J. Ren, G. Guan, H. Lin et al., Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 25, 6436 (2013). https://doi.org/10.1002/adma.201301519
H. Wang, M. Wang, Y. Tang, A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 13, 1–7 (2018). https://doi.org/10.1016/j.ensm.2017.12.022
S. Seyedin, S. Uzun, A. Levitt, B. Anasori, G. Dion et al., MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv. Funct. Mater. 30, 1910504 (2020). https://doi.org/10.1002/adfm.201910504
L. Li, W. Liu, K. Jiang, D. Chen, F. Qu et al., In-situ annealed Ti3C2Tx MXene based all-solid-state flexible zn-ion hybrid micro supercapacitor array with enhanced stability. Nano-Micro Lett. 13, 100 (2021). https://doi.org/10.1007/s40820-021-00634-2
J. Zhang, S. Seyedin, Z. Gu, W. Yang, X. Wang, MXene: a potential candidate for yarn supercapacitors. Nanoscale 9, 18604–18608 (2017). https://doi.org/10.1039/c7nr06619h
S. Seyedin, E. Yanza, J. Razal, Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. J. Mater. Chem. A 5, 24076–24082 (2017). https://doi.org/10.1039/c7ta08355f
S. Uzun, S. Seyedin, A. Stoltzfus, A. Levitt, M. Alhabeb et al., Knittable and washable multifunctional MXene-coated cellulose yarns. Adv. Funct. Mater. 29, 1905015 (2019). https://doi.org/10.1002/adfm.201905015
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
M. Lukatskaya, O. Mashtalir, C. Ren, Y. Dall’ Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two dimensional titanium carbide. Science. 341, 1502 (2013). https://doi.org/10.1126/science.1241488
Z. Ling, C. Ren, M. Zhao, J. Yang, J. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 111, 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
M. Levi, M. Lukatskaya, S. Sigalov, M. Beidaghi, N. Shpigel et al., Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv. Energy Mater. 5, 1400815 (2015). https://doi.org/10.1002/aenm.201400815
M. Lukatskaya, S. Bak, X. Yu, X. Yang, M. Barsoum et al., Probing the meshanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 5, 1500589 (2015). https://doi.org/10.1002/aenm.201500589
N. Wang, J. Liu, Y. Zhao, M. Hu, R. Qin et al., Laser-cutting fabrication of mxene-based flexible micro-supercapacitors with high areal capacitance. ChemNanoMat 5, 658–665 (2019). https://doi.org/10.1002/cnma.201800674
H. Lv, Q. Pan, Y. Song, X. Liu, T. Liu, A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors. Nano-Micro Lett. 12, 118 (2020). https://doi.org/10.1007/s40820-020-00451-z
C. Li, X. Zhang, K. Wang, F. Su, C. Chen et al., Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. J. Energy Chem. 54, 352–367 (2021). https://doi.org/10.1016/j.jechem.2020.05.058
C. Li, X. Zhang, Z. Lv, K. Wang, X. Sun et al., Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors. Chem. Eng. J. 414, 128781 (2021). https://doi.org/10.1016/j.cej.2021.128781
Z. Yang, J. Deng, X. Chen, J. Ren, H.S. Peng, A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed. 52, 13453–13457 (2013). https://doi.org/10.1002/anie.201307619
H. Sun, Y. Zhang, J. Zhang, X. Sun, H. Peng, Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2, 17023 (2017). https://doi.org/10.1038/natrevmats.2017.23
Y. Meng, Y. Zhao, C. Hu, H. Cheng, Z. Zhang et al., All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25, 2326–2331 (2013). https://doi.org/10.1002/adma.201300132
X. Wang, Z. Zhou, Z. Sun, J. Hah, Y. Yao et al., Atomic modulation of 3D conductive frameworks boost performance of MnO2 for coaxial fiber-shaped supercapacitors. Nano-Micro Lett. 13, 4 (2021). https://doi.org/10.1007/s40820-020-00529-8
C. Choi, J. Lee, A. Choi, Y. Kim, X. Lepro et al., Flexible Supercapacitor Made of Carbon Nanotube Yarn with Internal Pores. Adv. Mater. 26, 2059–2065 (2014). https://doi.org/10.1002/adma.201304736
L. Li, Z. Lou, D. Chen, G.Z. Shen, Hollow polypyrrole sleeve based coaxial fiber supercapacitors for wearable integrated photosensing system. Adv. Mater. Technol. 3, 1800115 (2018). https://doi.org/10.1002/admt.201800115
L. Wang, D. Shao, J. Guo, S. Zhang, Y. Lu, A MXene-coated activated carbon cloth for flexible solid-state supercapacitor. Energy Technol. Ger. 8, 1901003 (2020). https://doi.org/10.1002/ente.201901003
M. Hu, T. Hu, R. Cheng, J. Yang, C. Cui et al., MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application. Energy Chem. 27, 161–166 (2018). https://doi.org/10.1016/j.jechem.2017.10.030
L. Weng, F. Qi, Y. Min, The Ti3C2Tx MXene coated metal mesh electrodes for stretchable supercapacitors. Mater. Lett. 278, 128235 (2020). https://doi.org/10.1016/j.matlet.2020.128235
A. Levitt, D. Hegh, P. Phillips, S. Uzun, M. Anayee et al., 3D knitted energy storage textiles using MXene-coated yarns. Mater. Today 34, 17–29 (2020). https://doi.org/10.1016/j.mattod.2020.02.005
M. Hu, Z. Li, G. Li, T. Hu, C. Zhang et al., All solid state flexible fiber-based MXene supercapacitors. Adv. Mater. Technol. US. 2, 1700143 (2017). https://doi.org/10.1002/admt.201700143
N. Wang, J. Liu, Y. Zhao, M. Hua, R. Qin et al., Laser-cutting fabrication of MXene-based flexible micro-supercapacitors with high areal capacitance. ChemNanoMat 5, 658–665 (2019). https://doi.org/10.1002/cnma.201800674
X. Zheng, X. Zhou, J. Xu, L. Zou, W. Nie et al., Highly stretchable CNT/MnO2 nanosheets fiber supercapacitors with high energy density. J Mater. Sci. 19, 8251–8263 (2020). https://doi.org/10.1007/s10853-020-04608-4
G. Lee, J. Kim, H. Park, J. Lee, H. Lee et al., Skin-like, dynamically stretchable, planar supercapacitors with buckled carbon nanotube/Mn−Mo mixed oxide electrodes and air-stable organic electrolyte. ACS Nano 13, 855–866 (2019). https://doi.org/10.1021/acsnano.8b08645
H. Xiao, Z. Wu, F. Zhou, S. Zheng, D. Sui et al., Stretchable tandem micro-supercapacitors with high voltage output and exceptional mechanical robustness. Energy Storage Mater. 13, 233–240 (2018). https://doi.org/10.1016/j.ensm.2018.01.019
J. Yun, C. Song, H. Lee, H. Park, Y. Jeong et al., Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy 49, 644–654 (2018). https://doi.org/10.1016/j.nanoen.2018.05.017