Next-Generation Green Hydrogen: Progress and Perspective from Electricity, Catalyst to Electrolyte in Electrocatalytic Water Splitting
Corresponding Author: Aibing Chen
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 237
Abstract
Green hydrogen from electrolysis of water has attracted widespread attention as a renewable power source. Among several hydrogen production methods, it has become the most promising technology. However, there is no large-scale renewable hydrogen production system currently that can compete with conventional fossil fuel hydrogen production. Renewable energy electrocatalytic water splitting is an ideal production technology with environmental cleanliness protection and good hydrogen purity, which meet the requirements of future development. This review summarizes and introduces the current status of hydrogen production by water splitting from three aspects: electricity, catalyst and electrolyte. In particular, the present situation and the latest progress of the key sources of power, catalytic materials and electrolyzers for electrocatalytic water splitting are introduced. Finally, the problems of hydrogen generation from electrolytic water splitting and directions of next-generation green hydrogen in the future are discussed and outlooked. It is expected that this review will have an important impact on the field of hydrogen production from water.
Highlights:
1 This review systematically summarizes the source of electricity, the key choice of catalyst, and the potentiality of electrolyte for prospective hydrogen generation.
2 Each section provides comprehensive overview, detailed comparison and obvious advantages in these system configurations.
3 The problems of hydrogen generation from electrolytic water splitting and directions of next-generation green hydrogen in the future are discussed and outlooked.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Zhou, R. Gao, J.-J. Zou, H. Yang, Surface design strategy of catalysts for water electrolysis. Small 18, 2202336 (2022). https://doi.org/10.1002/smll.202202336
- H. Tüysüz, Alkaline water electrolysis for green hydrogen production. Acc. Chem. Res. 57, 558–567 (2024). https://doi.org/10.1021/acs.accounts.3c00709
- A.I. Osman, N. Mehta, A.M. Elgarahy, M. Hefny, A. Al-Hinai et al., Hydrogen production, storage, utilisation and environmental impacts: a review. Environ. Chem. Lett. 20, 153–188 (2022). https://doi.org/10.1007/s10311-021-01322-8
- B. Parkinson, M. Tabatabaei, D.C. Upham, B. Ballinger, C. Greig et al., Hydrogen production using methane: techno-economics of decarbonizing fuels and chemicals. Int. J. Hydrog. Energy 43, 2540–2555 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.081
- S. Sadeghi, S. Ghandehariun, M.A. Rosen, Comparative economic and life cycle assessment of solar-based hydrogen production for oil and gas industries. Energy 208, 118347 (2020). https://doi.org/10.1016/j.energy.2020.118347
- H. Shin, D. Jang, S. Lee, H.-S. Cho, K.-H. Kim et al., Techno-economic evaluation of green hydrogen production with low-temperature water electrolysis technologies directly coupled with renewable power sources. Energy Convers. Manag. 286, 117083 (2023). https://doi.org/10.1016/j.enconman.2023.117083
- H. Li, J. Guo, Z. Li, J. Wang, Research progress of hydrogen production technology and related catalysts by electrolysis of water. Molecules 28, 5010 (2023). https://doi.org/10.3390/molecules28135010
- J. Wei, M. Zhou, A. Long, Y. Xue, H. Liao et al., Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10, 75 (2018). https://doi.org/10.1007/s40820-018-0229-x
- Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang et al., Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives. Nano-Micro Lett. 12, 21 (2020). https://doi.org/10.1007/s40820-019-0349-y
- M. Mandal, Recent advancement on anion exchange membranes for fuel cell and water electrolysis. ChemElectroChem 8, 36–45 (2021). https://doi.org/10.1002/celc.202001329
- K. Liu, T. Wu, X. Cheng, M. Cao, X. Wang et al., Technical and economic analysis of a pilot-scale hydrogen system: from production to application. Energy Convers. Manag. 291, 117218 (2023). https://doi.org/10.1016/j.enconman.2023.117218
- K.G. dos Santos, C.T. Eckert, E. De Rossi, R.A. Bariccatti, E.P. Frigo et al., Hydrogen production in the electrolysis of water in Brazil, a review. Renew. Sustain. Energy Rev. 68, 563–571 (2017). https://doi.org/10.1016/j.rser.2016.09.128
- Z. Lin, Y. Yang, M. Li, H. Huang, W. Hu et al., Dual graphitic-N doping in a six-membered C-ring of graphene-analogous ps enables an efficient electrocatalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58, 16973–16980 (2019). https://doi.org/10.1002/anie.201908210
- A. Henry, C. McCallum, D. McStay, D. Rooney, P. Robertson, A. Foley, Analysis of wind to hydrogen production and carbon capture utilisation and storage systems for novel production of chemical energy carriers. J. Clean. Prod. 354, 131695 (2022). https://doi.org/10.1016/j.jclepro.2022.131695
- Y. Qiu, S. Zhou, J. Wang, J. Chou, Y. Fang et al., Feasibility analysis of utilising underground hydrogen storage facilities in integrated energy system: case studies in China. Appl. Energy 269, 115140 (2020). https://doi.org/10.1016/j.apenergy.2020.115140
- A. Liponi, A. Baccioli, L. Ferrari, Feasibility analysis of green hydrogen production from wind. Int. J. Hydrog. Energy 48, 37579–37593 (2023). https://doi.org/10.1016/j.ijhydene.2023.05.054
- G. Kakoulaki, I. Kougias, N. Taylor, F. Dolci, J. Moya et al., Green hydrogen in Europe—a regional assessment: substituting existing production with electrolysis powered by renewables. Energy Convers. Manag. 228, 113649 (2021). https://doi.org/10.1016/j.enconman.2020.113649
- O.S. Ibrahim, A. Singlitico, R. Proskovics, S. McDonagh, C. Desmond et al., Dedicated large-scale floating offshore wind to hydrogen: assessing design variables in proposed typologies. Renew. Sustain. Energy Rev. 160, 112310 (2022). https://doi.org/10.1016/j.rser.2022.112310
- A.S. Al-Buraiki, A. Al-Sharafi, Hydrogen production via using excess electric energy of an off-grid hybrid solar/wind system based on a novel performance indicator. Energy Conv. Manag. 254, 115270 (2022). https://doi.org/10.1016/j.enconman.2022.115270
- K. Adeli, M. Nachtane, A. Faik, A. Rachid, M. Tarfaoui et al., A deep learning-enhanced framework for sustainable hydrogen production from solar and wind energy in the Moroccan Sahara: coastal regions focus. Energy Convers. Manag. 302, 118084 (2024). https://doi.org/10.1016/j.enconman.2024.118084
- A. Al-Sharafi, A.Z. Sahin, T. Ayar, B.S. Yilbas, Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renew. Sustain. Energy Rev. 69, 33–49 (2017). https://doi.org/10.1016/j.rser.2016.11.157
- H. Zhao, Z.-Y. Yuan, Progress and perspectives for solar-driven water electrolysis to produce green hydrogen. Adv. Energy Mater. 13, 2300254 (2023). https://doi.org/10.1002/aenm.202300254
- M. Younas, S. Shafique, A. Hafeez, F. Javed, F. Rehman, An overview of hydrogen production: current status, potential, and challenges. Fuel 316, 23 (2022). https://doi.org/10.1016/j.fuel.2022.123317
- A. Okunlola, M. Davis, A. Kumar, The development of an assessment framework to determine the technical hydrogen production potential from wind and solar energy. Renew. Sustain. Energy Rev. 166, 112610 (2022). https://doi.org/10.1016/j.rser.2022.112610
- B.A. Franco, P. Baptista, R.C. Neto, S. Ganilha, Assessment of offloading pathways for wind-powered offshore hydrogen production: energy and economic analysis. Appl. Energy 286, 116553 (2021). https://doi.org/10.1016/j.apenergy.2021.116553
- R. Fang, Life cycle cost assessment of wind power–hydrogen coupled integrated energy system. Int. J. Hydrog. Energy 44, 29399–29408 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.192
- J. Schmidt, G. Lehecka, V. Gass, E. Schmid, Where the wind blows: assessing the effect of fixed and premium based feed-in tariffs on the spatial diversification of wind turbines. Energy Econ. 40, 269–276 (2013). https://doi.org/10.1016/j.eneco.2013.07.004
- S. Hing, S. Foster, D. Evans, Animal welfare risks in live cattle export from australia to China by sea. Animals 11, 22 (2021). https://doi.org/10.3390/ani11102862
- C. Sharma, A.K. Sharma, S.C. Mullick, T.C. Kandpal, Assessment of solar thermal power generation potential in India. Renew. Sustain. Energy Rev. 42, 902–912 (2015). https://doi.org/10.1016/j.rser.2014.10.059
- P.D. O’Kelly-Lynch, P.D. Gallagher, A.G.L. Borthwick, E.J. McKeogh, P.G. Leahy, Offshore conversion of wind power to gaseous fuels: feasibility study in a depleted gas field. Proc. Inst. Mech. Eng. A J. Power Energy 234, 226–236 (2019). https://doi.org/10.1177/0957650919851001
- A. Crivellari, V. Cozzani, Offshore renewable energy exploitation strategies in remote areas by power-to-gas and power-to-liquid conversion. Int. J. Hydrog. Energy 45, 2936–2953 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.215
- A. Babarit, J.-C. Gilloteaux, G. Clodic, M. Duchet, A. Simoneau et al., Techno-economic feasibility of fleets of far offshore hydrogen-producing wind energy converters. Int. J. Hydrog. Energy 43, 7266–7289 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.144
- Y. Wu, F. Liu, J. Wu, J. He, M. Xu et al., Barrier identification and analysis framework to the development of offshore wind-to-hydrogen projects. Energy 239, 122077 (2022). https://doi.org/10.1016/j.energy.2021.122077
- J.S. Basha, T. Jafary, R. Vasudevan, J.K. Bahadur, M. Al Ajmi et al., Potential of utilization of renewable energy technologies in gulf countries. Sustainability 13, 29 (2021). https://doi.org/10.3390/su131810261
- L.S. Chen, W. Li, J. Li, Q. Fu, T.Z. Wang, Evolution trend research of global ocean power generation based on a 45-year scientometric analysis. J. Mar. Sci. Eng. 9, 17 (2021). https://doi.org/10.3390/jmse9020218
- C.H. Jo, S.J. Hwang, Review on tidal energy technologies and research subjects. China Ocean Eng. 34, 137–150 (2020). https://doi.org/10.1007/s13344-020-0014-8
- L. Wang, M. Yuan, F. Zhang, X. Wang, J. Ma et al., Research on large-scale photovoltaic planning based on risk assessment in distribution network. J. Electr. Eng. Technol. 15, 1107–1114 (2020). https://doi.org/10.1007/s42835-020-00412-x
- A. Annamraju, S. Nandiraju, Coordinated control of conventional power sources and phevs using jaya algorithm optimized pid controller for frequency control of a renewable penetrated power system. Prot. Control Mod. Power Syst. 4, 13 (2019). https://doi.org/10.1186/s41601-019-0144-2
- A. Chanhome, S. Chaitusaney, Development of three-phase unbalanced power flow using local control of connected photovoltaic systems. IEEJ Trans. Electr. Electron. Eng. 15, 833–843 (2020). https://doi.org/10.1002/tee.23125
- R. Boudries, A. Khellaf, Nuclear-solar photovoltaic powered electrolytic hydrogen production at high temperature. Int. J. Hydrog. Energy 54, 751–767 (2024). https://doi.org/10.1016/j.ijhydene.2023.08.307
- H. Song, S. Luo, H. Huang, B. Deng, J. Ye, Solar-driven hydrogen production: recent advances, challenges, and future perspectives. ACS Energy Lett. 7, 1043–1065 (2022). https://doi.org/10.1021/acsenergylett.1c02591
- S.-P. Zeng, H. Shi, T.-Y. Dai, Y. Liu, Z. Wen et al., Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution. Nat. Commun. 14, 1811 (2023). https://doi.org/10.1038/s41467-023-37597-4
- D. Zhou, Z. Chong, Q. Wang, What is the future policy for photovoltaic power applications in China? Lessons from the past. Resour. Policy 65, 101575 (2020). https://doi.org/10.1016/j.resourpol.2019.101575
- A. Sagastume Gutiérrez, M. Balbis Morejón, J.J. Cabello Eras, M. Cabello Ulloa, F.J. Rey Martínez et al., Data supporting the forecast of electricity generation capacity from non-conventional renewable energy sources in Colombia. Data Brief 28, 104949 (2020). https://doi.org/10.1016/j.dib.2019.104949
- S. Algarni, V. Tirth, T. Alqahtani, S. Alshehery, P. Kshirsagar, Contribution of renewable energy sources to the environmental impacts and economic benefits for sustainable development. Sustain. Energy Technol. 56, 103098 (2023). https://doi.org/10.1016/j.seta.2023.103098
- X. Li, B.Y. Guan, S. Gao, X.W. Lou, A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction. Energy Environ. Sci. 12, 648–655 (2019). https://doi.org/10.1039/C8EE02779J
- J. Yin, J. Jin, H. Lin, Z. Yin, J. Li et al., Optimized metal chalcogenides for boosting water splitting. Adv. Sci. 7, 1903070 (2020). https://doi.org/10.1002/advs.201903070
- H. Zhang, W. Zhou, T. Chen, B.Y. Guan, Z. Li et al., A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction. Energy Environ. Sci. 11, 1980–1984 (2018). https://doi.org/10.1039/C8EE00901E
- Y. Wang, H. Li, H. Yang, M. Fan, Q. Liu, Manganese-catalyzed regioselective hydroboration of quinolines via metal–ligand cooperation. CCS Chem. (2023). https://doi.org/10.31635/ccschem.023.202303289
- Y. Liu, X. Liang, H. Chen, R. Gao, L. Shi et al., Iridium-containing water-oxidation catalysts in acidic electrolyte. Chin. J. Catal. 42, 1054–1077 (2021). https://doi.org/10.1016/S1872-2067(20)63722-6
- Z. An, H. Li, X. Zhang, X. Xu, Z. Xia et al., Structural evolution of a PtRh nanodendrite electrocatalyst and its ultrahigh durability toward oxygen reduction reaction. ACS Catal. 12, 3302–3308 (2022). https://doi.org/10.1021/acscatal.1c05462
- C. Deng, C.Y. Toe, X. Li, J. Tan, H. Yang et al., Earth-abundant metal-based electrocatalysts promoted anodic reaction in hybrid water electrolysis for efficient hydrogen production: recent progress and perspectives. Adv. Energy Mater. 12, 2201047 (2022). https://doi.org/10.1002/aenm.202201047
- M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang et al., Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37, 136–157 (2017). https://doi.org/10.1016/j.nanoen.2017.05.022
- J. Peng, P. Tao, C. Song, W. Shang, T. Deng et al., Structural evolution of Pt-based oxygen reduction reaction electrocatalysts. Chin. J. Catal. 43, 47–58 (2022). https://doi.org/10.1016/S1872-2067(21)63896-2
- W. Yang, W. Zhang, R. Liu, F. Lv, Y. Chao et al., Amorphous Ru nanoclusters onto Co-doped 1D carbon nanocages enables efficient hydrogen evolution catalysis. Chin. J. Catal. 43, 110–115 (2022). https://doi.org/10.1016/S1872-2067(21)63921-9
- H. Gao, J. Zang, X. Liu, Y. Wang, P. Tian, W. Li, Ruthenium and cobalt bimetal encapsulated in nitrogen-doped carbon material derived of ZIF-67 as enhanced hydrogen evolution electrocatalyst. Appl. Surf. Sci. 494, 101–110 (2019). https://doi.org/10.1016/j.apsusc.2019.07.181
- G. Gao, G. Zhao, G. Zhu, B. Sun, Z. Sun et al., Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chin. Chem. Lett. (2024). https://doi.org/10.1016/j.cclet.2024.109557
- L. Zhou, L. Sun, L.X. Xu, C. Wan, Y. An, M.F. Ye, Recent developments of effective catalysts for hydrogen storage technology using N-ethylcarbazole. Catalysts 10, 21 (2020). https://doi.org/10.3390/catal10060648
- Y. Han, X. Yan, Q. Wu, H. Xu, Q. Li, A. Du, X. Yao, Defect-derived catalysis mechanism of electrochemical reactions in two-dimensional carbon materials. Small Struct. 4, 2300036 (2023). https://doi.org/10.1002/sstr.202300036
- Y. Han, X. Mao, X. Yan, Q. Wu, H. Xu et al., Carbon nanotubes encapsulated transition metals for efficient hydrogen evolution reaction: coupling effect of 3D orbital and π-bond. Mater. Today Chem. 30, 101573 (2023). https://doi.org/10.1016/j.mtchem.2023.101573
- C. Gong, L. Zhao, D. Li, X. He, H. Chen et al., In-situ interfacial engineering of Co(OH)2/Fe7Se8 nanosheets to boost electrocatalytic water splitting. Chem. Eng. J. 466, 143124 (2023). https://doi.org/10.1016/j.cej.2023.143124
- J. Kim, S.-M. Jung, N. Lee, K.-S. Kim, Y.-T. Kim et al., Efficient alkaline hydrogen evolution reaction using superaerophobic Ni nanoarrays with accelerated H2 bubble release. Adv. Mater. 35, 2305844 (2023). https://doi.org/10.1002/adma.202305844
- C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
- K.N. Dinh, Y. Sun, Z. Pei, Z. Yuan, A. Suwardi et al., Electronic modulation of nickel disulfide toward efficient water electrolysis. Small 16, 1905885 (2020). https://doi.org/10.1002/smll.201905885
- J. Theerthagiri, S.J. Lee, A.P. Murthy, J. Madhavan, M.Y. Choi, Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: a review. Curr. Opin. Solid St. Mater. Sci. 24, 100805 (2020). https://doi.org/10.1016/j.cossms.2020.100805
- Z. Ge, B. Fu, J. Zhao, X. Li, B. Ma et al., A review of the electrocatalysts on hydrogen evolution reaction with an emphasis on Fe, Co and Ni-based phosphides. J. Mater. Sci. 55, 14081–14104 (2020). https://doi.org/10.1007/s10853-020-05010-w
- S. Anantharaj, S. Kundu, S. Noda, Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction. J. Mater. Chem. A 8, 4174–4192 (2020). https://doi.org/10.1039/C9TA14037A
- Q. Chen, Y. Yu, J. Li, H. Nan, S. Luo et al., Recent progress in layered double hydroxide-based electrocatalyst for hydrogen evolution reaction. ChemElectroChem 9, e202101387 (2022). https://doi.org/10.1002/celc.202101387
- P. Aggarwal, D. Sarkar, K. Awasthi, P.W. Menezes, Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: current developments and future challenges. Coord. Chem. Rev. 452, 214289 (2022). https://doi.org/10.1016/j.ccr.2021.214289
- R. Zahra, E. Pervaiz, M. Yang, O. Rabi, Z. Saleem et al., A review on nickel cobalt sulphide and their hybrids: earth abundant, pH stable electro-catalyst for hydrogen evolution reaction. Int. J. Hydrog. Energy 45, 24518–24543 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.236
- D. Merki, X.L. Hu, Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 4, 3878–3888 (2011). https://doi.org/10.1039/c1ee01970h
- L. Liu, Y. Wang, Y. Zhao, Y. Wang, Z. Zhang et al., Ultrahigh Pt-mass-activity hydrogen evolution catalyst electrodeposited from bulk Pt. Adv. Funct. Mater. 32, 2112207 (2022). https://doi.org/10.1002/adfm.202112207
- E. Tezel, H.E. Figen, S.Z. Baykara, Hydrogen production by methane decomposition using bimetallic Ni–Fe catalysts. Int. J. Hydrog. Energy 44, 9930–9940 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.151
- Y.J. Ding, S.E. Zhang, B. Liu, H.D. Zheng, C.C. Chang et al., Recovery of precious metals from electronic waste and spent catalysts: a review. Resour. Conserv. Recycl. 141, 284–298 (2019). https://doi.org/10.1016/j.resconrec.2018.10.041
- Z. Wang, Y.D. Liu, L. Meng, J.K. Qu, Z.C. Guo, Extraction of precious metals by synergetic smelting of spent automotive catalysts and waste printed circuit boards. Process. Saf. Environ. Prot. 175, 554–564 (2023). https://doi.org/10.1016/j.psep.2023.05.066
- R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334, 1256–1260 (2011). https://doi.org/10.1126/science.1211934
- H. Wang, Y. Yang, F.J. DiSalvo, H.D. Abruña, Multifunctional electrocatalysts: Ru–M (M = Co, Ni, Fe) for alkaline fuel cells and electrolyzers. ACS Catal. 10, 4608–4616 (2020). https://doi.org/10.1021/acscatal.9b05621
- G. Liu, W. Zhou, B. Chen, Q. Zhang, X. Cui et al., Synthesis of RuNi alloy nanostructures composed of multilayered nanosheets for highly efficient electrocatalytic hydrogen evolution. Nano Energy 66, 104173 (2019). https://doi.org/10.1016/j.nanoen.2019.104173
- S. Yan, M. Zhong, W. Zhu, W. Li, X. Chen et al., Controllable fabrication of a nickel–iridium alloy network by galvanic replacement engineering for high-efficiency electrocatalytic water splitting. Inorg. Chem. Front. 9, 6225–6236 (2022). https://doi.org/10.1039/D2QI01494G
- Y. Wu, M. Tariq, W.Q. Zaman, W. Sun, Z. Zhou et al., Ni–Co codoped RuO2 with outstanding oxygen evolution reaction performance. ACS Appl. Energy Mater. 2, 4105–4110 (2019). https://doi.org/10.1021/acsaem.9b00266
- S. Chen, H. Huang, P. Jiang, K. Yang, J. Diao et al., Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal. 10, 1152–1160 (2020). https://doi.org/10.1021/acscatal.9b04922
- Y. Ying, J.F. Godínez Salomón, L. Lartundo-Rojas, A. Moreno, R. Meyer et al., Hydrous cobalt–iridium oxide two-dimensional nanoframes: Insights into activity and stability of bimetallic acidic oxygen evolution electrocatalysts. Nanoscale Adv. 3, 1976–1996 (2021). https://doi.org/10.1039/D0NA00912A
- P. Joshi, H.-H. Huang, R. Yadav, M. Hara, M. Yoshimura, Boron-doped graphene as electrocatalytic support for iridium oxide for oxygen evolution reaction. Catal. Sci. Technol. 10, 6599–6610 (2020). https://doi.org/10.1039/D0CY00919A
- D. Xue, J. Cheng, P. Yuan, B.-A. Lu, H. Xia et al., Boron-tethering and regulative electronic states around iridium species for hydrogen evolution. Adv. Funct. Mater. 32, 2113191 (2022). https://doi.org/10.1002/adfm.202113191
- D. Liu, X. Li, S. Chen, H. Yan, C. Wang et al., Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4, 512–518 (2019). https://doi.org/10.1038/s41560-019-0402-6
- L. Zhang, Q. Wang, R. Si, Z. Song, X. Lin et al., New insight of pyrrole-like nitrogen for boosting hydrogen evolution activity and stability of Pt single atoms. Small 17, 2004453 (2021). https://doi.org/10.1002/smll.202004453
- X.-P. Yin, H.-J. Wang, S.-F. Tang, X.-L. Lu, M. Shu et al., Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57, 9382–9386 (2018). https://doi.org/10.1002/anie.201804817
- G. Weidong, Y. Zhuoyong, Research on non-grid-connected wind power/water-electrolytic hydrogen production system. Int. J. Hydrog. Energy 37, 737–740 (2012). https://doi.org/10.1016/j.ijhydene.2011.04.109
- Q. Li, W. Cheng, C. Zeng, X. Zheng, L. Sun et al., Facile and rapid synthesis of Pt–NiOx/NiF composites as a highly efficient electrocatalyst for alkaline hydrogen evolution. Int. J. Hydrog. Energy 47, 7504–7510 (2022). https://doi.org/10.1016/j.ijhydene.2021.12.101
- M. Pinzón, A. Romero, A. de Luca Consuegra, A.R. de la Osa, P. Sánchez, Hydrogen production by ammonia decomposition over ruthenium supported on SiC catalyst. J. Ind. Eng. Chem. 94, 326–335 (2021). https://doi.org/10.1016/j.jiec.2020.11.003
- L. Seifikar Gomi, M. Afsharpour, P. Lianos, Novel porous SiO2@SiC core-shell nanospheres functionalized with an amino hybrid of WO3 as an oxidative desulfurization catalyst. J. Ind. Eng. Chem. 89, 448–457 (2020). https://doi.org/10.1016/j.jiec.2020.06.019
- E. Kocaman, F. Çalışkan, Ultra-fine beta SiC nanowires isothermally converted from high activated silica by carbothermic reduction and carburization at low temperature. Mater. Chem. Phys. 256, 123716 (2020). https://doi.org/10.1016/j.matchemphys.2020.123716
- Q. Wu, M. Luo, J. Han, W. Peng, Y. Zhao et al., Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte. ACS Energy Lett. 5, 192–199 (2019). https://doi.org/10.1021/acsenergylett.9b02374
- S.W. Jang, S. Dutta, A. Kumar, Y.-R. Hong, H. Kang et al., Holey Pt nanosheets on NiFe-hydroxide laminates: synergistically enhanced electrocatalytic 2D interface toward hydrogen evolution reaction. ACS Nano 14, 10578–10588 (2020). https://doi.org/10.1021/acsnano.0c04628
- S. Niu, X.-P. Kong, S. Li, Y. Zhang, J. Wu et al., Low Ru loading RuO2/(Co, Mn)3O4 nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid. Appl. Catal. B Environ. 297, 120442 (2021). https://doi.org/10.1016/j.apcatb.2021.120442
- D. Liu, H. Xu, C. Wang, H. Shang, R. Yu et al., 3D porous Ru-doped NiCo-MOF hollow nanospheres for boosting oxygen evolution reaction electrocatalysis. Inorg. Chem. 60, 5882–5889 (2021). https://doi.org/10.1021/acs.inorgchem.1c00295
- F. Li, G.-F. Han, H.-J. Noh, I. Ahmad, I.-Y. Jeon et al., Mechanochemically assisted synthesis of a Ru catalyst for hydrogen evolution with performance superior to Pt in both acidic and alkaline media. Adv. Mater. 30, 1803676 (2018). https://doi.org/10.1002/adma.201803676
- M.H. Wang, Z.X. Lou, X. Wu, Y. Liu, J.Y. Zhao et al., Operando high-valence Cr-modified NiFe hydroxides for water oxidation. Small 18, 2200303 (2022). https://doi.org/10.1002/smll.202200303
- Z. He, J. Zhang, Z. Gong, H. Lei, D. Zhou et al., Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nat. Commun. 13, 2191 (2022). https://doi.org/10.1038/s41467-022-29875-4
- H.Y. Yuan, P.F. Liu, H.G. Yang, Peculiar double-layered transition metal hydroxide nanosheets. Matter 5, 1063–1065 (2022). https://doi.org/10.1016/j.matt.2022.03.007
- T. Takata, M. Jung, T. Matsunaga, T. Ida, M. Morita et al., Methods in sulfide and persulfide research. Nitric Oxide 116, 47–64 (2021). https://doi.org/10.1016/j.niox.2021.09.002
- Z. Chen, Y. Ha, Y. Liu, H. Wang, H. Yang et al., In situ formation of cobalt nitrides/graphitic carbon composites as efficient bifunctional electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 10, 7134–7144 (2018). https://doi.org/10.1021/acsami.7b18858
- S. Yu, X. Wang, H. Pang, R. Zhang, W. Song et al., Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review. Chem. Eng. J. 333, 343–360 (2018). https://doi.org/10.1016/j.cej.2017.09.163
- A. Zakutayev, S.R. Bauers, S. Lany, Experimental synthesis of theoretically predicted multivalent ternary nitride materials. Chem. Mater. 34, 1418–1438 (2022). https://doi.org/10.1021/acs.chemmater.1c03014
- O.S. Vereshchagin, D.V. Pankin, M.B. Smirnov, N.S. Vlasenko, V.V. Shilovskikh et al., Raman spectroscopy: a promising tool for the characterization of transition metal phosphides. J. Alloys Compd. 853, 156468 (2021). https://doi.org/10.1016/j.jallcom.2020.156468
- C.-C. Weng, J.-T. Ren, Z.-Y. Yuan, Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: a critical review. Chemsuschem 13, 3357–3375 (2020). https://doi.org/10.1002/cssc.202000416
- S. Dey, G.C. Dhal, D. Mohan, R. Prasad, Advances in transition metal oxide catalysts for carbon monoxide oxidation: a review. Adv. Compos. Hybrid Mater. 2, 626–656 (2019). https://doi.org/10.1007/s42114-019-00126-3
- S. Dey, G.C. Dhal, D. Mohan, R. Prasad, R.N. Gupta, Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide. Appl. Surf. Sci. 441, 303–316 (2018). https://doi.org/10.1016/j.apsusc.2018.02.048
- A. Vazhayil, L. Vazhayal, J. Thomas, S. Ashok, N. Thomas, A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction. Appl. Surf. Sci. Adv. 6, 100184 (2021). https://doi.org/10.1016/j.apsadv.2021.100184
- P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
- R. Li, H. Xu, P. Yang, D. Wang, Y. Li et al., Synergistic interfacial and doping engineering of heterostructured NiCo(OH)x–CoyW as an efficient alkaline hydrogen evolution electrocatalyst. Nano-Micro Lett. 13, 120 (2021). https://doi.org/10.1007/s40820-021-00639-x
- Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian et al., Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 15, 95 (2023). https://doi.org/10.1007/s40820-023-01066-w
- Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
- Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15, 4 (2022). https://doi.org/10.1007/s40820-022-00974-7
- B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
- Y. Guo, P. Yuan, J. Zhang, H. Xia, F. Cheng et al., Co2P–CoN double active centers confined in N-doped carbon nanotube: heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn–air batteries driven water splitting. Adv. Funct. Mater. 28, 1805641 (2018). https://doi.org/10.1002/adfm.201805641
- T. Gong, J. Zhang, Y. Liu, L. Hou, J. Deng et al., Construction of hetero-phase Mo2C-CoO@N-CNFs film as a self-supported Bi-functional catalyst towards overall water splitting. Chem. Eng. J. 451, 139025 (2023). https://doi.org/10.1016/j.cej.2022.139025
- G. Bahuguna, A. Cohen, B. Filanovsky, F. Patolsky, Electronic structure engineering of highly-scalable earth-abundant multi-synergized electrocatalyst for exceptional overall water splitting in neutral medium. Adv. Sci. 9, 2203678 (2022). https://doi.org/10.1002/advs.202203678
- G. Ma, J. Ye, M. Qin, T. Sun, W. Tan et al., Mn-doped NiCoP nanopin arrays as high-performance bifunctional electrocatalysts for sustainable hydrogen production via overall water splitting. Nano Energy 115, 108679 (2023). https://doi.org/10.1016/j.nanoen.2023.108679
- J. Xie, F. Wang, Y. Zhou, Y. Dong, Y. Chai et al., Internal polarization field induced hydroxyl spillover effect for industrial water splitting electrolyzers. Nano-Micro Lett. 16, 39 (2023). https://doi.org/10.1007/s40820-023-01253-9
- J. Zhu, J. Qian, X. Peng, B. Xia, D. Gao, Etching-induced surface reconstruction of NiMoO4 for oxygen evolution reaction. Nano-Micro Lett. 15, 30 (2023). https://doi.org/10.1007/s40820-022-01011-3
- J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
- Y. Zhao, B. Jin, Y. Zheng, H. Jin, Y. Jiao et al., Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Adv. Energy Mater. 8, 1801926 (2018). https://doi.org/10.1002/aenm.201801926
- N. Jia, L. Wang, Q. Weng, Y. Jia, P. Chen, Co-based amorphous layered metal–organic frameworks: an efficient bifunctional catalyst for water electrolysis. Adv. Eng. Mater. 25, 2301059 (2023). https://doi.org/10.1002/adem.202301059
- Y. Lu, H. Zhang, Y. Wang, X. Zhu, W. Xiao et al., Solar-driven interfacial evaporation accelerated electrocatalytic water splitting on 2D perovskite oxide/mxene heterostructure. Adv. Funct. Mater. 33, 2215061 (2023). https://doi.org/10.1002/adfm.202215061
- N. Abidi, A. Bonduelle-Skrzypczak, S.N. Steinmann, Revisiting the active sites at the MoS2/H2O interface via grand-canonical DFT: the role of water dissociation. ACS Appl. Mater. Interfaces 12, 31401–31410 (2020). https://doi.org/10.1021/acsami.0c06489
- J. Wei, G. Wang, Y. Zhang, S. Wang, W. Zhao et al., Proton-induced fast preparation of size-controllable MoS2 nanocatalyst towards highly efficient water electrolysis. Chin. Chem. Lett. 32, 1191–1196 (2021). https://doi.org/10.1016/j.cclet.2020.08.005
- Y. Jiang, S. Gao, J. Liu, G. Xu, Q. Jia et al., Ti-mesh supported porous CoS2 nanosheet self-interconnected networks with high oxidation states for efficient hydrogen production via urea electrolysis. Nanoscale 12, 11573–11581 (2020). https://doi.org/10.1039/D0NR02058C
- N.K. Chaudhari, H. Jin, B. Kim, K. Lee, Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 9, 12231–12247 (2017). https://doi.org/10.1039/C7NR04187J
- X. Gao, Y. Chen, T. Sun, J. Huang, W. Zhang et al., Karst landform-featured monolithic electrode for water electrolysis in neutral media. Energy Environ. Sci. 13, 174–182 (2020). https://doi.org/10.1039/c9ee02380a
- G. Ren, Q. Hao, J. Mao, L. Liang, H. Liu et al., Ultrafast fabrication of nickel sulfide film on Ni foam for efficient overall water splitting. Nanoscale 10, 17347–17353 (2018). https://doi.org/10.1039/C8NR05494K
- F. Shang, S. Wan, X. Gao, W. Zhang, R. Cao, Engineering hierarchical-dimensional Co(OH)F into CoP superstructure for electrocatalytic water splitting. ChemCatChem 12, 4770–4774 (2020). https://doi.org/10.1002/cctc.202000993
- T. Zhao, Y. Wang, S. Karuturi, K. Catchpole, Q. Zhang et al., Design and operando/in situ characterization of precious-metal-free electrocatalysts for alkaline water splitting. Carbon Energy 2, 582–613 (2020). https://doi.org/10.1002/cey2.79
- J.-Y. Zhu, Q. Xue, Y.-Y. Xue, Y. Ding, F.-M. Li et al., Iridium nanotubes as bifunctional electrocatalysts for oxygen evolution and nitrate reduction reactions. ACS Appl. Mater. Interfaces 12, 14064–14070 (2020). https://doi.org/10.1021/acsami.0c01937
- M. Chatti, J.L. Gardiner, M. Fournier, B. Johannessen, T. Williams et al., Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C. Nat. Catal. 2, 457–465 (2019). https://doi.org/10.1038/s41929-019-0277-8
- M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695 (2014). https://doi.org/10.1038/ncomms5695
- X. Gao, S. Yang, W. Zhang, R. Cao, Biomimicking hydrogen-bonding network by ammoniated and hydrated manganese (II) phosphate for electrocatalytic water oxidation. Acta Phys. Chim. Sin. 37, 2007031 (2021). https://doi.org/10.3866/pku.Whxb202007031
- Y. Zhao, J. Zhang, Y. Xie, B. Sun, J. Jiang et al., Constructing atomic heterometallic sites in ultrathin nickel-incorporated cobalt phosphide nanosheets via a boron-assisted strategy for highly efficient water splitting. Nano Lett. 21, 823–832 (2021). https://doi.org/10.1021/acs.nanolett.0c04569
- Y.-N. Wang, Z.-J. Yang, D.-H. Yang, L. Zhao, X.-R. Shi et al., FeCoP2 nanops embedded in N and P Co-doped hierarchically porous carbon for efficient electrocatalytic water splitting. ACS Appl. Mater. Interfaces 13, 8832–8843 (2021). https://doi.org/10.1021/acsami.0c22336
- J. Li, S. Zou, X. Liu, Y. Lu, D. Dong, Electronically modulated CoP by Ce doping as a highly efficient electrocatalyst for water splitting. ACS Sustain. Chem. Eng. 8, 10009–10016 (2020). https://doi.org/10.1021/acssuschemeng.0c01193
- F. Yang, Y. Chen, G. Cheng, S. Chen, W. Luo, Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal. 7, 3824–3831 (2017). https://doi.org/10.1021/acscatal.7b00587
- X. Wang, Y. Chen, J. He, B. Yu, B. Wang et al., Vertical V-doped CoP nanowall arrays as a highly efficient and stable electrocatalyst for the hydrogen evolution reaction at all pH values. ACS Appl. Energy Mater. 3, 1027–1035 (2020). https://doi.org/10.1021/acsaem.9b02075
- O.L. Li, H. Lee, T. Ishizaki, Recent progress in solution plasma-synthesized-carbon-supported catalysts for energy conversion systems. Jpn. J. Appl. Phys. 57, 0102A2 (2018). https://doi.org/10.7567/JJAP.57.0102A2
- X. Wei, W. Li, J.-A. Shi, L. Gu, Y. Yu, FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces 7, 27804–27809 (2015). https://doi.org/10.1021/acsami.5b09062
- R. Yang, L. Mei, Q. Zhang, Y. Fan, H.S. Shin et al., High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 17, 358–377 (2022). https://doi.org/10.1038/s41596-021-00643-w
- J. Zhang, L. Dai, Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew. Chem. Int. Ed. 55, 13296–13300 (2016). https://doi.org/10.1002/anie.201607405
- J.C. Wilson, S. Caratzoulas, D.G. Vlachos, Y. Yan, Insights into solvent and surface charge effects on volmer step kinetics on Pt (111). Nat. Commun. 14, 2384 (2023). https://doi.org/10.1038/s41467-023-37935-6
- C. Wan, Z. Zhang, J. Dong, M. Xu, H. Pu et al., Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction. Nat. Mater. 22, 1022–1029 (2023). https://doi.org/10.1038/s41563-023-01584-3
- Y. Zhao, H. Li, R. Yang, S. Xie, T. Liu et al., Transient phase transition during the hydrogen evolution reaction. Energy Environ. Sci. 16, 3951–3959 (2023). https://doi.org/10.1039/D3EE01409F
- X. Wang, G. Long, B. Liu, Z. Li, W. Gao et al., Rationally modulating the functions of Ni3Sn2–NiSnOx nanocomposite electrocatalysts towards enhanced hydrogen evolution reaction. Angew. Chem. Int. Ed. 62, e202301562 (2023). https://doi.org/10.1002/anie.202301562
- T. Wang, X. Liao, T. Zhang, M. Dai, H. Lin, CoP aerogels assisted by selenite etching as high activity electrocatalysts for water splitting. Compos. Part B Eng. 254, 110601 (2023). https://doi.org/10.1016/j.compositesb.2023.110601
- J. Brauns, T. Turek, Alkaline water electrolysis powered by renewable energy: a review. Processes 8, 248 (2020). https://doi.org/10.3390/pr8020248
- D.S. Falcão, A.M.F.R. Pinto, A review on PEM electrolyzer modelling: guidelines for beginners. J. Clean. Prod. 261, 121184 (2020). https://doi.org/10.1016/j.jclepro.2020.121184
- R. Abbasi, B.P. Setzler, S. Lin, J. Wang, Y. Zhao et al., A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers. Adv. Mater. 31, 1805876 (2019). https://doi.org/10.1002/adma.201805876
- S. Anwar, F. Khan, Y. Zhang, A. Djire, Recent development in electrocatalysts for hydrogen production through water electrolysis. Int. J. Hydrog. Energy 46, 32284–32317 (2021). https://doi.org/10.1016/j.ijhydene.2021.06.191
- M. Fallah Vostakola, H. Ozcan, R.S. El-Emam, B. Amini Horri, Recent advances in high-temperature steam electrolysis with solid oxide electrolysers for green hydrogen production. Energies 16, 3327 (2023). https://doi.org/10.3390/en16083327
- Y. Ma, K. Wu, T. Long, J. Yang, Solid-state redox mediators for decoupled H2 production: principle and challenges. Adv. Energy Mater. 13, 2203455 (2023). https://doi.org/10.1002/aenm.202203455
- K. Yang, L. Hao, Y. Hou, J. Zhang, J.-H. Yang, Summary and application of Ni-based catalysts for electrocatalytic urea oxidation. Int. J. Hydrog. Energy 51, 966–981 (2024). https://doi.org/10.1016/j.ijhydene.2023.10.279
- X. Liu, W. Sun, X. Hu, J. Chen, Z. Wen, Self-powered H2 generation implemented by hydrazine oxidation assisting hybrid electrochemical cell. Chem. Eng. J. 474, 145355 (2023). https://doi.org/10.1016/j.cej.2023.145355
- C. Feng, M. Chen, Z. Yang, Z. Xie, X. Li et al., Electrocatalytic seawater splitting for hydrogen production: recent progress and future prospects. J. Mater. Sci. Technol. 162, 203–226 (2023). https://doi.org/10.1016/j.jmst.2023.03.058
- S. Dresp, F. Dionigi, M. Klingenhof, P. Strasser, Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett. 4, 933–942 (2019). https://doi.org/10.1021/acsenergylett.9b00220
- M.A. Khan, T. Al-Attas, S. Roy, M.M. Rahman, N. Ghaffour et al., Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy Environ. Sci. 14, 4831–4839 (2021). https://doi.org/10.1039/D1EE00870F
- L. Chang, Z. Sun, Y.H. Hu, 1T phase transition metal dichalcogenides for hydrogen evolution reaction. Electrochem. Energy Rev. 4, 194–218 (2021). https://doi.org/10.1007/s41918-020-00087-y
- A. Ursua, L.M. Gandia, P. Sanchis, Hydrogen production from water electrolysis: current status and future trends. Proc. IEEE 100, 410–426 (2012). https://doi.org/10.1109/JPROC.2011.2156750
- S. Aralekallu, K. Sannegowda Lokesh, V. Singh, Advanced bifunctional catalysts for energy production by electrolysis of earth-abundant water. Fuel 357, 129753 (2024). https://doi.org/10.1016/j.fuel.2023.129753
- A. Rehman, A. Khan, E. Pervaiz, The role of nickel cobalt sulphide MOFs hybrids in electrochemical hydrogen generation: a critical review. Mater. Chem. Phys. 315, 129027 (2024). https://doi.org/10.1016/j.matchemphys.2024.129027
- F. Gutiérrez-Martín, A. Ochoa-Mendoza, L.M. Rodríguez-Antón, Pre-investigation of water electrolysis for flexible energy storage at large scales: the case of the Spanish power system. Int. J. Hydrog. Energy 40, 5544–5551 (2015). https://doi.org/10.1016/j.ijhydene.2015.01.184
- D. Ferrero, A. Lanzini, M. Santarelli, P. Leone, A comparative assessment on hydrogen production from low- and high-temperature electrolysis. Int. J. Hydrog. Energy 38, 3523–3536 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.065
- F.N. Khatib, T. Wilberforce, O. Ijaodola, E. Ogungbemi, Z. El-Hassan et al., Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: a review. Renew. Sustain. Energy Rev. 111, 1–14 (2019). https://doi.org/10.1016/j.rser.2019.05.007
- M.N.I. Salehmin, T. Husaini, J. Goh, A.B. Sulong, High-pressure PEM water electrolyser: a review on challenges and mitigation strategies towards green and low-cost hydrogen production. Energy Convers. Manag. 268, 115985 (2022). https://doi.org/10.1016/j.enconman.2022.115985
- H. Sayed-Ahmed, Á.I. Toldy, A. Santasalo-Aarnio, Dynamic operation of proton exchange membrane electrolyzers—critical review. Renew. Sustain. Energy Rev. 189, 113883 (2024). https://doi.org/10.1016/j.rser.2023.113883
- C. Qiu, Z. Xu, F.-Y. Chen, H. Wang, Anode engineering for proton exchange membrane water electrolyzers. ACS Catal. 14, 921–954 (2024). https://doi.org/10.1021/acscatal.3c05162
- H.Y. Lin, Z.X. Lou, Y. Ding, X. Li, F. Mao et al., Oxygen evolution electrocatalysts for the proton exchange membrane electrolyzer: challenges on stability. Small Methods 6, 2201130 (2022). https://doi.org/10.1002/smtd.202201130
- B.-K. Park, Q. Zhang, P.W. Voorhees, S.A. Barnett, Conditions for stable operation of solid oxide electrolysis cells: oxygen electrode effects. Energy Environ. Sci. 12, 3053–3062 (2019). https://doi.org/10.1039/C9EE01664C
- A. Hauch, R. Küngas, P. Blennow, A.B. Hansen, J.B. Hansen et al., Recent advances in solid oxide cell technology for electrolysis. Science 370, eaba6118 (2020). https://doi.org/10.1126/science.aba6118
- B.S. Zainal, P.J. Ker, H. Mohamed, H.C. Ong, I.M.R. Fattah et al., Recent advancement and assessment of green hydrogen production technologies. Renew. Sustain. Energy Rev. 189, 113941 (2024). https://doi.org/10.1016/j.rser.2023.113941
- C. Liu, Z. Geng, X. Wang, W. Liu, Y. Wang et al., Development of advanced anion exchange membrane from the view of the performance of water electrolysis cell. J. Energy Chem. 90, 348–369 (2024). https://doi.org/10.1016/j.jechem.2023.11.026
- Y. Yang, P. Li, X. Zheng, W. Sun, S.X. Dou et al., Anion-exchange membrane water electrolyzers and fuel cells. Chem. Soc. Rev. 51, 9620–9693 (2022). https://doi.org/10.1039/D2CS00038E
- C. Li, J.-B. Baek, The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy 87, 106162 (2021). https://doi.org/10.1016/j.nanoen.2021.106162
- H. Ito, N. Kawaguchi, S. Someya, T. Munakata, Pressurized operation of anion exchange membrane water electrolysis. Electrochim. Acta 297, 188–196 (2019). https://doi.org/10.1016/j.electacta.2018.11.077
- S.W. Sharshir, A. Joseph, M.M. Elsayad, A.A. Tareemi, A.W. Kandeal et al., A review of recent advances in alkaline electrolyzer for green hydrogen production: performance improvement and applications. Int. J. Hydrog. Energy 49, 458–488 (2024). https://doi.org/10.1016/j.ijhydene.2023.08.107
- X. Gao, D. Chen, J. Qi, F. Li, Y. Song et al., NiFe oxalate nanomesh array with homogenous doping of Fe for electrocatalytic water oxidation. Small 15, 1904579 (2019). https://doi.org/10.1002/smll.201904579
- D. Aili, A.G. Wright, M.R. Kraglund, K. Jankova, S. Holdcroft et al., Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis. J. Mater. Chem. A 5, 5055–5066 (2017). https://doi.org/10.1039/C6TA10680C
- Z. Gao, Y.J.P. Tian, Self-sustaining control strategy for proton-exchange membrane electrolysis devices based on gradient-disturbance observation method. Processes 11, 828 (2023). https://doi.org/10.3390/pr11030828
- S. Wei, B.V. Balakin, P. Kosinski, Investigation of nanofluids in alkaline electrolytes: stability, electrical properties, and hydrogen production. J. Clean. Prod. 414, 137723 (2023). https://doi.org/10.1016/j.jclepro.2023.137723
- B. Lai, S.C. Singh, J.K. Bindra, C.S. Saraj, A. Shukla et al., Hydrogen evolution reaction from bare and surface-functionalized few-layered MoS2 nanosheets in acidic and alkaline electrolytes. Mater. Today Chem. 14, 100207 (2019). https://doi.org/10.1016/j.mtchem.2019.100207
- G. Bahuguna, A. Cohen, N. Harpak, B. Filanovsky, F. Patolsky, Single-step solid-state scalable transformation of Ni-based substrates to high-oxidation state nickel sulfide nanoplate arrays as exceptional bifunctional electrocatalyst for overall water splitting. Small Methods 6, 2200181 (2022). https://doi.org/10.1002/smtd.202200181
- H. Yang, P. Guo, R. Wang, Z. Chen, H. Xu et al., Sequential phase conversion-induced phosphides heteronanorod arrays for superior hydrogen evolution performance to Pt in wide pH media. Adv. Mater. 34, 2107548 (2022). https://doi.org/10.1002/adma.202107548
- Z. Zuo, X. Zhang, O. Peng, L. Shan, S. Xiang et al., Self-supported iron-based bimetallic phosphide catalytic electrode for efficient hydrogen evolution reaction at high current density. J. Mater. Chem. A 12, 5331–5339 (2024). https://doi.org/10.1039/D3TA06035G
- H. Li, L. Du, Y. Zhang, X. Liu, S. Li et al., A unique adsorption-diffusion-decomposition mechanism for hydrogen evolution reaction towards high-efficiency Cr, Fe-modified CoP nanorod catalyst. Appl. Catal. B Environ. 346, 123749 (2024). https://doi.org/10.1016/j.apcatb.2024.123749
- C. Zeng, J. Zhang, L. Xia, K.-L. Zhou, Y. Jin et al., Self-tuned interfacial charges induced by protonated transition metal heterostructure for efficiently acidic hydrogen evolution reaction. Chem. Eng. J. 476, 146387 (2023). https://doi.org/10.1016/j.cej.2023.146387
- Y. Qin, Y. Chen, X. Zeng, Y. Liu, X. Lin et al., MoNi4–NiO heterojunction encapsulated in lignin-derived carbon for efficient hydrogen evolution reaction. Green Energy Environ. 8, 1728–1736 (2023). https://doi.org/10.1016/j.gee.2022.04.005
- M. Gao, P. Gao, T. Lei, C. Ouyang, X. Wu et al., FeP/Ni2P nanosheet arrays as high-efficiency hydrogen evolution electrocatalysts. J. Mater. Chem. A 10, 15569–15579 (2022). https://doi.org/10.1039/D2TA02499C
- Q. Luo, Y. Zhao, L. Sun, C. Wang, H. Xin et al., Interface oxygen vacancy enhanced alkaline hydrogen evolution activity of cobalt-iron phosphide/CeO2 hollow nanorods. Chem. Eng. J. 437, 135376 (2022). https://doi.org/10.1016/j.cej.2022.135376
- Z. Li, C. Wang, Y. Liang, H. Jiang, S. Wu et al., Boosting hydrogen evolution performance of nanoporous Fe–Pd alloy electrocatalyst by metastable phase engineering. Appl. Catal. B Environ. 345, 123677 (2024). https://doi.org/10.1016/j.apcatb.2023.123677
- G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14, 20 (2021). https://doi.org/10.1007/s40820-021-00744-x
- X. Jian, W. Zhang, Y. Yang, Z. Li, H. Pan et al., Amorphous Cu–W alloys as stable and efficient electrocatalysts for hydrogen evolution. ACS Catal. 14, 2816–2827 (2024). https://doi.org/10.1021/acscatal.3c05820
- J. Chen, C. Chen, M. Qin, B. Li, B. Lin et al., Reversible hydrogen spillover in Ru-WO3-x enhances hydrogen evolution activity in neutral pH water splitting. Nat. Commun. 13, 5382 (2022). https://doi.org/10.1038/s41467-022-33007-3
- J. Dai, Y. Zhu, Y. Chen, X. Wen, M. Long et al., Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis. Nat. Commun. 13, 1189 (2022). https://doi.org/10.1038/s41467-022-28843-2
- D. Chen, R. Lu, R. Yu, Y. Dai, H. Zhao et al., Work-function-induced interfacial built-in electric fields in Os-OsSe2 heterostructures for active acidic and alkaline hydrogen evolution. Angew. Chem. Int. Ed. 61, e202208642 (2022). https://doi.org/10.1002/anie.202208642
- K. Jung, D.S.A. Pratama, A. Haryanto, J.I. Jang, H.M. Kim et al., Iridium-cluster-implanted ruthenium phosphide electrocatalyst for hydrogen evolution reaction. Adv. Fiber Mater. 6, 158–169 (2024). https://doi.org/10.1007/s42765-023-00342-z
- Z. Wang, Z. Lin, Y. Wang, S. Shen, Q. Zhang et al., Nontrivial topological surface states in Ru3Sn7 toward wide pH-range hydrogen evolution reaction. Adv. Mater. 35, 2302007 (2023). https://doi.org/10.1002/adma.202302007
- Z.W. Chen, J. Li, P. Ou, J.E. Huang, Z. Wen et al., Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions. Nat. Commun. 15, 359 (2024). https://doi.org/10.1038/s41467-023-44261-4
- J. Fan, Z. Feng, Y. Mu, X. Ge, D. Wang et al., Spatially confined PdHx metallenes by tensile strained atomic Ru layers for efficient hydrogen evolution. J. Am. Chem. Soc. 145, 5710–5717 (2023). https://doi.org/10.1021/jacs.2c11692
- B. Fan, H. Wang, X. Han, Y. Deng, W. Hu, Single atoms (Pt, Ir and Rh) anchored on activated NiCo LDH for alkaline hydrogen evolution reaction. Chem. Commun. 58, 8254–8257 (2022). https://doi.org/10.1039/D2CC02732A
- Z. Zhai, Y. Wang, C. Si, P. Liu, W. Yang et al., Self-templating synthesis and structural regulation of nanoporous rhodium-nickel alloy nanowires efficiently catalyzing hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 16, 2026–2034 (2023). https://doi.org/10.1007/s12274-022-4861-x
- H. Du, Z. Du, T. Wang, B. Li, S. He et al., Unlocking interfacial electron transfer of ruthenium phosphides by homologous core–shell design toward efficient hydrogen evolution and oxidation. Adv. Mater. 34, 2204624 (2022). https://doi.org/10.1002/adma.202204624
- L. Deng, F. Hu, M. Ma, S.-C. Huang, Y. Xiong et al., Electronic modulation caused by interfacial Ni–O–M (M = Ru, Ir, Pd) bonding for accelerating hydrogen evolution kinetics. Angew. Chem. Int. Ed. 60, 22276–22282 (2021). https://doi.org/10.1002/anie.202110374
- Z. Che, X. Lu, B. Cai, X. Xu, J. Bao et al., Ligand-controlled synthesis of high density and ultra-small Ru nanops with excellent electrocatalytic hydrogen evolution performance. Nano Res. 15, 1269–1275 (2022). https://doi.org/10.1007/s12274-021-3645-z
- X. Mu, J. Gu, F. Feng, Z. Xiao, C. Chen et al., Rurh bimetallene nanoring as high-efficiency pH-universal catalyst for hydrogen evolution reaction. Adv. Sci. 8, 2002341 (2021). https://doi.org/10.1002/advs.202002341
- F. Shen, Y. Wang, G. Qian, W. Chen, W. Jiang et al., Bimetallic iron-iridium alloy nanops supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density. Appl. Catal. B Environ. 278, 119327 (2020). https://doi.org/10.1016/j.apcatb.2020.119327
- S. Geng, Y. Ji, J. Su, Z. Hu, M. Fang et al., Homogeneous metastable hexagonal phase iridium enhances hydrogen evolution catalysis. Adv. Sci. 10, 2206063 (2023). https://doi.org/10.1002/advs.202206063
- T. Feng, J. Yu, D. Yue, H. Song, S. Tao et al., Defect-rich ruthenium dioxide electrocatalyst enabled by electronic reservoir effect of carbonized polymer dot for remarkable pH-universal oxygen evolution. Appl. Catal. B Environ. 328, 122546 (2023). https://doi.org/10.1016/j.apcatb.2023.122546
- T. Yu, Q. Xu, L. Luo, C. Liu, S. Yin, Interface engineering of NiO/RuO2 heterojunction nano-sheets for robust overall water splitting at large current density. Chem. Eng. J. 430, 133117 (2022). https://doi.org/10.1016/j.cej.2021.133117
- Y. Jiang, Y. Mao, Y. Jiang, H. Liu, W. Shen et al., Atomic equidistribution enhanced RuIr electrocatalysts for overall water splitting in the whole pH range. Chem. Eng. J. 450, 137909 (2022). https://doi.org/10.1016/j.cej.2022.137909
- A. Kagkoura, H.J. Ojeda-Galván, M. Quintana, N. Tagmatarchis, Carbon dots strongly immobilized onto carbon nanohorns as non-metal heterostructure with high electrocatalytic activity towards protons reduction in hydrogen evolution reaction. Small 19, 2208285 (2023). https://doi.org/10.1002/smll.202208285
- S. Sekar, A.T. Aqueel Ahmed, D.H. Sim, S. Lee, Extraordinarily high hydrogen-evolution-reaction activity of corrugated graphene nanosheets derived from biomass rice husks. Int. J. Hydrog. Energy 47, 40317–40326 (2022). https://doi.org/10.1016/j.ijhydene.2022.02.233
- Y. Li, C. Ai, S. Deng, Y. Wang, X. Tong et al., Nitrogen doped vertical graphene as metal-free electrocatalyst for hydrogen evolution reaction. Mater. Res. Bull. 134, 111094 (2021). https://doi.org/10.1016/j.materresbull.2020.111094
- F. He, C. Xing, Y. Xue, Metal-free amino-graphdiyne for applications in electrocatalytic hydrogen evolution. J. Catal. 395, 129–135 (2021). https://doi.org/10.1016/j.jcat.2020.12.033
- Y. Huang, M. Wang, Y. Li, S. Yin, H. Zhu et al., Edge-rich reduced graphene oxide embedded in silica-based laminated ceramic composites for efficient and robust electrocatalytic hydrogen evolution. Small Methods 5, 2100621 (2021). https://doi.org/10.1002/smtd.202100621
- L. Hui, Y. Xue, Y. Liu, Y. Li, Efficient hydrogen evolution on nanoscale graphdiyne. Small 17, 2006136 (2021). https://doi.org/10.1002/smll.202006136
- Y. Liu, R. Ali, J. Ma, W. Jiao, L. Yin et al., Graphene-decorated boron–carbon–nitride-based metal-free catalysts for an enhanced hydrogen evolution reaction. ACS Appl. Energy Mater. 4, 3861–3868 (2021). https://doi.org/10.1021/acsaem.1c00238
- T. Li, Y. Chen, W. Hu, W. Yuan, Q. Zhao et al., Ionic liquid in situ functionalized carbon nanotubes as metal-free catalyst for efficient electrocatalytic hydrogen evolution reaction. Nanoscale 13, 4444–4450 (2021). https://doi.org/10.1039/D0NR08817J
- M.A. Ahsan, T. He, K. Eid, A.M. Abdullah, M.L. Curry et al., Tuning the intermolecular electron transfer of low-dimensional and metal-free BCN/C60 electrocatalysts via interfacial defects for efficient hydrogen and oxygen electrochemistry. J. Am. Chem. Soc. 143, 1203–1215 (2021). https://doi.org/10.1021/jacs.0c12386
- Z. Liu, M. Wang, X. Luo, S. Li, S. Li et al., N-, P-, and O-doped porous carbon: a trifunctional metal-free electrocatalyst. Appl. Surf. Sci. 544, 148912 (2021). https://doi.org/10.1016/j.apsusc.2020.148912
- I. Nath, J. Chakraborty, R. Lips, S. Dekyvere, J. Min et al., Hydrogen bond-mediated pH-universal electrocatalytic hydrogen production by conjugated porous poly-indigo. J. Mater. Chem. A 11, 10699–10709 (2023). https://doi.org/10.1039/D2TA08365E
- A. Jaiswal, S. Pal, A. Kumar, R. Prakash, Metal free triad from red phosphorous, reduced graphene oxide and graphitic carbon nitride (red P-rGO-g-C3N4) as robust electro-catalysts for hydrogen evolution reaction. Electrochim. Acta 338, 135851 (2020). https://doi.org/10.1016/j.electacta.2020.135851
- C. Yang, S. Tao, N. Huang, X. Zhang, J. Duan et al., Heteroatom-doped carbon electrocatalysts derived from nanoporous two-dimensional covalent organic frameworks for oxygen reduction and hydrogen evolution. Acs Appl. Nano Mater. 3, 5481–5488 (2020). https://doi.org/10.1021/acsanm.0c00786
- J. Sun, Q. Ge, L. Guo, Z. Yang, Nitrogen doped carbon fibers derived from carbonization of electrospun polyacrylonitrile as efficient metal-free HER electrocatalyst. Int. J. Hydrog. Energy 45, 4035–4042 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.204
- H. Nady, M.M. El-Rabiei, M. Samy, M.A. Deyab, G.M. Abd El-Hafez, Novel Ni–Cr-based alloys as hydrogen fuel sources through alkaline water electrolytes. Int. J. Hydrog. Energy 46, 34749–34766 (2021). https://doi.org/10.1016/j.ijhydene.2021.08.056
- C. Wang, L. Qi, Heterostructured inter-doped ruthenium–cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting. Angew. Chem. Int. Ed. 59, 17219–17224 (2020). https://doi.org/10.1002/anie.202005436
- D. Wang, A. Umar, X. Wu, Enhanced water electrolysis performance of bifunctional NiCoP electrocatalyst in alkaline media. J. Electroanal. Chem. 950, 117888 (2023). https://doi.org/10.1016/j.jelechem.2023.117888
- Y. Li, X.F. Wei, L.S. Chen, J.L. Shi, Electrocatalytic hydrogen production trilogy. Angew. Chem. Int. Ed. 60, 19550–19571 (2021). https://doi.org/10.1002/anie.202009854
- L. Van Hoecke, L. Laffineur, R. Campe, P. Perreault, S.W. Verbruggen et al., Challenges in the use of hydrogen for maritime applications. Energy Environ. Sci. 14, 815–843 (2021). https://doi.org/10.1039/D0EE01545H
- H. Wang, L. Chen, L. Tan, X. Liu, Y. Wen et al., Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting. J. Colloid Interface Sci. 613, 349–358 (2022). https://doi.org/10.1016/j.jcis.2022.01.044
- P. Zhai, M. Xia, Y. Wu, G. Zhang, J. Gao et al., Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 12, 4587 (2021). https://doi.org/10.1038/s41467-021-24828-9
- X. Zhang, H. Zhao, C. Li, S. Li, K. Liu et al., Facile coordination driven synthesis of metal-organic gels toward efficiently electrocatalytic overall water splitting. Appl. Catal. B Environ. 299, 120641 (2021). https://doi.org/10.1016/j.apcatb.2021.120641
- H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
- T. Yang, Y. Xu, H. Lv, M. Wang, X. Cui et al., Triggering the intrinsic catalytic activity of Ni-doped molybdenum oxides via phase engineering for hydrogen evolution and application in Mg/seawater batteries. ACS Sustain. Chem. Eng. 9, 13106–13113 (2021). https://doi.org/10.1021/acssuschemeng.1c05184
- T. Ren, M. Li, Y. Chu, J. Chen, Thioetherification of isoprene and butanethiol on transition metal phosphides. J. Energy Chem. 27, 930–939 (2018). https://doi.org/10.1016/j.jechem.2017.07.017
- G. Bahuguna, F. Patolsky, Why today’s “water” in water splitting is not natural water? Critical up-to-date perspective and future challenges for direct seawater splitting. Nano Energy 117, 108884 (2023). https://doi.org/10.1016/j.nanoen.2023.108884
- M. Ning, L. Wu, F. Zhang, D. Wang, S. Song et al., One-step spontaneous growth of NiFe layered double hydroxide at room temperature for seawater oxygen evolution. Mater. Today Phys. 19, 100419 (2021). https://doi.org/10.1016/j.mtphys.2021.100419
- L. Xu, Y. Dong, W. Xu, W. Zhang, Ultrafast and facile synthesis of (Ni/Fe/Mo)OOH on Ni foam for oxygen evolution reaction in seawater electrolysis. Catalysts 13, 924 (2023). https://doi.org/10.3390/catal13060924
- L. Yu, J. Xiao, C. Huang, J. Zhou, M. Qiu et al., High-performance seawater oxidation by a homogeneous multimetallic layered double hydroxide electrocatalyst. Proc. Natl. Acad. Sci. 119, e2202382119 (2022). https://doi.org/10.1073/pnas.2202382119
- Y. Luo, P. Wang, G. Zhang, S. Wu, Z. Chen et al., Mn-doped nickel–iron phosphide heterointerface nanoflowers for efficient alkaline freshwater/seawater splitting at high current densities. Chem. Eng. J. 454, 140061 (2023). https://doi.org/10.1016/j.cej.2022.140061
- S.Y. Jung, S. Kang, K.M. Kim, S. Mhin, J.C. Kim et al., Sulfur-incorporated nickel-iron layered double hydroxides for effective oxygen evolution reaction in seawater. Appl. Surf. Sci. 568, 150965 (2021). https://doi.org/10.1016/j.apsusc.2021.150965
- C. Wang, M. Zhu, Z. Cao, P. Zhu, Y. Cao et al., Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Appl. Catal. B Environ. 291, 120071 (2021). https://doi.org/10.1016/j.apcatb.2021.120071
- L. Yu, L. Wu, B. McElhenny, S. Song, D. Luo et al., Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 13, 3439–3446 (2020). https://doi.org/10.1039/D0EE00921K
- Y. Zhang, X. Song, S. Xue, Y. Liang, H. Jiang, Fabrication of hierarchically structured S-doped NiFe hydroxide/oxide electrodes for solar-assisted oxygen evolution reaction in seawater splitting. Appl. Catal. A-Gen. 649, 118965 (2023). https://doi.org/10.1016/j.apcata.2022.118965
- Y. Kuang, M.J. Kenney, Y. Meng, W.-H. Hung, Y. Liu et al., Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. 116, 6624–6629 (2019). https://doi.org/10.1073/pnas.1900556116
- A.R. Jadhav, A. Kumar, J. Lee, T. Yang, S. Na et al., Stable complete seawater electrolysis by using interfacial chloride ion blocking layer on catalyst surface. J. Mater. Chem. A 8, 24501–24514 (2020). https://doi.org/10.1039/D0TA08543J
- Y. Li, X. Wu, J. Wang, H. Wei, S. Zhang et al., Sandwich structured Ni3S2–MoS2–Ni3S2@Ni foam electrode as a stable bifunctional electrocatalyst for highly sustained overall seawater splitting. Electrochim. Acta 390, 138833 (2021). https://doi.org/10.1016/j.electacta.2021.138833
- X. Liu, Q. Yu, X. Qu, X. Wang, J. Chi et al., Manipulating electron redistribution in Ni2P for enhanced alkaline seawater electrolysis. Adv. Mater. 36, 2307395 (2024). https://doi.org/10.1002/adma.202307395
- Y. Song, M. Sun, S. Zhang, X. Zhang, P. Yi et al., Alleviating the work function of vein-like CoxP by Cr doping for enhanced seawater electrolysis. Adv. Funct. Mater. 33, 2214081 (2023). https://doi.org/10.1002/adfm.202214081
- J. Zhu, J. Chi, T. Cui, L. Guo, S. Wu et al., F doping and P vacancy engineered FeCoP nanosheets for efficient and stable seawater electrolysis at large current density. Appl. Catal. B Environ. 328, 122487 (2023). https://doi.org/10.1016/j.apcatb.2023.122487
- Y. Xu, H. Lv, H. Lu, Q. Quan, W. Li et al., Mg/seawater batteries driven self-powered direct seawater electrolysis systems for hydrogen production. Nano Energy 98, 107295 (2022). https://doi.org/10.1016/j.nanoen.2022.107295
- R. Li, Y. Li, P. Yang, P. Ren, D. Wang et al., Synergistic interface engineering and structural optimization of non-noble metal telluride-nitride electrocatalysts for sustainably overall seawater electrolysis. Appl. Catal. B Environ. 318, 121834 (2022). https://doi.org/10.1016/j.apcatb.2022.121834
- J. Chen, L. Zhang, J. Li, X. He, Y. Zheng et al., High-efficiency overall alkaline seawater splitting: using a nickel–iron sulfide nanosheet array as a bifunctional electrocatalyst. J. Mater. Chem. A 11, 1116–1122 (2023). https://doi.org/10.1039/D2TA08568B
- Y.S. Park, J.-Y. Jeong, M.J. Jang, C.-Y. Kwon, G.H. Kim et al., Ternary layered double hydroxide oxygen evolution reaction electrocatalyst for anion exchange membrane alkaline seawater electrolysis. J. Energy Chem. 75, 127–134 (2022). https://doi.org/10.1016/j.jechem.2022.08.011
- C. Huang, Q. Zhou, L. Yu, D. Duan, T. Cao et al., Functional bimetal Co-modification for boosting large-current-density seawater electrolysis by inhibiting adsorption of chloride ions. Adv. Energy Mater. 13, 2301475 (2023). https://doi.org/10.1002/aenm.202301475
- Y. Zhang, C. Fu, S. Weng, H. Lv, P. Li et al., Construction of an “environment-friendly” CuBx@PU self-supporting electrode toward efficient seawater electrolysis. Green Chem. 24, 5918–5929 (2022). https://doi.org/10.1039/D2GC01819E
- G. Bahuguna, F. Patolsky, Enabling unprecedented ultra-efficient practical direct seawater splitting by finely-tuned catalyst environment via thermo-hydrodynamic modulation. Adv. Energy Mater. 13, 2301907 (2023). https://doi.org/10.1002/aenm.202301907
- J. Guo, Y. Zheng, Z. Hu, C. Zheng, J. Mao et al., Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 8, 264–272 (2023). https://doi.org/10.1038/s41560-023-01195-x
- H.J. Song, H. Yoon, B. Ju, D.-Y. Lee, D.-W. Kim, Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1–xFexP2O7 nanops for alkaline seawater electrolysis. ACS Catal. 10, 702–709 (2020). https://doi.org/10.1021/acscatal.9b04231
- H. Jin, X. Liu, A. Vasileff, Y. Jiao, Y. Zhao et al., Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano 12, 12761–12769 (2018). https://doi.org/10.1021/acsnano.8b07841
- S. Wang, P. Yang, X. Sun, H. Xing, J. Hu et al., Synthesis of 3D heterostructure Co-doped Fe2P electrocatalyst for overall seawater electrolysis. Appl. Catal. B Environ. 297, 120386 (2021). https://doi.org/10.1016/j.apcatb.2021.120386
- S. Liu, S. Ren, R.-T. Gao, X. Liu, L. Wang, Atomically embedded Ag on transition metal hydroxides triggers the lattice oxygen towards sustained seawater electrolysis. Nano Energy 98, 107212 (2022). https://doi.org/10.1016/j.nanoen.2022.107212
- X. Gu, M. Yu, S. Chen, X. Mu, Z. Xu et al., Coordination environment of Ru clusters with in-situ generated metastable symmetry-breaking centers for seawater electrolysis. Nano Energy 102, 107656 (2022). https://doi.org/10.1016/j.nanoen.2022.107656
- N. Wen, Y. Xia, H. Wang, D. Zhang, H. Wang et al., Large-scale synthesis of spinel NixMn3–xO4 solid solution immobilized with iridium single atoms for efficient alkaline seawater electrolysis. Adv. Sci. 9, 2200529 (2022). https://doi.org/10.1002/advs.202200529
- S. Wang, M. Wang, Z. Liu, S. Liu, Y. Chen et al., Synergetic function of the single-atom Ru–N4 site and Ru nanops for hydrogen production in a wide pH range and seawater electrolysis. ACS Appl. Mater. Interfaces 14, 15250–15258 (2022). https://doi.org/10.1021/acsami.2c00652
- S. Vijayapradeep, N. Logeshwaran, S. Ramakrishnan, A. Rhan Kim, P. Sampath et al., Novel Pt-carbon core–shell decorated hierarchical CoMo2S4 as efficient electrocatalysts for alkaline/seawater hydrogen evolution reaction. Chem. Eng. J. 473, 145348 (2023). https://doi.org/10.1016/j.cej.2023.145348
- Y. Liu, H. Huang, X. Ding, B. Huang, Z. Xie, Boosting the HER electrocatalytic activity over RuCu-supported carbon nanosheets as efficient pH-independent catalysts. FlatChem 30, 100302 (2021). https://doi.org/10.1016/j.flatc.2021.100302
- W.J. Dong, Y. Xiao, K.R. Yang, Z. Ye, P. Zhou et
References
B. Zhou, R. Gao, J.-J. Zou, H. Yang, Surface design strategy of catalysts for water electrolysis. Small 18, 2202336 (2022). https://doi.org/10.1002/smll.202202336
H. Tüysüz, Alkaline water electrolysis for green hydrogen production. Acc. Chem. Res. 57, 558–567 (2024). https://doi.org/10.1021/acs.accounts.3c00709
A.I. Osman, N. Mehta, A.M. Elgarahy, M. Hefny, A. Al-Hinai et al., Hydrogen production, storage, utilisation and environmental impacts: a review. Environ. Chem. Lett. 20, 153–188 (2022). https://doi.org/10.1007/s10311-021-01322-8
B. Parkinson, M. Tabatabaei, D.C. Upham, B. Ballinger, C. Greig et al., Hydrogen production using methane: techno-economics of decarbonizing fuels and chemicals. Int. J. Hydrog. Energy 43, 2540–2555 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.081
S. Sadeghi, S. Ghandehariun, M.A. Rosen, Comparative economic and life cycle assessment of solar-based hydrogen production for oil and gas industries. Energy 208, 118347 (2020). https://doi.org/10.1016/j.energy.2020.118347
H. Shin, D. Jang, S. Lee, H.-S. Cho, K.-H. Kim et al., Techno-economic evaluation of green hydrogen production with low-temperature water electrolysis technologies directly coupled with renewable power sources. Energy Convers. Manag. 286, 117083 (2023). https://doi.org/10.1016/j.enconman.2023.117083
H. Li, J. Guo, Z. Li, J. Wang, Research progress of hydrogen production technology and related catalysts by electrolysis of water. Molecules 28, 5010 (2023). https://doi.org/10.3390/molecules28135010
J. Wei, M. Zhou, A. Long, Y. Xue, H. Liao et al., Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10, 75 (2018). https://doi.org/10.1007/s40820-018-0229-x
Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang et al., Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives. Nano-Micro Lett. 12, 21 (2020). https://doi.org/10.1007/s40820-019-0349-y
M. Mandal, Recent advancement on anion exchange membranes for fuel cell and water electrolysis. ChemElectroChem 8, 36–45 (2021). https://doi.org/10.1002/celc.202001329
K. Liu, T. Wu, X. Cheng, M. Cao, X. Wang et al., Technical and economic analysis of a pilot-scale hydrogen system: from production to application. Energy Convers. Manag. 291, 117218 (2023). https://doi.org/10.1016/j.enconman.2023.117218
K.G. dos Santos, C.T. Eckert, E. De Rossi, R.A. Bariccatti, E.P. Frigo et al., Hydrogen production in the electrolysis of water in Brazil, a review. Renew. Sustain. Energy Rev. 68, 563–571 (2017). https://doi.org/10.1016/j.rser.2016.09.128
Z. Lin, Y. Yang, M. Li, H. Huang, W. Hu et al., Dual graphitic-N doping in a six-membered C-ring of graphene-analogous ps enables an efficient electrocatalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58, 16973–16980 (2019). https://doi.org/10.1002/anie.201908210
A. Henry, C. McCallum, D. McStay, D. Rooney, P. Robertson, A. Foley, Analysis of wind to hydrogen production and carbon capture utilisation and storage systems for novel production of chemical energy carriers. J. Clean. Prod. 354, 131695 (2022). https://doi.org/10.1016/j.jclepro.2022.131695
Y. Qiu, S. Zhou, J. Wang, J. Chou, Y. Fang et al., Feasibility analysis of utilising underground hydrogen storage facilities in integrated energy system: case studies in China. Appl. Energy 269, 115140 (2020). https://doi.org/10.1016/j.apenergy.2020.115140
A. Liponi, A. Baccioli, L. Ferrari, Feasibility analysis of green hydrogen production from wind. Int. J. Hydrog. Energy 48, 37579–37593 (2023). https://doi.org/10.1016/j.ijhydene.2023.05.054
G. Kakoulaki, I. Kougias, N. Taylor, F. Dolci, J. Moya et al., Green hydrogen in Europe—a regional assessment: substituting existing production with electrolysis powered by renewables. Energy Convers. Manag. 228, 113649 (2021). https://doi.org/10.1016/j.enconman.2020.113649
O.S. Ibrahim, A. Singlitico, R. Proskovics, S. McDonagh, C. Desmond et al., Dedicated large-scale floating offshore wind to hydrogen: assessing design variables in proposed typologies. Renew. Sustain. Energy Rev. 160, 112310 (2022). https://doi.org/10.1016/j.rser.2022.112310
A.S. Al-Buraiki, A. Al-Sharafi, Hydrogen production via using excess electric energy of an off-grid hybrid solar/wind system based on a novel performance indicator. Energy Conv. Manag. 254, 115270 (2022). https://doi.org/10.1016/j.enconman.2022.115270
K. Adeli, M. Nachtane, A. Faik, A. Rachid, M. Tarfaoui et al., A deep learning-enhanced framework for sustainable hydrogen production from solar and wind energy in the Moroccan Sahara: coastal regions focus. Energy Convers. Manag. 302, 118084 (2024). https://doi.org/10.1016/j.enconman.2024.118084
A. Al-Sharafi, A.Z. Sahin, T. Ayar, B.S. Yilbas, Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renew. Sustain. Energy Rev. 69, 33–49 (2017). https://doi.org/10.1016/j.rser.2016.11.157
H. Zhao, Z.-Y. Yuan, Progress and perspectives for solar-driven water electrolysis to produce green hydrogen. Adv. Energy Mater. 13, 2300254 (2023). https://doi.org/10.1002/aenm.202300254
M. Younas, S. Shafique, A. Hafeez, F. Javed, F. Rehman, An overview of hydrogen production: current status, potential, and challenges. Fuel 316, 23 (2022). https://doi.org/10.1016/j.fuel.2022.123317
A. Okunlola, M. Davis, A. Kumar, The development of an assessment framework to determine the technical hydrogen production potential from wind and solar energy. Renew. Sustain. Energy Rev. 166, 112610 (2022). https://doi.org/10.1016/j.rser.2022.112610
B.A. Franco, P. Baptista, R.C. Neto, S. Ganilha, Assessment of offloading pathways for wind-powered offshore hydrogen production: energy and economic analysis. Appl. Energy 286, 116553 (2021). https://doi.org/10.1016/j.apenergy.2021.116553
R. Fang, Life cycle cost assessment of wind power–hydrogen coupled integrated energy system. Int. J. Hydrog. Energy 44, 29399–29408 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.192
J. Schmidt, G. Lehecka, V. Gass, E. Schmid, Where the wind blows: assessing the effect of fixed and premium based feed-in tariffs on the spatial diversification of wind turbines. Energy Econ. 40, 269–276 (2013). https://doi.org/10.1016/j.eneco.2013.07.004
S. Hing, S. Foster, D. Evans, Animal welfare risks in live cattle export from australia to China by sea. Animals 11, 22 (2021). https://doi.org/10.3390/ani11102862
C. Sharma, A.K. Sharma, S.C. Mullick, T.C. Kandpal, Assessment of solar thermal power generation potential in India. Renew. Sustain. Energy Rev. 42, 902–912 (2015). https://doi.org/10.1016/j.rser.2014.10.059
P.D. O’Kelly-Lynch, P.D. Gallagher, A.G.L. Borthwick, E.J. McKeogh, P.G. Leahy, Offshore conversion of wind power to gaseous fuels: feasibility study in a depleted gas field. Proc. Inst. Mech. Eng. A J. Power Energy 234, 226–236 (2019). https://doi.org/10.1177/0957650919851001
A. Crivellari, V. Cozzani, Offshore renewable energy exploitation strategies in remote areas by power-to-gas and power-to-liquid conversion. Int. J. Hydrog. Energy 45, 2936–2953 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.215
A. Babarit, J.-C. Gilloteaux, G. Clodic, M. Duchet, A. Simoneau et al., Techno-economic feasibility of fleets of far offshore hydrogen-producing wind energy converters. Int. J. Hydrog. Energy 43, 7266–7289 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.144
Y. Wu, F. Liu, J. Wu, J. He, M. Xu et al., Barrier identification and analysis framework to the development of offshore wind-to-hydrogen projects. Energy 239, 122077 (2022). https://doi.org/10.1016/j.energy.2021.122077
J.S. Basha, T. Jafary, R. Vasudevan, J.K. Bahadur, M. Al Ajmi et al., Potential of utilization of renewable energy technologies in gulf countries. Sustainability 13, 29 (2021). https://doi.org/10.3390/su131810261
L.S. Chen, W. Li, J. Li, Q. Fu, T.Z. Wang, Evolution trend research of global ocean power generation based on a 45-year scientometric analysis. J. Mar. Sci. Eng. 9, 17 (2021). https://doi.org/10.3390/jmse9020218
C.H. Jo, S.J. Hwang, Review on tidal energy technologies and research subjects. China Ocean Eng. 34, 137–150 (2020). https://doi.org/10.1007/s13344-020-0014-8
L. Wang, M. Yuan, F. Zhang, X. Wang, J. Ma et al., Research on large-scale photovoltaic planning based on risk assessment in distribution network. J. Electr. Eng. Technol. 15, 1107–1114 (2020). https://doi.org/10.1007/s42835-020-00412-x
A. Annamraju, S. Nandiraju, Coordinated control of conventional power sources and phevs using jaya algorithm optimized pid controller for frequency control of a renewable penetrated power system. Prot. Control Mod. Power Syst. 4, 13 (2019). https://doi.org/10.1186/s41601-019-0144-2
A. Chanhome, S. Chaitusaney, Development of three-phase unbalanced power flow using local control of connected photovoltaic systems. IEEJ Trans. Electr. Electron. Eng. 15, 833–843 (2020). https://doi.org/10.1002/tee.23125
R. Boudries, A. Khellaf, Nuclear-solar photovoltaic powered electrolytic hydrogen production at high temperature. Int. J. Hydrog. Energy 54, 751–767 (2024). https://doi.org/10.1016/j.ijhydene.2023.08.307
H. Song, S. Luo, H. Huang, B. Deng, J. Ye, Solar-driven hydrogen production: recent advances, challenges, and future perspectives. ACS Energy Lett. 7, 1043–1065 (2022). https://doi.org/10.1021/acsenergylett.1c02591
S.-P. Zeng, H. Shi, T.-Y. Dai, Y. Liu, Z. Wen et al., Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution. Nat. Commun. 14, 1811 (2023). https://doi.org/10.1038/s41467-023-37597-4
D. Zhou, Z. Chong, Q. Wang, What is the future policy for photovoltaic power applications in China? Lessons from the past. Resour. Policy 65, 101575 (2020). https://doi.org/10.1016/j.resourpol.2019.101575
A. Sagastume Gutiérrez, M. Balbis Morejón, J.J. Cabello Eras, M. Cabello Ulloa, F.J. Rey Martínez et al., Data supporting the forecast of electricity generation capacity from non-conventional renewable energy sources in Colombia. Data Brief 28, 104949 (2020). https://doi.org/10.1016/j.dib.2019.104949
S. Algarni, V. Tirth, T. Alqahtani, S. Alshehery, P. Kshirsagar, Contribution of renewable energy sources to the environmental impacts and economic benefits for sustainable development. Sustain. Energy Technol. 56, 103098 (2023). https://doi.org/10.1016/j.seta.2023.103098
X. Li, B.Y. Guan, S. Gao, X.W. Lou, A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction. Energy Environ. Sci. 12, 648–655 (2019). https://doi.org/10.1039/C8EE02779J
J. Yin, J. Jin, H. Lin, Z. Yin, J. Li et al., Optimized metal chalcogenides for boosting water splitting. Adv. Sci. 7, 1903070 (2020). https://doi.org/10.1002/advs.201903070
H. Zhang, W. Zhou, T. Chen, B.Y. Guan, Z. Li et al., A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction. Energy Environ. Sci. 11, 1980–1984 (2018). https://doi.org/10.1039/C8EE00901E
Y. Wang, H. Li, H. Yang, M. Fan, Q. Liu, Manganese-catalyzed regioselective hydroboration of quinolines via metal–ligand cooperation. CCS Chem. (2023). https://doi.org/10.31635/ccschem.023.202303289
Y. Liu, X. Liang, H. Chen, R. Gao, L. Shi et al., Iridium-containing water-oxidation catalysts in acidic electrolyte. Chin. J. Catal. 42, 1054–1077 (2021). https://doi.org/10.1016/S1872-2067(20)63722-6
Z. An, H. Li, X. Zhang, X. Xu, Z. Xia et al., Structural evolution of a PtRh nanodendrite electrocatalyst and its ultrahigh durability toward oxygen reduction reaction. ACS Catal. 12, 3302–3308 (2022). https://doi.org/10.1021/acscatal.1c05462
C. Deng, C.Y. Toe, X. Li, J. Tan, H. Yang et al., Earth-abundant metal-based electrocatalysts promoted anodic reaction in hybrid water electrolysis for efficient hydrogen production: recent progress and perspectives. Adv. Energy Mater. 12, 2201047 (2022). https://doi.org/10.1002/aenm.202201047
M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang et al., Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37, 136–157 (2017). https://doi.org/10.1016/j.nanoen.2017.05.022
J. Peng, P. Tao, C. Song, W. Shang, T. Deng et al., Structural evolution of Pt-based oxygen reduction reaction electrocatalysts. Chin. J. Catal. 43, 47–58 (2022). https://doi.org/10.1016/S1872-2067(21)63896-2
W. Yang, W. Zhang, R. Liu, F. Lv, Y. Chao et al., Amorphous Ru nanoclusters onto Co-doped 1D carbon nanocages enables efficient hydrogen evolution catalysis. Chin. J. Catal. 43, 110–115 (2022). https://doi.org/10.1016/S1872-2067(21)63921-9
H. Gao, J. Zang, X. Liu, Y. Wang, P. Tian, W. Li, Ruthenium and cobalt bimetal encapsulated in nitrogen-doped carbon material derived of ZIF-67 as enhanced hydrogen evolution electrocatalyst. Appl. Surf. Sci. 494, 101–110 (2019). https://doi.org/10.1016/j.apsusc.2019.07.181
G. Gao, G. Zhao, G. Zhu, B. Sun, Z. Sun et al., Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chin. Chem. Lett. (2024). https://doi.org/10.1016/j.cclet.2024.109557
L. Zhou, L. Sun, L.X. Xu, C. Wan, Y. An, M.F. Ye, Recent developments of effective catalysts for hydrogen storage technology using N-ethylcarbazole. Catalysts 10, 21 (2020). https://doi.org/10.3390/catal10060648
Y. Han, X. Yan, Q. Wu, H. Xu, Q. Li, A. Du, X. Yao, Defect-derived catalysis mechanism of electrochemical reactions in two-dimensional carbon materials. Small Struct. 4, 2300036 (2023). https://doi.org/10.1002/sstr.202300036
Y. Han, X. Mao, X. Yan, Q. Wu, H. Xu et al., Carbon nanotubes encapsulated transition metals for efficient hydrogen evolution reaction: coupling effect of 3D orbital and π-bond. Mater. Today Chem. 30, 101573 (2023). https://doi.org/10.1016/j.mtchem.2023.101573
C. Gong, L. Zhao, D. Li, X. He, H. Chen et al., In-situ interfacial engineering of Co(OH)2/Fe7Se8 nanosheets to boost electrocatalytic water splitting. Chem. Eng. J. 466, 143124 (2023). https://doi.org/10.1016/j.cej.2023.143124
J. Kim, S.-M. Jung, N. Lee, K.-S. Kim, Y.-T. Kim et al., Efficient alkaline hydrogen evolution reaction using superaerophobic Ni nanoarrays with accelerated H2 bubble release. Adv. Mater. 35, 2305844 (2023). https://doi.org/10.1002/adma.202305844
C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
K.N. Dinh, Y. Sun, Z. Pei, Z. Yuan, A. Suwardi et al., Electronic modulation of nickel disulfide toward efficient water electrolysis. Small 16, 1905885 (2020). https://doi.org/10.1002/smll.201905885
J. Theerthagiri, S.J. Lee, A.P. Murthy, J. Madhavan, M.Y. Choi, Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: a review. Curr. Opin. Solid St. Mater. Sci. 24, 100805 (2020). https://doi.org/10.1016/j.cossms.2020.100805
Z. Ge, B. Fu, J. Zhao, X. Li, B. Ma et al., A review of the electrocatalysts on hydrogen evolution reaction with an emphasis on Fe, Co and Ni-based phosphides. J. Mater. Sci. 55, 14081–14104 (2020). https://doi.org/10.1007/s10853-020-05010-w
S. Anantharaj, S. Kundu, S. Noda, Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction. J. Mater. Chem. A 8, 4174–4192 (2020). https://doi.org/10.1039/C9TA14037A
Q. Chen, Y. Yu, J. Li, H. Nan, S. Luo et al., Recent progress in layered double hydroxide-based electrocatalyst for hydrogen evolution reaction. ChemElectroChem 9, e202101387 (2022). https://doi.org/10.1002/celc.202101387
P. Aggarwal, D. Sarkar, K. Awasthi, P.W. Menezes, Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: current developments and future challenges. Coord. Chem. Rev. 452, 214289 (2022). https://doi.org/10.1016/j.ccr.2021.214289
R. Zahra, E. Pervaiz, M. Yang, O. Rabi, Z. Saleem et al., A review on nickel cobalt sulphide and their hybrids: earth abundant, pH stable electro-catalyst for hydrogen evolution reaction. Int. J. Hydrog. Energy 45, 24518–24543 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.236
D. Merki, X.L. Hu, Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 4, 3878–3888 (2011). https://doi.org/10.1039/c1ee01970h
L. Liu, Y. Wang, Y. Zhao, Y. Wang, Z. Zhang et al., Ultrahigh Pt-mass-activity hydrogen evolution catalyst electrodeposited from bulk Pt. Adv. Funct. Mater. 32, 2112207 (2022). https://doi.org/10.1002/adfm.202112207
E. Tezel, H.E. Figen, S.Z. Baykara, Hydrogen production by methane decomposition using bimetallic Ni–Fe catalysts. Int. J. Hydrog. Energy 44, 9930–9940 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.151
Y.J. Ding, S.E. Zhang, B. Liu, H.D. Zheng, C.C. Chang et al., Recovery of precious metals from electronic waste and spent catalysts: a review. Resour. Conserv. Recycl. 141, 284–298 (2019). https://doi.org/10.1016/j.resconrec.2018.10.041
Z. Wang, Y.D. Liu, L. Meng, J.K. Qu, Z.C. Guo, Extraction of precious metals by synergetic smelting of spent automotive catalysts and waste printed circuit boards. Process. Saf. Environ. Prot. 175, 554–564 (2023). https://doi.org/10.1016/j.psep.2023.05.066
R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334, 1256–1260 (2011). https://doi.org/10.1126/science.1211934
H. Wang, Y. Yang, F.J. DiSalvo, H.D. Abruña, Multifunctional electrocatalysts: Ru–M (M = Co, Ni, Fe) for alkaline fuel cells and electrolyzers. ACS Catal. 10, 4608–4616 (2020). https://doi.org/10.1021/acscatal.9b05621
G. Liu, W. Zhou, B. Chen, Q. Zhang, X. Cui et al., Synthesis of RuNi alloy nanostructures composed of multilayered nanosheets for highly efficient electrocatalytic hydrogen evolution. Nano Energy 66, 104173 (2019). https://doi.org/10.1016/j.nanoen.2019.104173
S. Yan, M. Zhong, W. Zhu, W. Li, X. Chen et al., Controllable fabrication of a nickel–iridium alloy network by galvanic replacement engineering for high-efficiency electrocatalytic water splitting. Inorg. Chem. Front. 9, 6225–6236 (2022). https://doi.org/10.1039/D2QI01494G
Y. Wu, M. Tariq, W.Q. Zaman, W. Sun, Z. Zhou et al., Ni–Co codoped RuO2 with outstanding oxygen evolution reaction performance. ACS Appl. Energy Mater. 2, 4105–4110 (2019). https://doi.org/10.1021/acsaem.9b00266
S. Chen, H. Huang, P. Jiang, K. Yang, J. Diao et al., Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal. 10, 1152–1160 (2020). https://doi.org/10.1021/acscatal.9b04922
Y. Ying, J.F. Godínez Salomón, L. Lartundo-Rojas, A. Moreno, R. Meyer et al., Hydrous cobalt–iridium oxide two-dimensional nanoframes: Insights into activity and stability of bimetallic acidic oxygen evolution electrocatalysts. Nanoscale Adv. 3, 1976–1996 (2021). https://doi.org/10.1039/D0NA00912A
P. Joshi, H.-H. Huang, R. Yadav, M. Hara, M. Yoshimura, Boron-doped graphene as electrocatalytic support for iridium oxide for oxygen evolution reaction. Catal. Sci. Technol. 10, 6599–6610 (2020). https://doi.org/10.1039/D0CY00919A
D. Xue, J. Cheng, P. Yuan, B.-A. Lu, H. Xia et al., Boron-tethering and regulative electronic states around iridium species for hydrogen evolution. Adv. Funct. Mater. 32, 2113191 (2022). https://doi.org/10.1002/adfm.202113191
D. Liu, X. Li, S. Chen, H. Yan, C. Wang et al., Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4, 512–518 (2019). https://doi.org/10.1038/s41560-019-0402-6
L. Zhang, Q. Wang, R. Si, Z. Song, X. Lin et al., New insight of pyrrole-like nitrogen for boosting hydrogen evolution activity and stability of Pt single atoms. Small 17, 2004453 (2021). https://doi.org/10.1002/smll.202004453
X.-P. Yin, H.-J. Wang, S.-F. Tang, X.-L. Lu, M. Shu et al., Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57, 9382–9386 (2018). https://doi.org/10.1002/anie.201804817
G. Weidong, Y. Zhuoyong, Research on non-grid-connected wind power/water-electrolytic hydrogen production system. Int. J. Hydrog. Energy 37, 737–740 (2012). https://doi.org/10.1016/j.ijhydene.2011.04.109
Q. Li, W. Cheng, C. Zeng, X. Zheng, L. Sun et al., Facile and rapid synthesis of Pt–NiOx/NiF composites as a highly efficient electrocatalyst for alkaline hydrogen evolution. Int. J. Hydrog. Energy 47, 7504–7510 (2022). https://doi.org/10.1016/j.ijhydene.2021.12.101
M. Pinzón, A. Romero, A. de Luca Consuegra, A.R. de la Osa, P. Sánchez, Hydrogen production by ammonia decomposition over ruthenium supported on SiC catalyst. J. Ind. Eng. Chem. 94, 326–335 (2021). https://doi.org/10.1016/j.jiec.2020.11.003
L. Seifikar Gomi, M. Afsharpour, P. Lianos, Novel porous SiO2@SiC core-shell nanospheres functionalized with an amino hybrid of WO3 as an oxidative desulfurization catalyst. J. Ind. Eng. Chem. 89, 448–457 (2020). https://doi.org/10.1016/j.jiec.2020.06.019
E. Kocaman, F. Çalışkan, Ultra-fine beta SiC nanowires isothermally converted from high activated silica by carbothermic reduction and carburization at low temperature. Mater. Chem. Phys. 256, 123716 (2020). https://doi.org/10.1016/j.matchemphys.2020.123716
Q. Wu, M. Luo, J. Han, W. Peng, Y. Zhao et al., Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte. ACS Energy Lett. 5, 192–199 (2019). https://doi.org/10.1021/acsenergylett.9b02374
S.W. Jang, S. Dutta, A. Kumar, Y.-R. Hong, H. Kang et al., Holey Pt nanosheets on NiFe-hydroxide laminates: synergistically enhanced electrocatalytic 2D interface toward hydrogen evolution reaction. ACS Nano 14, 10578–10588 (2020). https://doi.org/10.1021/acsnano.0c04628
S. Niu, X.-P. Kong, S. Li, Y. Zhang, J. Wu et al., Low Ru loading RuO2/(Co, Mn)3O4 nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid. Appl. Catal. B Environ. 297, 120442 (2021). https://doi.org/10.1016/j.apcatb.2021.120442
D. Liu, H. Xu, C. Wang, H. Shang, R. Yu et al., 3D porous Ru-doped NiCo-MOF hollow nanospheres for boosting oxygen evolution reaction electrocatalysis. Inorg. Chem. 60, 5882–5889 (2021). https://doi.org/10.1021/acs.inorgchem.1c00295
F. Li, G.-F. Han, H.-J. Noh, I. Ahmad, I.-Y. Jeon et al., Mechanochemically assisted synthesis of a Ru catalyst for hydrogen evolution with performance superior to Pt in both acidic and alkaline media. Adv. Mater. 30, 1803676 (2018). https://doi.org/10.1002/adma.201803676
M.H. Wang, Z.X. Lou, X. Wu, Y. Liu, J.Y. Zhao et al., Operando high-valence Cr-modified NiFe hydroxides for water oxidation. Small 18, 2200303 (2022). https://doi.org/10.1002/smll.202200303
Z. He, J. Zhang, Z. Gong, H. Lei, D. Zhou et al., Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nat. Commun. 13, 2191 (2022). https://doi.org/10.1038/s41467-022-29875-4
H.Y. Yuan, P.F. Liu, H.G. Yang, Peculiar double-layered transition metal hydroxide nanosheets. Matter 5, 1063–1065 (2022). https://doi.org/10.1016/j.matt.2022.03.007
T. Takata, M. Jung, T. Matsunaga, T. Ida, M. Morita et al., Methods in sulfide and persulfide research. Nitric Oxide 116, 47–64 (2021). https://doi.org/10.1016/j.niox.2021.09.002
Z. Chen, Y. Ha, Y. Liu, H. Wang, H. Yang et al., In situ formation of cobalt nitrides/graphitic carbon composites as efficient bifunctional electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 10, 7134–7144 (2018). https://doi.org/10.1021/acsami.7b18858
S. Yu, X. Wang, H. Pang, R. Zhang, W. Song et al., Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review. Chem. Eng. J. 333, 343–360 (2018). https://doi.org/10.1016/j.cej.2017.09.163
A. Zakutayev, S.R. Bauers, S. Lany, Experimental synthesis of theoretically predicted multivalent ternary nitride materials. Chem. Mater. 34, 1418–1438 (2022). https://doi.org/10.1021/acs.chemmater.1c03014
O.S. Vereshchagin, D.V. Pankin, M.B. Smirnov, N.S. Vlasenko, V.V. Shilovskikh et al., Raman spectroscopy: a promising tool for the characterization of transition metal phosphides. J. Alloys Compd. 853, 156468 (2021). https://doi.org/10.1016/j.jallcom.2020.156468
C.-C. Weng, J.-T. Ren, Z.-Y. Yuan, Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: a critical review. Chemsuschem 13, 3357–3375 (2020). https://doi.org/10.1002/cssc.202000416
S. Dey, G.C. Dhal, D. Mohan, R. Prasad, Advances in transition metal oxide catalysts for carbon monoxide oxidation: a review. Adv. Compos. Hybrid Mater. 2, 626–656 (2019). https://doi.org/10.1007/s42114-019-00126-3
S. Dey, G.C. Dhal, D. Mohan, R. Prasad, R.N. Gupta, Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide. Appl. Surf. Sci. 441, 303–316 (2018). https://doi.org/10.1016/j.apsusc.2018.02.048
A. Vazhayil, L. Vazhayal, J. Thomas, S. Ashok, N. Thomas, A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction. Appl. Surf. Sci. Adv. 6, 100184 (2021). https://doi.org/10.1016/j.apsadv.2021.100184
P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
R. Li, H. Xu, P. Yang, D. Wang, Y. Li et al., Synergistic interfacial and doping engineering of heterostructured NiCo(OH)x–CoyW as an efficient alkaline hydrogen evolution electrocatalyst. Nano-Micro Lett. 13, 120 (2021). https://doi.org/10.1007/s40820-021-00639-x
Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian et al., Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 15, 95 (2023). https://doi.org/10.1007/s40820-023-01066-w
Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15, 4 (2022). https://doi.org/10.1007/s40820-022-00974-7
B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
Y. Guo, P. Yuan, J. Zhang, H. Xia, F. Cheng et al., Co2P–CoN double active centers confined in N-doped carbon nanotube: heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn–air batteries driven water splitting. Adv. Funct. Mater. 28, 1805641 (2018). https://doi.org/10.1002/adfm.201805641
T. Gong, J. Zhang, Y. Liu, L. Hou, J. Deng et al., Construction of hetero-phase Mo2C-CoO@N-CNFs film as a self-supported Bi-functional catalyst towards overall water splitting. Chem. Eng. J. 451, 139025 (2023). https://doi.org/10.1016/j.cej.2022.139025
G. Bahuguna, A. Cohen, B. Filanovsky, F. Patolsky, Electronic structure engineering of highly-scalable earth-abundant multi-synergized electrocatalyst for exceptional overall water splitting in neutral medium. Adv. Sci. 9, 2203678 (2022). https://doi.org/10.1002/advs.202203678
G. Ma, J. Ye, M. Qin, T. Sun, W. Tan et al., Mn-doped NiCoP nanopin arrays as high-performance bifunctional electrocatalysts for sustainable hydrogen production via overall water splitting. Nano Energy 115, 108679 (2023). https://doi.org/10.1016/j.nanoen.2023.108679
J. Xie, F. Wang, Y. Zhou, Y. Dong, Y. Chai et al., Internal polarization field induced hydroxyl spillover effect for industrial water splitting electrolyzers. Nano-Micro Lett. 16, 39 (2023). https://doi.org/10.1007/s40820-023-01253-9
J. Zhu, J. Qian, X. Peng, B. Xia, D. Gao, Etching-induced surface reconstruction of NiMoO4 for oxygen evolution reaction. Nano-Micro Lett. 15, 30 (2023). https://doi.org/10.1007/s40820-022-01011-3
J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
Y. Zhao, B. Jin, Y. Zheng, H. Jin, Y. Jiao et al., Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Adv. Energy Mater. 8, 1801926 (2018). https://doi.org/10.1002/aenm.201801926
N. Jia, L. Wang, Q. Weng, Y. Jia, P. Chen, Co-based amorphous layered metal–organic frameworks: an efficient bifunctional catalyst for water electrolysis. Adv. Eng. Mater. 25, 2301059 (2023). https://doi.org/10.1002/adem.202301059
Y. Lu, H. Zhang, Y. Wang, X. Zhu, W. Xiao et al., Solar-driven interfacial evaporation accelerated electrocatalytic water splitting on 2D perovskite oxide/mxene heterostructure. Adv. Funct. Mater. 33, 2215061 (2023). https://doi.org/10.1002/adfm.202215061
N. Abidi, A. Bonduelle-Skrzypczak, S.N. Steinmann, Revisiting the active sites at the MoS2/H2O interface via grand-canonical DFT: the role of water dissociation. ACS Appl. Mater. Interfaces 12, 31401–31410 (2020). https://doi.org/10.1021/acsami.0c06489
J. Wei, G. Wang, Y. Zhang, S. Wang, W. Zhao et al., Proton-induced fast preparation of size-controllable MoS2 nanocatalyst towards highly efficient water electrolysis. Chin. Chem. Lett. 32, 1191–1196 (2021). https://doi.org/10.1016/j.cclet.2020.08.005
Y. Jiang, S. Gao, J. Liu, G. Xu, Q. Jia et al., Ti-mesh supported porous CoS2 nanosheet self-interconnected networks with high oxidation states for efficient hydrogen production via urea electrolysis. Nanoscale 12, 11573–11581 (2020). https://doi.org/10.1039/D0NR02058C
N.K. Chaudhari, H. Jin, B. Kim, K. Lee, Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 9, 12231–12247 (2017). https://doi.org/10.1039/C7NR04187J
X. Gao, Y. Chen, T. Sun, J. Huang, W. Zhang et al., Karst landform-featured monolithic electrode for water electrolysis in neutral media. Energy Environ. Sci. 13, 174–182 (2020). https://doi.org/10.1039/c9ee02380a
G. Ren, Q. Hao, J. Mao, L. Liang, H. Liu et al., Ultrafast fabrication of nickel sulfide film on Ni foam for efficient overall water splitting. Nanoscale 10, 17347–17353 (2018). https://doi.org/10.1039/C8NR05494K
F. Shang, S. Wan, X. Gao, W. Zhang, R. Cao, Engineering hierarchical-dimensional Co(OH)F into CoP superstructure for electrocatalytic water splitting. ChemCatChem 12, 4770–4774 (2020). https://doi.org/10.1002/cctc.202000993
T. Zhao, Y. Wang, S. Karuturi, K. Catchpole, Q. Zhang et al., Design and operando/in situ characterization of precious-metal-free electrocatalysts for alkaline water splitting. Carbon Energy 2, 582–613 (2020). https://doi.org/10.1002/cey2.79
J.-Y. Zhu, Q. Xue, Y.-Y. Xue, Y. Ding, F.-M. Li et al., Iridium nanotubes as bifunctional electrocatalysts for oxygen evolution and nitrate reduction reactions. ACS Appl. Mater. Interfaces 12, 14064–14070 (2020). https://doi.org/10.1021/acsami.0c01937
M. Chatti, J.L. Gardiner, M. Fournier, B. Johannessen, T. Williams et al., Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C. Nat. Catal. 2, 457–465 (2019). https://doi.org/10.1038/s41929-019-0277-8
M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695 (2014). https://doi.org/10.1038/ncomms5695
X. Gao, S. Yang, W. Zhang, R. Cao, Biomimicking hydrogen-bonding network by ammoniated and hydrated manganese (II) phosphate for electrocatalytic water oxidation. Acta Phys. Chim. Sin. 37, 2007031 (2021). https://doi.org/10.3866/pku.Whxb202007031
Y. Zhao, J. Zhang, Y. Xie, B. Sun, J. Jiang et al., Constructing atomic heterometallic sites in ultrathin nickel-incorporated cobalt phosphide nanosheets via a boron-assisted strategy for highly efficient water splitting. Nano Lett. 21, 823–832 (2021). https://doi.org/10.1021/acs.nanolett.0c04569
Y.-N. Wang, Z.-J. Yang, D.-H. Yang, L. Zhao, X.-R. Shi et al., FeCoP2 nanops embedded in N and P Co-doped hierarchically porous carbon for efficient electrocatalytic water splitting. ACS Appl. Mater. Interfaces 13, 8832–8843 (2021). https://doi.org/10.1021/acsami.0c22336
J. Li, S. Zou, X. Liu, Y. Lu, D. Dong, Electronically modulated CoP by Ce doping as a highly efficient electrocatalyst for water splitting. ACS Sustain. Chem. Eng. 8, 10009–10016 (2020). https://doi.org/10.1021/acssuschemeng.0c01193
F. Yang, Y. Chen, G. Cheng, S. Chen, W. Luo, Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal. 7, 3824–3831 (2017). https://doi.org/10.1021/acscatal.7b00587
X. Wang, Y. Chen, J. He, B. Yu, B. Wang et al., Vertical V-doped CoP nanowall arrays as a highly efficient and stable electrocatalyst for the hydrogen evolution reaction at all pH values. ACS Appl. Energy Mater. 3, 1027–1035 (2020). https://doi.org/10.1021/acsaem.9b02075
O.L. Li, H. Lee, T. Ishizaki, Recent progress in solution plasma-synthesized-carbon-supported catalysts for energy conversion systems. Jpn. J. Appl. Phys. 57, 0102A2 (2018). https://doi.org/10.7567/JJAP.57.0102A2
X. Wei, W. Li, J.-A. Shi, L. Gu, Y. Yu, FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces 7, 27804–27809 (2015). https://doi.org/10.1021/acsami.5b09062
R. Yang, L. Mei, Q. Zhang, Y. Fan, H.S. Shin et al., High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 17, 358–377 (2022). https://doi.org/10.1038/s41596-021-00643-w
J. Zhang, L. Dai, Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew. Chem. Int. Ed. 55, 13296–13300 (2016). https://doi.org/10.1002/anie.201607405
J.C. Wilson, S. Caratzoulas, D.G. Vlachos, Y. Yan, Insights into solvent and surface charge effects on volmer step kinetics on Pt (111). Nat. Commun. 14, 2384 (2023). https://doi.org/10.1038/s41467-023-37935-6
C. Wan, Z. Zhang, J. Dong, M. Xu, H. Pu et al., Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction. Nat. Mater. 22, 1022–1029 (2023). https://doi.org/10.1038/s41563-023-01584-3
Y. Zhao, H. Li, R. Yang, S. Xie, T. Liu et al., Transient phase transition during the hydrogen evolution reaction. Energy Environ. Sci. 16, 3951–3959 (2023). https://doi.org/10.1039/D3EE01409F
X. Wang, G. Long, B. Liu, Z. Li, W. Gao et al., Rationally modulating the functions of Ni3Sn2–NiSnOx nanocomposite electrocatalysts towards enhanced hydrogen evolution reaction. Angew. Chem. Int. Ed. 62, e202301562 (2023). https://doi.org/10.1002/anie.202301562
T. Wang, X. Liao, T. Zhang, M. Dai, H. Lin, CoP aerogels assisted by selenite etching as high activity electrocatalysts for water splitting. Compos. Part B Eng. 254, 110601 (2023). https://doi.org/10.1016/j.compositesb.2023.110601
J. Brauns, T. Turek, Alkaline water electrolysis powered by renewable energy: a review. Processes 8, 248 (2020). https://doi.org/10.3390/pr8020248
D.S. Falcão, A.M.F.R. Pinto, A review on PEM electrolyzer modelling: guidelines for beginners. J. Clean. Prod. 261, 121184 (2020). https://doi.org/10.1016/j.jclepro.2020.121184
R. Abbasi, B.P. Setzler, S. Lin, J. Wang, Y. Zhao et al., A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers. Adv. Mater. 31, 1805876 (2019). https://doi.org/10.1002/adma.201805876
S. Anwar, F. Khan, Y. Zhang, A. Djire, Recent development in electrocatalysts for hydrogen production through water electrolysis. Int. J. Hydrog. Energy 46, 32284–32317 (2021). https://doi.org/10.1016/j.ijhydene.2021.06.191
M. Fallah Vostakola, H. Ozcan, R.S. El-Emam, B. Amini Horri, Recent advances in high-temperature steam electrolysis with solid oxide electrolysers for green hydrogen production. Energies 16, 3327 (2023). https://doi.org/10.3390/en16083327
Y. Ma, K. Wu, T. Long, J. Yang, Solid-state redox mediators for decoupled H2 production: principle and challenges. Adv. Energy Mater. 13, 2203455 (2023). https://doi.org/10.1002/aenm.202203455
K. Yang, L. Hao, Y. Hou, J. Zhang, J.-H. Yang, Summary and application of Ni-based catalysts for electrocatalytic urea oxidation. Int. J. Hydrog. Energy 51, 966–981 (2024). https://doi.org/10.1016/j.ijhydene.2023.10.279
X. Liu, W. Sun, X. Hu, J. Chen, Z. Wen, Self-powered H2 generation implemented by hydrazine oxidation assisting hybrid electrochemical cell. Chem. Eng. J. 474, 145355 (2023). https://doi.org/10.1016/j.cej.2023.145355
C. Feng, M. Chen, Z. Yang, Z. Xie, X. Li et al., Electrocatalytic seawater splitting for hydrogen production: recent progress and future prospects. J. Mater. Sci. Technol. 162, 203–226 (2023). https://doi.org/10.1016/j.jmst.2023.03.058
S. Dresp, F. Dionigi, M. Klingenhof, P. Strasser, Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett. 4, 933–942 (2019). https://doi.org/10.1021/acsenergylett.9b00220
M.A. Khan, T. Al-Attas, S. Roy, M.M. Rahman, N. Ghaffour et al., Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy Environ. Sci. 14, 4831–4839 (2021). https://doi.org/10.1039/D1EE00870F
L. Chang, Z. Sun, Y.H. Hu, 1T phase transition metal dichalcogenides for hydrogen evolution reaction. Electrochem. Energy Rev. 4, 194–218 (2021). https://doi.org/10.1007/s41918-020-00087-y
A. Ursua, L.M. Gandia, P. Sanchis, Hydrogen production from water electrolysis: current status and future trends. Proc. IEEE 100, 410–426 (2012). https://doi.org/10.1109/JPROC.2011.2156750
S. Aralekallu, K. Sannegowda Lokesh, V. Singh, Advanced bifunctional catalysts for energy production by electrolysis of earth-abundant water. Fuel 357, 129753 (2024). https://doi.org/10.1016/j.fuel.2023.129753
A. Rehman, A. Khan, E. Pervaiz, The role of nickel cobalt sulphide MOFs hybrids in electrochemical hydrogen generation: a critical review. Mater. Chem. Phys. 315, 129027 (2024). https://doi.org/10.1016/j.matchemphys.2024.129027
F. Gutiérrez-Martín, A. Ochoa-Mendoza, L.M. Rodríguez-Antón, Pre-investigation of water electrolysis for flexible energy storage at large scales: the case of the Spanish power system. Int. J. Hydrog. Energy 40, 5544–5551 (2015). https://doi.org/10.1016/j.ijhydene.2015.01.184
D. Ferrero, A. Lanzini, M. Santarelli, P. Leone, A comparative assessment on hydrogen production from low- and high-temperature electrolysis. Int. J. Hydrog. Energy 38, 3523–3536 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.065
F.N. Khatib, T. Wilberforce, O. Ijaodola, E. Ogungbemi, Z. El-Hassan et al., Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: a review. Renew. Sustain. Energy Rev. 111, 1–14 (2019). https://doi.org/10.1016/j.rser.2019.05.007
M.N.I. Salehmin, T. Husaini, J. Goh, A.B. Sulong, High-pressure PEM water electrolyser: a review on challenges and mitigation strategies towards green and low-cost hydrogen production. Energy Convers. Manag. 268, 115985 (2022). https://doi.org/10.1016/j.enconman.2022.115985
H. Sayed-Ahmed, Á.I. Toldy, A. Santasalo-Aarnio, Dynamic operation of proton exchange membrane electrolyzers—critical review. Renew. Sustain. Energy Rev. 189, 113883 (2024). https://doi.org/10.1016/j.rser.2023.113883
C. Qiu, Z. Xu, F.-Y. Chen, H. Wang, Anode engineering for proton exchange membrane water electrolyzers. ACS Catal. 14, 921–954 (2024). https://doi.org/10.1021/acscatal.3c05162
H.Y. Lin, Z.X. Lou, Y. Ding, X. Li, F. Mao et al., Oxygen evolution electrocatalysts for the proton exchange membrane electrolyzer: challenges on stability. Small Methods 6, 2201130 (2022). https://doi.org/10.1002/smtd.202201130
B.-K. Park, Q. Zhang, P.W. Voorhees, S.A. Barnett, Conditions for stable operation of solid oxide electrolysis cells: oxygen electrode effects. Energy Environ. Sci. 12, 3053–3062 (2019). https://doi.org/10.1039/C9EE01664C
A. Hauch, R. Küngas, P. Blennow, A.B. Hansen, J.B. Hansen et al., Recent advances in solid oxide cell technology for electrolysis. Science 370, eaba6118 (2020). https://doi.org/10.1126/science.aba6118
B.S. Zainal, P.J. Ker, H. Mohamed, H.C. Ong, I.M.R. Fattah et al., Recent advancement and assessment of green hydrogen production technologies. Renew. Sustain. Energy Rev. 189, 113941 (2024). https://doi.org/10.1016/j.rser.2023.113941
C. Liu, Z. Geng, X. Wang, W. Liu, Y. Wang et al., Development of advanced anion exchange membrane from the view of the performance of water electrolysis cell. J. Energy Chem. 90, 348–369 (2024). https://doi.org/10.1016/j.jechem.2023.11.026
Y. Yang, P. Li, X. Zheng, W. Sun, S.X. Dou et al., Anion-exchange membrane water electrolyzers and fuel cells. Chem. Soc. Rev. 51, 9620–9693 (2022). https://doi.org/10.1039/D2CS00038E
C. Li, J.-B. Baek, The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy 87, 106162 (2021). https://doi.org/10.1016/j.nanoen.2021.106162
H. Ito, N. Kawaguchi, S. Someya, T. Munakata, Pressurized operation of anion exchange membrane water electrolysis. Electrochim. Acta 297, 188–196 (2019). https://doi.org/10.1016/j.electacta.2018.11.077
S.W. Sharshir, A. Joseph, M.M. Elsayad, A.A. Tareemi, A.W. Kandeal et al., A review of recent advances in alkaline electrolyzer for green hydrogen production: performance improvement and applications. Int. J. Hydrog. Energy 49, 458–488 (2024). https://doi.org/10.1016/j.ijhydene.2023.08.107
X. Gao, D. Chen, J. Qi, F. Li, Y. Song et al., NiFe oxalate nanomesh array with homogenous doping of Fe for electrocatalytic water oxidation. Small 15, 1904579 (2019). https://doi.org/10.1002/smll.201904579
D. Aili, A.G. Wright, M.R. Kraglund, K. Jankova, S. Holdcroft et al., Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis. J. Mater. Chem. A 5, 5055–5066 (2017). https://doi.org/10.1039/C6TA10680C
Z. Gao, Y.J.P. Tian, Self-sustaining control strategy for proton-exchange membrane electrolysis devices based on gradient-disturbance observation method. Processes 11, 828 (2023). https://doi.org/10.3390/pr11030828
S. Wei, B.V. Balakin, P. Kosinski, Investigation of nanofluids in alkaline electrolytes: stability, electrical properties, and hydrogen production. J. Clean. Prod. 414, 137723 (2023). https://doi.org/10.1016/j.jclepro.2023.137723
B. Lai, S.C. Singh, J.K. Bindra, C.S. Saraj, A. Shukla et al., Hydrogen evolution reaction from bare and surface-functionalized few-layered MoS2 nanosheets in acidic and alkaline electrolytes. Mater. Today Chem. 14, 100207 (2019). https://doi.org/10.1016/j.mtchem.2019.100207
G. Bahuguna, A. Cohen, N. Harpak, B. Filanovsky, F. Patolsky, Single-step solid-state scalable transformation of Ni-based substrates to high-oxidation state nickel sulfide nanoplate arrays as exceptional bifunctional electrocatalyst for overall water splitting. Small Methods 6, 2200181 (2022). https://doi.org/10.1002/smtd.202200181
H. Yang, P. Guo, R. Wang, Z. Chen, H. Xu et al., Sequential phase conversion-induced phosphides heteronanorod arrays for superior hydrogen evolution performance to Pt in wide pH media. Adv. Mater. 34, 2107548 (2022). https://doi.org/10.1002/adma.202107548
Z. Zuo, X. Zhang, O. Peng, L. Shan, S. Xiang et al., Self-supported iron-based bimetallic phosphide catalytic electrode for efficient hydrogen evolution reaction at high current density. J. Mater. Chem. A 12, 5331–5339 (2024). https://doi.org/10.1039/D3TA06035G
H. Li, L. Du, Y. Zhang, X. Liu, S. Li et al., A unique adsorption-diffusion-decomposition mechanism for hydrogen evolution reaction towards high-efficiency Cr, Fe-modified CoP nanorod catalyst. Appl. Catal. B Environ. 346, 123749 (2024). https://doi.org/10.1016/j.apcatb.2024.123749
C. Zeng, J. Zhang, L. Xia, K.-L. Zhou, Y. Jin et al., Self-tuned interfacial charges induced by protonated transition metal heterostructure for efficiently acidic hydrogen evolution reaction. Chem. Eng. J. 476, 146387 (2023). https://doi.org/10.1016/j.cej.2023.146387
Y. Qin, Y. Chen, X. Zeng, Y. Liu, X. Lin et al., MoNi4–NiO heterojunction encapsulated in lignin-derived carbon for efficient hydrogen evolution reaction. Green Energy Environ. 8, 1728–1736 (2023). https://doi.org/10.1016/j.gee.2022.04.005
M. Gao, P. Gao, T. Lei, C. Ouyang, X. Wu et al., FeP/Ni2P nanosheet arrays as high-efficiency hydrogen evolution electrocatalysts. J. Mater. Chem. A 10, 15569–15579 (2022). https://doi.org/10.1039/D2TA02499C
Q. Luo, Y. Zhao, L. Sun, C. Wang, H. Xin et al., Interface oxygen vacancy enhanced alkaline hydrogen evolution activity of cobalt-iron phosphide/CeO2 hollow nanorods. Chem. Eng. J. 437, 135376 (2022). https://doi.org/10.1016/j.cej.2022.135376
Z. Li, C. Wang, Y. Liang, H. Jiang, S. Wu et al., Boosting hydrogen evolution performance of nanoporous Fe–Pd alloy electrocatalyst by metastable phase engineering. Appl. Catal. B Environ. 345, 123677 (2024). https://doi.org/10.1016/j.apcatb.2023.123677
G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14, 20 (2021). https://doi.org/10.1007/s40820-021-00744-x
X. Jian, W. Zhang, Y. Yang, Z. Li, H. Pan et al., Amorphous Cu–W alloys as stable and efficient electrocatalysts for hydrogen evolution. ACS Catal. 14, 2816–2827 (2024). https://doi.org/10.1021/acscatal.3c05820
J. Chen, C. Chen, M. Qin, B. Li, B. Lin et al., Reversible hydrogen spillover in Ru-WO3-x enhances hydrogen evolution activity in neutral pH water splitting. Nat. Commun. 13, 5382 (2022). https://doi.org/10.1038/s41467-022-33007-3
J. Dai, Y. Zhu, Y. Chen, X. Wen, M. Long et al., Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis. Nat. Commun. 13, 1189 (2022). https://doi.org/10.1038/s41467-022-28843-2
D. Chen, R. Lu, R. Yu, Y. Dai, H. Zhao et al., Work-function-induced interfacial built-in electric fields in Os-OsSe2 heterostructures for active acidic and alkaline hydrogen evolution. Angew. Chem. Int. Ed. 61, e202208642 (2022). https://doi.org/10.1002/anie.202208642
K. Jung, D.S.A. Pratama, A. Haryanto, J.I. Jang, H.M. Kim et al., Iridium-cluster-implanted ruthenium phosphide electrocatalyst for hydrogen evolution reaction. Adv. Fiber Mater. 6, 158–169 (2024). https://doi.org/10.1007/s42765-023-00342-z
Z. Wang, Z. Lin, Y. Wang, S. Shen, Q. Zhang et al., Nontrivial topological surface states in Ru3Sn7 toward wide pH-range hydrogen evolution reaction. Adv. Mater. 35, 2302007 (2023). https://doi.org/10.1002/adma.202302007
Z.W. Chen, J. Li, P. Ou, J.E. Huang, Z. Wen et al., Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions. Nat. Commun. 15, 359 (2024). https://doi.org/10.1038/s41467-023-44261-4
J. Fan, Z. Feng, Y. Mu, X. Ge, D. Wang et al., Spatially confined PdHx metallenes by tensile strained atomic Ru layers for efficient hydrogen evolution. J. Am. Chem. Soc. 145, 5710–5717 (2023). https://doi.org/10.1021/jacs.2c11692
B. Fan, H. Wang, X. Han, Y. Deng, W. Hu, Single atoms (Pt, Ir and Rh) anchored on activated NiCo LDH for alkaline hydrogen evolution reaction. Chem. Commun. 58, 8254–8257 (2022). https://doi.org/10.1039/D2CC02732A
Z. Zhai, Y. Wang, C. Si, P. Liu, W. Yang et al., Self-templating synthesis and structural regulation of nanoporous rhodium-nickel alloy nanowires efficiently catalyzing hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 16, 2026–2034 (2023). https://doi.org/10.1007/s12274-022-4861-x
H. Du, Z. Du, T. Wang, B. Li, S. He et al., Unlocking interfacial electron transfer of ruthenium phosphides by homologous core–shell design toward efficient hydrogen evolution and oxidation. Adv. Mater. 34, 2204624 (2022). https://doi.org/10.1002/adma.202204624
L. Deng, F. Hu, M. Ma, S.-C. Huang, Y. Xiong et al., Electronic modulation caused by interfacial Ni–O–M (M = Ru, Ir, Pd) bonding for accelerating hydrogen evolution kinetics. Angew. Chem. Int. Ed. 60, 22276–22282 (2021). https://doi.org/10.1002/anie.202110374
Z. Che, X. Lu, B. Cai, X. Xu, J. Bao et al., Ligand-controlled synthesis of high density and ultra-small Ru nanops with excellent electrocatalytic hydrogen evolution performance. Nano Res. 15, 1269–1275 (2022). https://doi.org/10.1007/s12274-021-3645-z
X. Mu, J. Gu, F. Feng, Z. Xiao, C. Chen et al., Rurh bimetallene nanoring as high-efficiency pH-universal catalyst for hydrogen evolution reaction. Adv. Sci. 8, 2002341 (2021). https://doi.org/10.1002/advs.202002341
F. Shen, Y. Wang, G. Qian, W. Chen, W. Jiang et al., Bimetallic iron-iridium alloy nanops supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density. Appl. Catal. B Environ. 278, 119327 (2020). https://doi.org/10.1016/j.apcatb.2020.119327
S. Geng, Y. Ji, J. Su, Z. Hu, M. Fang et al., Homogeneous metastable hexagonal phase iridium enhances hydrogen evolution catalysis. Adv. Sci. 10, 2206063 (2023). https://doi.org/10.1002/advs.202206063
T. Feng, J. Yu, D. Yue, H. Song, S. Tao et al., Defect-rich ruthenium dioxide electrocatalyst enabled by electronic reservoir effect of carbonized polymer dot for remarkable pH-universal oxygen evolution. Appl. Catal. B Environ. 328, 122546 (2023). https://doi.org/10.1016/j.apcatb.2023.122546
T. Yu, Q. Xu, L. Luo, C. Liu, S. Yin, Interface engineering of NiO/RuO2 heterojunction nano-sheets for robust overall water splitting at large current density. Chem. Eng. J. 430, 133117 (2022). https://doi.org/10.1016/j.cej.2021.133117
Y. Jiang, Y. Mao, Y. Jiang, H. Liu, W. Shen et al., Atomic equidistribution enhanced RuIr electrocatalysts for overall water splitting in the whole pH range. Chem. Eng. J. 450, 137909 (2022). https://doi.org/10.1016/j.cej.2022.137909
A. Kagkoura, H.J. Ojeda-Galván, M. Quintana, N. Tagmatarchis, Carbon dots strongly immobilized onto carbon nanohorns as non-metal heterostructure with high electrocatalytic activity towards protons reduction in hydrogen evolution reaction. Small 19, 2208285 (2023). https://doi.org/10.1002/smll.202208285
S. Sekar, A.T. Aqueel Ahmed, D.H. Sim, S. Lee, Extraordinarily high hydrogen-evolution-reaction activity of corrugated graphene nanosheets derived from biomass rice husks. Int. J. Hydrog. Energy 47, 40317–40326 (2022). https://doi.org/10.1016/j.ijhydene.2022.02.233
Y. Li, C. Ai, S. Deng, Y. Wang, X. Tong et al., Nitrogen doped vertical graphene as metal-free electrocatalyst for hydrogen evolution reaction. Mater. Res. Bull. 134, 111094 (2021). https://doi.org/10.1016/j.materresbull.2020.111094
F. He, C. Xing, Y. Xue, Metal-free amino-graphdiyne for applications in electrocatalytic hydrogen evolution. J. Catal. 395, 129–135 (2021). https://doi.org/10.1016/j.jcat.2020.12.033
Y. Huang, M. Wang, Y. Li, S. Yin, H. Zhu et al., Edge-rich reduced graphene oxide embedded in silica-based laminated ceramic composites for efficient and robust electrocatalytic hydrogen evolution. Small Methods 5, 2100621 (2021). https://doi.org/10.1002/smtd.202100621
L. Hui, Y. Xue, Y. Liu, Y. Li, Efficient hydrogen evolution on nanoscale graphdiyne. Small 17, 2006136 (2021). https://doi.org/10.1002/smll.202006136
Y. Liu, R. Ali, J. Ma, W. Jiao, L. Yin et al., Graphene-decorated boron–carbon–nitride-based metal-free catalysts for an enhanced hydrogen evolution reaction. ACS Appl. Energy Mater. 4, 3861–3868 (2021). https://doi.org/10.1021/acsaem.1c00238
T. Li, Y. Chen, W. Hu, W. Yuan, Q. Zhao et al., Ionic liquid in situ functionalized carbon nanotubes as metal-free catalyst for efficient electrocatalytic hydrogen evolution reaction. Nanoscale 13, 4444–4450 (2021). https://doi.org/10.1039/D0NR08817J
M.A. Ahsan, T. He, K. Eid, A.M. Abdullah, M.L. Curry et al., Tuning the intermolecular electron transfer of low-dimensional and metal-free BCN/C60 electrocatalysts via interfacial defects for efficient hydrogen and oxygen electrochemistry. J. Am. Chem. Soc. 143, 1203–1215 (2021). https://doi.org/10.1021/jacs.0c12386
Z. Liu, M. Wang, X. Luo, S. Li, S. Li et al., N-, P-, and O-doped porous carbon: a trifunctional metal-free electrocatalyst. Appl. Surf. Sci. 544, 148912 (2021). https://doi.org/10.1016/j.apsusc.2020.148912
I. Nath, J. Chakraborty, R. Lips, S. Dekyvere, J. Min et al., Hydrogen bond-mediated pH-universal electrocatalytic hydrogen production by conjugated porous poly-indigo. J. Mater. Chem. A 11, 10699–10709 (2023). https://doi.org/10.1039/D2TA08365E
A. Jaiswal, S. Pal, A. Kumar, R. Prakash, Metal free triad from red phosphorous, reduced graphene oxide and graphitic carbon nitride (red P-rGO-g-C3N4) as robust electro-catalysts for hydrogen evolution reaction. Electrochim. Acta 338, 135851 (2020). https://doi.org/10.1016/j.electacta.2020.135851
C. Yang, S. Tao, N. Huang, X. Zhang, J. Duan et al., Heteroatom-doped carbon electrocatalysts derived from nanoporous two-dimensional covalent organic frameworks for oxygen reduction and hydrogen evolution. Acs Appl. Nano Mater. 3, 5481–5488 (2020). https://doi.org/10.1021/acsanm.0c00786
J. Sun, Q. Ge, L. Guo, Z. Yang, Nitrogen doped carbon fibers derived from carbonization of electrospun polyacrylonitrile as efficient metal-free HER electrocatalyst. Int. J. Hydrog. Energy 45, 4035–4042 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.204
H. Nady, M.M. El-Rabiei, M. Samy, M.A. Deyab, G.M. Abd El-Hafez, Novel Ni–Cr-based alloys as hydrogen fuel sources through alkaline water electrolytes. Int. J. Hydrog. Energy 46, 34749–34766 (2021). https://doi.org/10.1016/j.ijhydene.2021.08.056
C. Wang, L. Qi, Heterostructured inter-doped ruthenium–cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting. Angew. Chem. Int. Ed. 59, 17219–17224 (2020). https://doi.org/10.1002/anie.202005436
D. Wang, A. Umar, X. Wu, Enhanced water electrolysis performance of bifunctional NiCoP electrocatalyst in alkaline media. J. Electroanal. Chem. 950, 117888 (2023). https://doi.org/10.1016/j.jelechem.2023.117888
Y. Li, X.F. Wei, L.S. Chen, J.L. Shi, Electrocatalytic hydrogen production trilogy. Angew. Chem. Int. Ed. 60, 19550–19571 (2021). https://doi.org/10.1002/anie.202009854
L. Van Hoecke, L. Laffineur, R. Campe, P. Perreault, S.W. Verbruggen et al., Challenges in the use of hydrogen for maritime applications. Energy Environ. Sci. 14, 815–843 (2021). https://doi.org/10.1039/D0EE01545H
H. Wang, L. Chen, L. Tan, X. Liu, Y. Wen et al., Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting. J. Colloid Interface Sci. 613, 349–358 (2022). https://doi.org/10.1016/j.jcis.2022.01.044
P. Zhai, M. Xia, Y. Wu, G. Zhang, J. Gao et al., Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 12, 4587 (2021). https://doi.org/10.1038/s41467-021-24828-9
X. Zhang, H. Zhao, C. Li, S. Li, K. Liu et al., Facile coordination driven synthesis of metal-organic gels toward efficiently electrocatalytic overall water splitting. Appl. Catal. B Environ. 299, 120641 (2021). https://doi.org/10.1016/j.apcatb.2021.120641
H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
T. Yang, Y. Xu, H. Lv, M. Wang, X. Cui et al., Triggering the intrinsic catalytic activity of Ni-doped molybdenum oxides via phase engineering for hydrogen evolution and application in Mg/seawater batteries. ACS Sustain. Chem. Eng. 9, 13106–13113 (2021). https://doi.org/10.1021/acssuschemeng.1c05184
T. Ren, M. Li, Y. Chu, J. Chen, Thioetherification of isoprene and butanethiol on transition metal phosphides. J. Energy Chem. 27, 930–939 (2018). https://doi.org/10.1016/j.jechem.2017.07.017
G. Bahuguna, F. Patolsky, Why today’s “water” in water splitting is not natural water? Critical up-to-date perspective and future challenges for direct seawater splitting. Nano Energy 117, 108884 (2023). https://doi.org/10.1016/j.nanoen.2023.108884
M. Ning, L. Wu, F. Zhang, D. Wang, S. Song et al., One-step spontaneous growth of NiFe layered double hydroxide at room temperature for seawater oxygen evolution. Mater. Today Phys. 19, 100419 (2021). https://doi.org/10.1016/j.mtphys.2021.100419
L. Xu, Y. Dong, W. Xu, W. Zhang, Ultrafast and facile synthesis of (Ni/Fe/Mo)OOH on Ni foam for oxygen evolution reaction in seawater electrolysis. Catalysts 13, 924 (2023). https://doi.org/10.3390/catal13060924
L. Yu, J. Xiao, C. Huang, J. Zhou, M. Qiu et al., High-performance seawater oxidation by a homogeneous multimetallic layered double hydroxide electrocatalyst. Proc. Natl. Acad. Sci. 119, e2202382119 (2022). https://doi.org/10.1073/pnas.2202382119
Y. Luo, P. Wang, G. Zhang, S. Wu, Z. Chen et al., Mn-doped nickel–iron phosphide heterointerface nanoflowers for efficient alkaline freshwater/seawater splitting at high current densities. Chem. Eng. J. 454, 140061 (2023). https://doi.org/10.1016/j.cej.2022.140061
S.Y. Jung, S. Kang, K.M. Kim, S. Mhin, J.C. Kim et al., Sulfur-incorporated nickel-iron layered double hydroxides for effective oxygen evolution reaction in seawater. Appl. Surf. Sci. 568, 150965 (2021). https://doi.org/10.1016/j.apsusc.2021.150965
C. Wang, M. Zhu, Z. Cao, P. Zhu, Y. Cao et al., Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Appl. Catal. B Environ. 291, 120071 (2021). https://doi.org/10.1016/j.apcatb.2021.120071
L. Yu, L. Wu, B. McElhenny, S. Song, D. Luo et al., Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 13, 3439–3446 (2020). https://doi.org/10.1039/D0EE00921K
Y. Zhang, X. Song, S. Xue, Y. Liang, H. Jiang, Fabrication of hierarchically structured S-doped NiFe hydroxide/oxide electrodes for solar-assisted oxygen evolution reaction in seawater splitting. Appl. Catal. A-Gen. 649, 118965 (2023). https://doi.org/10.1016/j.apcata.2022.118965
Y. Kuang, M.J. Kenney, Y. Meng, W.-H. Hung, Y. Liu et al., Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. 116, 6624–6629 (2019). https://doi.org/10.1073/pnas.1900556116
A.R. Jadhav, A. Kumar, J. Lee, T. Yang, S. Na et al., Stable complete seawater electrolysis by using interfacial chloride ion blocking layer on catalyst surface. J. Mater. Chem. A 8, 24501–24514 (2020). https://doi.org/10.1039/D0TA08543J
Y. Li, X. Wu, J. Wang, H. Wei, S. Zhang et al., Sandwich structured Ni3S2–MoS2–Ni3S2@Ni foam electrode as a stable bifunctional electrocatalyst for highly sustained overall seawater splitting. Electrochim. Acta 390, 138833 (2021). https://doi.org/10.1016/j.electacta.2021.138833
X. Liu, Q. Yu, X. Qu, X. Wang, J. Chi et al., Manipulating electron redistribution in Ni2P for enhanced alkaline seawater electrolysis. Adv. Mater. 36, 2307395 (2024). https://doi.org/10.1002/adma.202307395
Y. Song, M. Sun, S. Zhang, X. Zhang, P. Yi et al., Alleviating the work function of vein-like CoxP by Cr doping for enhanced seawater electrolysis. Adv. Funct. Mater. 33, 2214081 (2023). https://doi.org/10.1002/adfm.202214081
J. Zhu, J. Chi, T. Cui, L. Guo, S. Wu et al., F doping and P vacancy engineered FeCoP nanosheets for efficient and stable seawater electrolysis at large current density. Appl. Catal. B Environ. 328, 122487 (2023). https://doi.org/10.1016/j.apcatb.2023.122487
Y. Xu, H. Lv, H. Lu, Q. Quan, W. Li et al., Mg/seawater batteries driven self-powered direct seawater electrolysis systems for hydrogen production. Nano Energy 98, 107295 (2022). https://doi.org/10.1016/j.nanoen.2022.107295
R. Li, Y. Li, P. Yang, P. Ren, D. Wang et al., Synergistic interface engineering and structural optimization of non-noble metal telluride-nitride electrocatalysts for sustainably overall seawater electrolysis. Appl. Catal. B Environ. 318, 121834 (2022). https://doi.org/10.1016/j.apcatb.2022.121834
J. Chen, L. Zhang, J. Li, X. He, Y. Zheng et al., High-efficiency overall alkaline seawater splitting: using a nickel–iron sulfide nanosheet array as a bifunctional electrocatalyst. J. Mater. Chem. A 11, 1116–1122 (2023). https://doi.org/10.1039/D2TA08568B
Y.S. Park, J.-Y. Jeong, M.J. Jang, C.-Y. Kwon, G.H. Kim et al., Ternary layered double hydroxide oxygen evolution reaction electrocatalyst for anion exchange membrane alkaline seawater electrolysis. J. Energy Chem. 75, 127–134 (2022). https://doi.org/10.1016/j.jechem.2022.08.011
C. Huang, Q. Zhou, L. Yu, D. Duan, T. Cao et al., Functional bimetal Co-modification for boosting large-current-density seawater electrolysis by inhibiting adsorption of chloride ions. Adv. Energy Mater. 13, 2301475 (2023). https://doi.org/10.1002/aenm.202301475
Y. Zhang, C. Fu, S. Weng, H. Lv, P. Li et al., Construction of an “environment-friendly” CuBx@PU self-supporting electrode toward efficient seawater electrolysis. Green Chem. 24, 5918–5929 (2022). https://doi.org/10.1039/D2GC01819E
G. Bahuguna, F. Patolsky, Enabling unprecedented ultra-efficient practical direct seawater splitting by finely-tuned catalyst environment via thermo-hydrodynamic modulation. Adv. Energy Mater. 13, 2301907 (2023). https://doi.org/10.1002/aenm.202301907
J. Guo, Y. Zheng, Z. Hu, C. Zheng, J. Mao et al., Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 8, 264–272 (2023). https://doi.org/10.1038/s41560-023-01195-x
H.J. Song, H. Yoon, B. Ju, D.-Y. Lee, D.-W. Kim, Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1–xFexP2O7 nanops for alkaline seawater electrolysis. ACS Catal. 10, 702–709 (2020). https://doi.org/10.1021/acscatal.9b04231
H. Jin, X. Liu, A. Vasileff, Y. Jiao, Y. Zhao et al., Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano 12, 12761–12769 (2018). https://doi.org/10.1021/acsnano.8b07841
S. Wang, P. Yang, X. Sun, H. Xing, J. Hu et al., Synthesis of 3D heterostructure Co-doped Fe2P electrocatalyst for overall seawater electrolysis. Appl. Catal. B Environ. 297, 120386 (2021). https://doi.org/10.1016/j.apcatb.2021.120386
S. Liu, S. Ren, R.-T. Gao, X. Liu, L. Wang, Atomically embedded Ag on transition metal hydroxides triggers the lattice oxygen towards sustained seawater electrolysis. Nano Energy 98, 107212 (2022). https://doi.org/10.1016/j.nanoen.2022.107212
X. Gu, M. Yu, S. Chen, X. Mu, Z. Xu et al., Coordination environment of Ru clusters with in-situ generated metastable symmetry-breaking centers for seawater electrolysis. Nano Energy 102, 107656 (2022). https://doi.org/10.1016/j.nanoen.2022.107656
N. Wen, Y. Xia, H. Wang, D. Zhang, H. Wang et al., Large-scale synthesis of spinel NixMn3–xO4 solid solution immobilized with iridium single atoms for efficient alkaline seawater electrolysis. Adv. Sci. 9, 2200529 (2022). https://doi.org/10.1002/advs.202200529
S. Wang, M. Wang, Z. Liu, S. Liu, Y. Chen et al., Synergetic function of the single-atom Ru–N4 site and Ru nanops for hydrogen production in a wide pH range and seawater electrolysis. ACS Appl. Mater. Interfaces 14, 15250–15258 (2022). https://doi.org/10.1021/acsami.2c00652
S. Vijayapradeep, N. Logeshwaran, S. Ramakrishnan, A. Rhan Kim, P. Sampath et al., Novel Pt-carbon core–shell decorated hierarchical CoMo2S4 as efficient electrocatalysts for alkaline/seawater hydrogen evolution reaction. Chem. Eng. J. 473, 145348 (2023). https://doi.org/10.1016/j.cej.2023.145348
Y. Liu, H. Huang, X. Ding, B. Huang, Z. Xie, Boosting the HER electrocatalytic activity over RuCu-supported carbon nanosheets as efficient pH-independent catalysts. FlatChem 30, 100302 (2021). https://doi.org/10.1016/j.flatc.2021.100302
W.J. Dong, Y. Xiao, K.R. Yang, Z. Ye, P. Zhou et