Composites of Graphene and LiFePO4 as Cathode Materials for Lithium-Ion Battery: A Mini-review
Corresponding Author: Shouwu Guo
Nano-Micro Letters,
Vol. 6 No. 4 (2014), Article Number: 316-326
Abstract
This mini-review highlights selectively the recent research progress in the composites of LiFePO4 and graphene. In particularly, the different fabrication protocols, and the electrochemical performance of the composites are summarized in detail. The structural and morphology characters of graphene sheets that may affect the property of the composites are discussed briefly. The possible ongoing researches in area are speculated upon.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.S. Peng, C.R. Wan, C.Y. Jiang, Synthesis by sol–gel process and characterization of LiCoO2 cathode materials. J. Power Sources 72(2), 215–220 (1998). doi:10.1016/S0378-7753(97)02689-X
- H. Arai, S. Okada, Y. Sakurai, J.I. Yamaki, Reversibility of LiNiO2 cathode. Solid State Ionic 95(3–4), 275–282 (1997). doi:10.1016/S0167-2738(96)00598-X
- S. Lee, Y. Cho, H.-K. Song, K.T. Lee, J. Cho, Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew. Chem. Int. Ed. 51(35), 8748–8752 (2012). doi:10.1002/anie.201203581
- F.Y. Kang, J. Ma, B.H. Li, Effects of carbonaceous materials on the physical and electrochemical performance of a LiFePO4 cathode for lithium-ion batteries. New Carbon Mater. 26(3), 161–170 (2011). doi:10.1016/S1872-5805(11)60073-5
- C.A.J. Fisher, V.M. Hart Prieto, M.S. Islam, Lithium battery materials LiMPO4 (M = Mn, Fe Co, and Ni): insights into defect association, transport mechanisms, and doping behavior. Chem. Mater. 20(18), 5907–5915 (2008). doi:10.1021/cm801262x
- A.S. Andersson, B. Kalska, L. Häggström, J.O. Thomas, Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mössbauer spectroscopy study. Solid State Ionics 130(1–2), 41–52 (2000). doi:10.1016/S0167-2738(00)00311-8
- P.P. Prosini, M. Lisi, D. Zane, M. Pasquali, Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148(1–2), 45–51 (2002). doi:10.1016/S0167-2738(02)00134-0
- S.Y. Chung, J.T. Bloking, Y.M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1(2), 123–128 (2002). doi:10.1038/nmat732
- D. Choi, P.N. Kumta, Surfactant based sol–gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. J. Power Sources 163(2), 1064–1069 (2007). doi:10.1016/j.jpowsour.2006.09.082
- H.-T. Chung, S.-K. Jang, H.W. Ryu, K.-B. Shim, Effects of nano-carbon webs on the electrochemical properties in LiFePO4/C composite. Solid State Commun. 131(8), 549–554 (2004). doi:10.1016/j.ssc.2004.03.010
- R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik, J. Jamnik, The role of carbon black distribution in cathodes for Li ion batteries. J. Power Sources 119–121, 770–773 (2003). doi:10.1016/S0378-7753(03)00250-7
- M.M. Doeff, Y. Hu, F. McLarnon, R. Kostecki, Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem. Solid State Lett. 6(10), A207–A209 (2003). doi:10.1149/1.1601372
- D. Jugović, M. Mitrić, N. Cvjetićanin, B. Jančar, S. Mentus, D. Uskoković, Synthesis and characterization of LiFePO4/C composite obtained by sonochemical method. Solid State Ionics 179(11–12), 415–419 (2008). doi:10.1016/j.ssi.2008.03.014
- H. Xu, J. Chang, J. Sun, L. Gao, Graphene-encapsulated LiFePO4 nanoparticles with high electrochemical performance for lithium ion batteries. Mater. Lett. 83, 27–30 (2012). doi:10.1016/j.matlet.2012.05.116
- M. Wagemaker, B.L. Ellis, D. Lützenkirchen-Hecht, F.M. Mulder, L.F. Nazar, Proof of supervalent doping in olivine LiFePO4. Chem. Mater. 20(20), 6313–6315 (2008). doi:10.1021/cm801781k
- P.S. Herle, B. Ellis, N. Coombs, L.F. Nazar, Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 3(3), 147–152 (2004). doi:10.1038/nmat1063
- L.H. Hu, F.Y. Wu, C.T. Lin, A.N. Khlobystov, L.J. Li, Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat. Commun. 4, 1687 (2013). doi:10.1038/ncomms2705
- S.W. Oh, S.T. Myung, S.M. Oh, K.H. Oh, K. Amine, B. Scrosati, Y.K. Sun, Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv. Funct. Mater. 22(43), 4842–4845 (2010). doi:10.1002/adma.200904027
- X. Zhao, X. Tang, L. Zhang, M. Zhao, J. Zhai, Effects of neodymium aliovalent substitution on the structure and electrochemical performance of LiFePO4. Electrochim. Acta 55(20), 5899–5904 (2010). doi:10.1016/j.electacta.2010.05.042
- M. Pan, Z. Zhou, Carbon rich surface of LiFePO4 grain enhancing its rate capability. Mater. Lett. 65(7), 1131–1133 (2011). doi:10.1016/j.matlet.2011.01.016
- M. Koltypin, D. Aurbach, L. Nazar, B. Ellis, More on the performance of LiFePO4 electrodes—the effect of synthesis route, solution composition, aging, and temperature. J. Power Sources 174(2), 1241–1250 (2007). doi:10.1016/j.jpowsour.2007.06.045
- A.A. Salah, A. Mauger, C. Julien, F. Gendron, Nano-sized impurity phases in relation to the mode of preparation of LiFePO4. Mater. Sci. Eng. B 129(1), 232–244 (2006). doi:10.1016/j.mseb.2006.01.022
- H. Uchiyama, H. Imai, Preparation of LiFePO4 mesocrystals consisting of nanorods through organic-mediated parallel growth from a precursor phase. Cryst. Growth Des. 10(4), 1777–1781 (2010). doi:10.1021/cg901457t
- I. Boyano, J.A. Blazquez, I. de Meatza, M. Bengoechea, O. Miguel, H. Grande, Y. Huang, J.B. Goodenough, Preparation of C–LiFePO4/polypyrrole lithium rechargeable cathode by consecutive potential steps electrodeposition. J. Power Sources 195(16), 5351–5359 (2010). doi:10.1016/j.jpowsour.2010.03.029
- C. Son, H. Yang, G. Lee, A. Cho, V. Aravindan, H. Kim, W. Kim, Y. Lee, Manipulation of adipic acid application on the electrochemical properties of LiFePO4 at high rate performance. J. Alloy Compd. 509(4), 1279–1284 (2011). doi:10.1016/j.jallcom.2010.10.009
- Y.H. Huang, J.B. Goodenough, High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem. Mater. 20(23), 7237–7241 (2008). doi:10.1021/cm8012304
- Y.M. Bai, P. Qiu, Z.L. Wen, S.C. Han, Improvement of electrochemical performances of LiFePO4 cathode materials by coating of polythiophene. J. Alloy Compd. 508(1), 1–4 (2010). doi:10.1016/j.jallcom.2010.05.173
- L.Q. Sun, M.J. Li, R.H. Cui, H.M. Xie, R.S. Wang, The optimum nanomicro structure of LiFePO4/ortho-rich polyacene composites. J. Phys. Chem. C 114(7), 3297–3303 (2010). doi:10.1021/jp910422g
- M.M. Doeff, J.D. Wilcox, R. Kostecki, G. Lau, Optimization of carbon coatings on LiFePO4. J. Power Sources 163(1), 180–184 (2006). doi:10.1016/j.jpowsour.2005.11.075
- R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, R. Kötz, Surface studies of carbon films from pyrolyzed photoresist. Thin Solid Films 396(1–2), 36–43 (2001). doi:10.1016/S0040-6090(01)01185-3
- J. Li, L. Zhang, L. Zhang, W. Hao, H. Wang, Q. Qu, H. Zheng, In-situ growth of graphene decorations for high-performance LiFePO4 cathode through solid-state reaction. J. Power Sources 249, 311–319 (2014). doi:10.1016/j.jpowsour.2013.10.106
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 4 (2004). doi:10.1126/science.1102896
- A. Abouimrane, O.C. Compton, K. Amine, S.T. Nguyen, Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C 114(29), 12800–12804 (2010). doi:10.1021/jp103704y
- Z. Xu, L. Xu, Q. Lai, X. Ji, A PEG assisted sol–gel synthesis of LiFePO4 as cathodic material for lithium ion cells. Mater. Res. Bull. 42(5), 883–891 (2007). doi:10.1016/j.materresbull.2006.08.018
- X. Ou, H. Gu, Y. Wu, J. Lu, Y. Zheng, Chemical and morphological transformation through hydrothermal process for LiFePO4 preparation in organic-free system. Electrochim. Acta 96, 230–236 (2013). doi:10.1016/j.electacta.2013.02.042
- J.Y. Xiang, J.P. Tu, L. Zhang, X.L. Wang, Y. Zhou, Y.Q. Qiao, Y. Lu, Improved electrochemical performances of 9LiFePO4·Li3V2(PO4)/C composite prepared by a simple solid-state method. J. Power Sources 195(24), 8331–8335 (2010). doi:10.1016/j.jpowsour.2010.06.070
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). doi:10.1038/nmat1849
- S. Marchini, S. Günther, J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 76(7), 075429 (2007). doi:10.1103/PhysRevB.76.075429
- P.W. Sutter, J.I. Flege, E.S. Sutter, Epitaxial graphene on ruthenium. Nat. Mater. 7(5), 406–411 (2008). doi:10.1038/nmat2166
- K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009). doi:10.1038/nature07719
- J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide vial-ascorbic acid. Chem. Commun. 46(7), 1112–1114 (2010). doi:10.1039/B917705A
- J. Zhang, G. Shen, W. Wang, X. Zhou, S. Guo, Individual nanocomposite sheets of chemically reduced graphene oxide and poly(N-vinyl pyrrolidone): preparation and humidity sensing characteristics. J. Mater. Chem. 20(48), 10824–10828 (2010). doi:10.1039/C0JM02440F
- J. Zhang, F. Zhang, H. Yang, X. Huang, H. Liu, J. Zhang, S. Guo, Graphene oxide as a matrix for enzyme immobilization. Langmuir 26(9), 6083–6085 (2010). doi:10.1021/la904014z
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). doi:10.1016/j.carbon.2007.02.034
- N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18(10), 1518–1525 (2008). doi:10.1002/adfm.200700797
- X.M. Feng, R.M. Li, Y.W. Ma, R.F. Chen, N.E. Shi, Q.L. Fan, W. Huang, One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv. Funct. Mater. 21, 2989–2996 (2011). doi:10.1002/adfm.201100038
- S. Liu, J. Wang, J. Zeng, J. Ou, Z. Li, X. Liu, S. Yang, Green electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. J. Power Sources 195(15), 4628–4633 (2010). doi:10.1016/j.jpowsour.2010.02.024
- X. Zhou, F. Wang, Y. Zhu, Z. Liu, Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem. 21, 3353–3358 (2011). doi:10.1039/C0JM03287E
- S. Yang, X. Zhou, J. Zhang, Z. Liu, Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries. J. Mater. Chem. 20(37), 8086–8091 (2010). doi:10.1039/C0JM01346C
- Y. Tang, F. Huang, H. Bi, Z. Liu, D. Wan, Highly conductive three-dimensional graphene for enhancing the rate performance of LiFePO4 cathode. J. Power Sources 203, 130–134 (2012). doi:10.1016/j.jpowsour.2011.12.011
- A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11), 6337–6342 (2010). doi:10.1021/nn101926g
- Y. Li, X. Lv, J. Lu, J. Li, Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J. Phys. Chem. C 114(49), 21770–21774 (2010). doi:10.1021/jp1050047
- D. Chen, G. Ji, Y. Ma, J.Y. Lee, J. Lu, Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 3(8), 3078–3083 (2011). doi:10.1021/am200592r
- B. Ju, X. Wang, C. Wu, X. Yang, H. Shu, Y. Bai, W. Wen, X. Yi, Electrochemical performance of the graphene/Y2O3/LiMn2O4 hybrid as cathode for lithium-ion battery. J. Alloy Compd. 584, 454–460 (2014). doi:10.1016/j.jallcom.2013.09.098
- C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48(42), 7752–7777 (2009). doi:10.1002/anie.200901678
- H. Bi, F. Huang, Y. Tang, Z. Liu, T. Lin, J. Chen, W. Zhao, Study of LiFePO4 cathode modified by graphene sheets for high-performance lithium ion batteries. Electrochim. Acta 88, 414–420 (2013). doi:10.1016/j.electacta.2012.10.050
- Y. Wang, Z.S. Feng, J.J. Chen, C. Zhang, Synthesis and electrochemical performance of LiFePO4/graphene composites by solid-state reaction. Mater. Lett. 71, 54–56 (2012). doi:10.1016/j.matlet.2011.12.034
- L. Wang, H. Wang, Z. Liu, C. Xiao, S. Dong, P. Han, Z. Zhang, X. Zhang, C. Bi, G.A. Cui, A facile method of preparing mixed conducting LiFePO4/graphene composites for lithium-ion batteries. Solid State Ionics 181(37–38), 1685–1689 (2010). doi:10.1016/j.ssi.2010.09.056
- S.W. Oh, Z.-D. Huang, B. Zhang, Y. Yu, Y.-B. He, J.-K. Kim, Low temperature synthesis of graphene-wrapped LiFePO4 nanorod cathodes by the polyol method. J. Mater. Chem. 22(33), 17215–17221 (2012). doi:10.1039/C2JM33615D
- Y. Ding, Y. Jiang, F. Xu, J. Yin, H. Ren, Q. Zhuo, Z. Long, P. Zhang, Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem. Commun. 12(1), 10–13 (2010). doi:10.1016/j.elecom.2009.10.023
- J. Yang, J. Wang, D. Wang, X. Li, D. Geng, G. Liang, M. Gauthier, R. Li, X. Sun, 3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries. J. Power Sources 208, 340–344 (2012). doi:10.1016/j.jpowsour.2012.02.032
- S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006). doi:10.1038/nature04969
- Y. Shi, S.L. Chou, J.Z. Wang, D. Wexler, H.J. Li, H.K. Liu, Y. Wu, Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability. J. Mater. Chem. 22(32), 16465–16470 (2012). doi:10.1039/C2JM32649C
- X. Guo, Q. Fan, L. Yu, J. Liang, W. Ji, L. Peng, X. Guo, W. Ding, Y. Chen, Sandwich-like LiFePO4/graphene hybrid nanosheets: in situ catalytic graphitization and their high-rate performance for lithium ion batteries. J. Mater. Chem. A 1(38), 11534–11538 (2013). doi:10.1039/C3TA12422C
- W. Wei, W. Lv, M.B. Wu, F.Y. Su, Y.B. He, B. Li, F. Kang, Q.H. Yang, The effect of graphene wrapping on the performance of LiFePO4 for a lithium ion battery. Carbon 57, 530–533 (2013). doi:10.1016/j.carbon.2013.01.070
- H. Wu, G. Gao, H. Yang, X. Zhou, Y. Zhang, S. Guo, Study of the structure and electrical properties of chemically reduced graphene/polyvinyl alcohol composite films. J. Nanosci. Nanotechnol. 13(3), 1752–1758 (2013). doi:10.1166/jnn.2013.7122
- F. Yao, F. Güneş, H.Q. Ta, S.M. Lee, S.J. Chae, K.Y. Sheem, C.S. Cojocaru, S.S. Xie, Y.H. Lee, Diffusion mechanism of lithium ion through basal plane of layered graphene. J. Am. Chem. Soc. 134(20), 8646–8654 (2012). doi:10.1021/ja301586m
- T. Takamura, K. Endo, L. Fu, Y. Wu, K.J. Lee, T. Matsumoto, Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes. Electrochim. Acta 53(3), 1055–1061 (2007). doi:10.1016/j.electacta.2007.03.052
- C. Uthaisar, V. Barone, Edge effects on the characteristics of Li diffusion in graphene. Nano Lett. 10(8), 2838–2842 (2010). doi:10.1021/nl100865a
- E. Lee, K.A. Persson, Li absorption and intercalation in single layer graphene and few layer graphene by first principles. Nano Lett. 12(9), 4624–4628 (2012). doi:10.1021/nl3019164
- Y. Liu, V.I. Artyukhov, M. Liu, A.R. Harutyunyan, B.I. Yakobson, Feasibility of lithium storage on graphene and its derivatives. J. Phys. Chem. Lett. 4(10), 1737–1742 (2013). doi:10.1021/jz400491b
- C. Su, X. Bu, L. Xu, J. Liu, C. Zhang, A novel LiFePO4/graphene/carbon composite as a performance-improved cathode material for lithium-ion batteries. Electrochim. Acta 64, 190–195 (2012). doi:10.1016/j.electacta.2012.01.014
- G. Wu, Y. Zhou, Z. Shao, Carbon nanotube and graphene nanosheet co-modified LiFePO4 nanoplate composite cathode material by a facile polyol process. Appl. Surf. Sci. 283, 999–1005 (2013). doi:10.1016/j.apsusc.2013.07.059
- Y. Zhang, W. Wang, P. Li, Y. Fu, X. Ma, A simple solvothermal route to synthesize graphene-modified LiFePO4 cathode for high power lithium ion batteries. J. Power Sources 210, 47–53 (2012). doi:10.1016/j.jpowsour.2012.03.007
References
Z.S. Peng, C.R. Wan, C.Y. Jiang, Synthesis by sol–gel process and characterization of LiCoO2 cathode materials. J. Power Sources 72(2), 215–220 (1998). doi:10.1016/S0378-7753(97)02689-X
H. Arai, S. Okada, Y. Sakurai, J.I. Yamaki, Reversibility of LiNiO2 cathode. Solid State Ionic 95(3–4), 275–282 (1997). doi:10.1016/S0167-2738(96)00598-X
S. Lee, Y. Cho, H.-K. Song, K.T. Lee, J. Cho, Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew. Chem. Int. Ed. 51(35), 8748–8752 (2012). doi:10.1002/anie.201203581
F.Y. Kang, J. Ma, B.H. Li, Effects of carbonaceous materials on the physical and electrochemical performance of a LiFePO4 cathode for lithium-ion batteries. New Carbon Mater. 26(3), 161–170 (2011). doi:10.1016/S1872-5805(11)60073-5
C.A.J. Fisher, V.M. Hart Prieto, M.S. Islam, Lithium battery materials LiMPO4 (M = Mn, Fe Co, and Ni): insights into defect association, transport mechanisms, and doping behavior. Chem. Mater. 20(18), 5907–5915 (2008). doi:10.1021/cm801262x
A.S. Andersson, B. Kalska, L. Häggström, J.O. Thomas, Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mössbauer spectroscopy study. Solid State Ionics 130(1–2), 41–52 (2000). doi:10.1016/S0167-2738(00)00311-8
P.P. Prosini, M. Lisi, D. Zane, M. Pasquali, Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148(1–2), 45–51 (2002). doi:10.1016/S0167-2738(02)00134-0
S.Y. Chung, J.T. Bloking, Y.M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1(2), 123–128 (2002). doi:10.1038/nmat732
D. Choi, P.N. Kumta, Surfactant based sol–gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. J. Power Sources 163(2), 1064–1069 (2007). doi:10.1016/j.jpowsour.2006.09.082
H.-T. Chung, S.-K. Jang, H.W. Ryu, K.-B. Shim, Effects of nano-carbon webs on the electrochemical properties in LiFePO4/C composite. Solid State Commun. 131(8), 549–554 (2004). doi:10.1016/j.ssc.2004.03.010
R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik, J. Jamnik, The role of carbon black distribution in cathodes for Li ion batteries. J. Power Sources 119–121, 770–773 (2003). doi:10.1016/S0378-7753(03)00250-7
M.M. Doeff, Y. Hu, F. McLarnon, R. Kostecki, Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem. Solid State Lett. 6(10), A207–A209 (2003). doi:10.1149/1.1601372
D. Jugović, M. Mitrić, N. Cvjetićanin, B. Jančar, S. Mentus, D. Uskoković, Synthesis and characterization of LiFePO4/C composite obtained by sonochemical method. Solid State Ionics 179(11–12), 415–419 (2008). doi:10.1016/j.ssi.2008.03.014
H. Xu, J. Chang, J. Sun, L. Gao, Graphene-encapsulated LiFePO4 nanoparticles with high electrochemical performance for lithium ion batteries. Mater. Lett. 83, 27–30 (2012). doi:10.1016/j.matlet.2012.05.116
M. Wagemaker, B.L. Ellis, D. Lützenkirchen-Hecht, F.M. Mulder, L.F. Nazar, Proof of supervalent doping in olivine LiFePO4. Chem. Mater. 20(20), 6313–6315 (2008). doi:10.1021/cm801781k
P.S. Herle, B. Ellis, N. Coombs, L.F. Nazar, Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 3(3), 147–152 (2004). doi:10.1038/nmat1063
L.H. Hu, F.Y. Wu, C.T. Lin, A.N. Khlobystov, L.J. Li, Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat. Commun. 4, 1687 (2013). doi:10.1038/ncomms2705
S.W. Oh, S.T. Myung, S.M. Oh, K.H. Oh, K. Amine, B. Scrosati, Y.K. Sun, Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv. Funct. Mater. 22(43), 4842–4845 (2010). doi:10.1002/adma.200904027
X. Zhao, X. Tang, L. Zhang, M. Zhao, J. Zhai, Effects of neodymium aliovalent substitution on the structure and electrochemical performance of LiFePO4. Electrochim. Acta 55(20), 5899–5904 (2010). doi:10.1016/j.electacta.2010.05.042
M. Pan, Z. Zhou, Carbon rich surface of LiFePO4 grain enhancing its rate capability. Mater. Lett. 65(7), 1131–1133 (2011). doi:10.1016/j.matlet.2011.01.016
M. Koltypin, D. Aurbach, L. Nazar, B. Ellis, More on the performance of LiFePO4 electrodes—the effect of synthesis route, solution composition, aging, and temperature. J. Power Sources 174(2), 1241–1250 (2007). doi:10.1016/j.jpowsour.2007.06.045
A.A. Salah, A. Mauger, C. Julien, F. Gendron, Nano-sized impurity phases in relation to the mode of preparation of LiFePO4. Mater. Sci. Eng. B 129(1), 232–244 (2006). doi:10.1016/j.mseb.2006.01.022
H. Uchiyama, H. Imai, Preparation of LiFePO4 mesocrystals consisting of nanorods through organic-mediated parallel growth from a precursor phase. Cryst. Growth Des. 10(4), 1777–1781 (2010). doi:10.1021/cg901457t
I. Boyano, J.A. Blazquez, I. de Meatza, M. Bengoechea, O. Miguel, H. Grande, Y. Huang, J.B. Goodenough, Preparation of C–LiFePO4/polypyrrole lithium rechargeable cathode by consecutive potential steps electrodeposition. J. Power Sources 195(16), 5351–5359 (2010). doi:10.1016/j.jpowsour.2010.03.029
C. Son, H. Yang, G. Lee, A. Cho, V. Aravindan, H. Kim, W. Kim, Y. Lee, Manipulation of adipic acid application on the electrochemical properties of LiFePO4 at high rate performance. J. Alloy Compd. 509(4), 1279–1284 (2011). doi:10.1016/j.jallcom.2010.10.009
Y.H. Huang, J.B. Goodenough, High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem. Mater. 20(23), 7237–7241 (2008). doi:10.1021/cm8012304
Y.M. Bai, P. Qiu, Z.L. Wen, S.C. Han, Improvement of electrochemical performances of LiFePO4 cathode materials by coating of polythiophene. J. Alloy Compd. 508(1), 1–4 (2010). doi:10.1016/j.jallcom.2010.05.173
L.Q. Sun, M.J. Li, R.H. Cui, H.M. Xie, R.S. Wang, The optimum nanomicro structure of LiFePO4/ortho-rich polyacene composites. J. Phys. Chem. C 114(7), 3297–3303 (2010). doi:10.1021/jp910422g
M.M. Doeff, J.D. Wilcox, R. Kostecki, G. Lau, Optimization of carbon coatings on LiFePO4. J. Power Sources 163(1), 180–184 (2006). doi:10.1016/j.jpowsour.2005.11.075
R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, R. Kötz, Surface studies of carbon films from pyrolyzed photoresist. Thin Solid Films 396(1–2), 36–43 (2001). doi:10.1016/S0040-6090(01)01185-3
J. Li, L. Zhang, L. Zhang, W. Hao, H. Wang, Q. Qu, H. Zheng, In-situ growth of graphene decorations for high-performance LiFePO4 cathode through solid-state reaction. J. Power Sources 249, 311–319 (2014). doi:10.1016/j.jpowsour.2013.10.106
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 4 (2004). doi:10.1126/science.1102896
A. Abouimrane, O.C. Compton, K. Amine, S.T. Nguyen, Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C 114(29), 12800–12804 (2010). doi:10.1021/jp103704y
Z. Xu, L. Xu, Q. Lai, X. Ji, A PEG assisted sol–gel synthesis of LiFePO4 as cathodic material for lithium ion cells. Mater. Res. Bull. 42(5), 883–891 (2007). doi:10.1016/j.materresbull.2006.08.018
X. Ou, H. Gu, Y. Wu, J. Lu, Y. Zheng, Chemical and morphological transformation through hydrothermal process for LiFePO4 preparation in organic-free system. Electrochim. Acta 96, 230–236 (2013). doi:10.1016/j.electacta.2013.02.042
J.Y. Xiang, J.P. Tu, L. Zhang, X.L. Wang, Y. Zhou, Y.Q. Qiao, Y. Lu, Improved electrochemical performances of 9LiFePO4·Li3V2(PO4)/C composite prepared by a simple solid-state method. J. Power Sources 195(24), 8331–8335 (2010). doi:10.1016/j.jpowsour.2010.06.070
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). doi:10.1038/nmat1849
S. Marchini, S. Günther, J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 76(7), 075429 (2007). doi:10.1103/PhysRevB.76.075429
P.W. Sutter, J.I. Flege, E.S. Sutter, Epitaxial graphene on ruthenium. Nat. Mater. 7(5), 406–411 (2008). doi:10.1038/nmat2166
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009). doi:10.1038/nature07719
J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide vial-ascorbic acid. Chem. Commun. 46(7), 1112–1114 (2010). doi:10.1039/B917705A
J. Zhang, G. Shen, W. Wang, X. Zhou, S. Guo, Individual nanocomposite sheets of chemically reduced graphene oxide and poly(N-vinyl pyrrolidone): preparation and humidity sensing characteristics. J. Mater. Chem. 20(48), 10824–10828 (2010). doi:10.1039/C0JM02440F
J. Zhang, F. Zhang, H. Yang, X. Huang, H. Liu, J. Zhang, S. Guo, Graphene oxide as a matrix for enzyme immobilization. Langmuir 26(9), 6083–6085 (2010). doi:10.1021/la904014z
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). doi:10.1016/j.carbon.2007.02.034
N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18(10), 1518–1525 (2008). doi:10.1002/adfm.200700797
X.M. Feng, R.M. Li, Y.W. Ma, R.F. Chen, N.E. Shi, Q.L. Fan, W. Huang, One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv. Funct. Mater. 21, 2989–2996 (2011). doi:10.1002/adfm.201100038
S. Liu, J. Wang, J. Zeng, J. Ou, Z. Li, X. Liu, S. Yang, Green electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. J. Power Sources 195(15), 4628–4633 (2010). doi:10.1016/j.jpowsour.2010.02.024
X. Zhou, F. Wang, Y. Zhu, Z. Liu, Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem. 21, 3353–3358 (2011). doi:10.1039/C0JM03287E
S. Yang, X. Zhou, J. Zhang, Z. Liu, Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries. J. Mater. Chem. 20(37), 8086–8091 (2010). doi:10.1039/C0JM01346C
Y. Tang, F. Huang, H. Bi, Z. Liu, D. Wan, Highly conductive three-dimensional graphene for enhancing the rate performance of LiFePO4 cathode. J. Power Sources 203, 130–134 (2012). doi:10.1016/j.jpowsour.2011.12.011
A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11), 6337–6342 (2010). doi:10.1021/nn101926g
Y. Li, X. Lv, J. Lu, J. Li, Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J. Phys. Chem. C 114(49), 21770–21774 (2010). doi:10.1021/jp1050047
D. Chen, G. Ji, Y. Ma, J.Y. Lee, J. Lu, Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 3(8), 3078–3083 (2011). doi:10.1021/am200592r
B. Ju, X. Wang, C. Wu, X. Yang, H. Shu, Y. Bai, W. Wen, X. Yi, Electrochemical performance of the graphene/Y2O3/LiMn2O4 hybrid as cathode for lithium-ion battery. J. Alloy Compd. 584, 454–460 (2014). doi:10.1016/j.jallcom.2013.09.098
C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48(42), 7752–7777 (2009). doi:10.1002/anie.200901678
H. Bi, F. Huang, Y. Tang, Z. Liu, T. Lin, J. Chen, W. Zhao, Study of LiFePO4 cathode modified by graphene sheets for high-performance lithium ion batteries. Electrochim. Acta 88, 414–420 (2013). doi:10.1016/j.electacta.2012.10.050
Y. Wang, Z.S. Feng, J.J. Chen, C. Zhang, Synthesis and electrochemical performance of LiFePO4/graphene composites by solid-state reaction. Mater. Lett. 71, 54–56 (2012). doi:10.1016/j.matlet.2011.12.034
L. Wang, H. Wang, Z. Liu, C. Xiao, S. Dong, P. Han, Z. Zhang, X. Zhang, C. Bi, G.A. Cui, A facile method of preparing mixed conducting LiFePO4/graphene composites for lithium-ion batteries. Solid State Ionics 181(37–38), 1685–1689 (2010). doi:10.1016/j.ssi.2010.09.056
S.W. Oh, Z.-D. Huang, B. Zhang, Y. Yu, Y.-B. He, J.-K. Kim, Low temperature synthesis of graphene-wrapped LiFePO4 nanorod cathodes by the polyol method. J. Mater. Chem. 22(33), 17215–17221 (2012). doi:10.1039/C2JM33615D
Y. Ding, Y. Jiang, F. Xu, J. Yin, H. Ren, Q. Zhuo, Z. Long, P. Zhang, Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem. Commun. 12(1), 10–13 (2010). doi:10.1016/j.elecom.2009.10.023
J. Yang, J. Wang, D. Wang, X. Li, D. Geng, G. Liang, M. Gauthier, R. Li, X. Sun, 3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries. J. Power Sources 208, 340–344 (2012). doi:10.1016/j.jpowsour.2012.02.032
S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006). doi:10.1038/nature04969
Y. Shi, S.L. Chou, J.Z. Wang, D. Wexler, H.J. Li, H.K. Liu, Y. Wu, Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability. J. Mater. Chem. 22(32), 16465–16470 (2012). doi:10.1039/C2JM32649C
X. Guo, Q. Fan, L. Yu, J. Liang, W. Ji, L. Peng, X. Guo, W. Ding, Y. Chen, Sandwich-like LiFePO4/graphene hybrid nanosheets: in situ catalytic graphitization and their high-rate performance for lithium ion batteries. J. Mater. Chem. A 1(38), 11534–11538 (2013). doi:10.1039/C3TA12422C
W. Wei, W. Lv, M.B. Wu, F.Y. Su, Y.B. He, B. Li, F. Kang, Q.H. Yang, The effect of graphene wrapping on the performance of LiFePO4 for a lithium ion battery. Carbon 57, 530–533 (2013). doi:10.1016/j.carbon.2013.01.070
H. Wu, G. Gao, H. Yang, X. Zhou, Y. Zhang, S. Guo, Study of the structure and electrical properties of chemically reduced graphene/polyvinyl alcohol composite films. J. Nanosci. Nanotechnol. 13(3), 1752–1758 (2013). doi:10.1166/jnn.2013.7122
F. Yao, F. Güneş, H.Q. Ta, S.M. Lee, S.J. Chae, K.Y. Sheem, C.S. Cojocaru, S.S. Xie, Y.H. Lee, Diffusion mechanism of lithium ion through basal plane of layered graphene. J. Am. Chem. Soc. 134(20), 8646–8654 (2012). doi:10.1021/ja301586m
T. Takamura, K. Endo, L. Fu, Y. Wu, K.J. Lee, T. Matsumoto, Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes. Electrochim. Acta 53(3), 1055–1061 (2007). doi:10.1016/j.electacta.2007.03.052
C. Uthaisar, V. Barone, Edge effects on the characteristics of Li diffusion in graphene. Nano Lett. 10(8), 2838–2842 (2010). doi:10.1021/nl100865a
E. Lee, K.A. Persson, Li absorption and intercalation in single layer graphene and few layer graphene by first principles. Nano Lett. 12(9), 4624–4628 (2012). doi:10.1021/nl3019164
Y. Liu, V.I. Artyukhov, M. Liu, A.R. Harutyunyan, B.I. Yakobson, Feasibility of lithium storage on graphene and its derivatives. J. Phys. Chem. Lett. 4(10), 1737–1742 (2013). doi:10.1021/jz400491b
C. Su, X. Bu, L. Xu, J. Liu, C. Zhang, A novel LiFePO4/graphene/carbon composite as a performance-improved cathode material for lithium-ion batteries. Electrochim. Acta 64, 190–195 (2012). doi:10.1016/j.electacta.2012.01.014
G. Wu, Y. Zhou, Z. Shao, Carbon nanotube and graphene nanosheet co-modified LiFePO4 nanoplate composite cathode material by a facile polyol process. Appl. Surf. Sci. 283, 999–1005 (2013). doi:10.1016/j.apsusc.2013.07.059
Y. Zhang, W. Wang, P. Li, Y. Fu, X. Ma, A simple solvothermal route to synthesize graphene-modified LiFePO4 cathode for high power lithium ion batteries. J. Power Sources 210, 47–53 (2012). doi:10.1016/j.jpowsour.2012.03.007