Dimensional Gradient Structure of CoSe2@CNTs–MXene Anode Assisted by Ether for High-Capacity, Stable Sodium Storage
Corresponding Author: Yang Jiang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 40
Abstract
Recently, abundant resources, low-cost sodium-ion batteries are deemed to the new-generation battery in the field of large-scale energy storage. Nevertheless, poor active reaction dynamics, dissolution of intermediates and electrolyte matching problems are significant challenges that need to be solved. Herein, dimensional gradient structure of sheet–tube–dots is constructed with CoSe2@CNTs–MXene. Gradient structure is conducive to fast migration of electrons and ions with the association of ether electrolyte. For half-cell, CoSe2@CNTs–MXene exhibits high initial coulomb efficiency (81.7%) and excellent cycling performance (400 mAh g−1 cycling for 200 times in 2 A g−1). Phase transformation pathway from crystalline CoSe2–Na2Se with Co and then amorphous CoSe2 in the discharge/charge process is also explored by in situ X-ray diffraction. Density functional theory study discloses the CoSe2@CNTs–MXene in ether electrolyte system which contributes to stable sodium storage performance owing to the strong adsorption force from hierarchical structure and weak interaction between electrolyte and electrode interface. For full cell, CoSe2@CNTs–MXene//Na3V2 (PO4)3/C full battery can also afford a competitively reversible capacity of 280 mAh g−1 over 50 cycles. Concisely, profiting from dimensional gradient structure and matched electrolyte of CoSe2@CNTs–MXene hold great application potential for stable sodium storage.
Highlights:
1 Dimensional gradient structure of sheet–tube–dots was constructed with CoSe2@CNTs–MXene for fast ion and electron transportation.
2 Density functional theory study discloses the electrochemical difference of CoSe2@CNTs–MXene in ether/ester electrolyte system.
3 Phase transformation of CoSe2@CNTs–MXene was analyzed by in situ XRD. The full cell based on CoSe2@CNTs–MXene anode was also assembled.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Huang, Y. Zheng, X. Li, F. Adams, W. Luo et al., Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett. 3(7), 1604–1612 (2018). https://doi.org/10.1021/acsenergylett.8b00609
- R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3(4), 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
- C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3(4), 18013 (2018). https://doi.org/10.1038/natrevmats.2018.13
- G.-L. Xu, R. Amine, A. Abouimrane, H. Che, M. Dahbi et al., Challenges in developing electrodes, electrolytes and diagnostics tools to understand and advance sodium-ion batteries. Adv. Energy Mater. 8(14), 1702403 (2018). https://doi.org/10.1002/aenm.201702403
- L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao et al., Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci. 11(9), 2310–2340 (2018). https://doi.org/10.1039/C8EE01023D
- Y. You, A. Manthiram, Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 8(2), 1701785 (2018). https://doi.org/10.1002/aenm.201701785
- X. Xu, D. Zhou, X. Qin, K. Lin, F. Kang et al., A room-temperature sodium–sulfur battery with high capacity and stable cycling performance. Nat. Commun. 9(1), 3870 (2018). https://doi.org/10.1038/s41467-018-06443-3
- X. Xu, K. Lin, D. Zhou, Q. Liu, X. Qin et al., Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem 6(4), 902–918 (2020). https://doi.org/10.1016/j.chempr.2020.01.008
- J.-L. Ma, F.-L. Meng, Y. Yu, D.-P. Liu, J.-M. Yan et al., Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy–O2 batteries. Nat. Chem. 11(1), 64–70 (2019). https://doi.org/10.1038/s41557-018-0166-9
- Y. Li, Y. Lu, C. Zhao, Y.-S. Hu, M.-M. Titirici et al., Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 7, 130–151 (2017). https://doi.org/10.1016/j.ensm.2017.01.002
- N. Choudhary, M.A. Islam, J.H. Kim, T.-J. Ko, A. Schropp et al., Two-dimensional transition metal dichalcogenide hybrid materials for energy applications. Nano Today 19, 16–40 (2018). https://doi.org/10.1016/j.nantod.2018.02.007
- W. Kang, Y. Wang, J. Xu, Recent progress in layered metal dichalcogenide nanostructures as electrodes for high-performance sodium-ion batteries. J. Mater. Chem. A 5(17), 7667–7690 (2017). https://doi.org/10.1039/C7TA00003K
- R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun et al., Transition metal dichalcogenides and beyond: Synthesis, properties and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48(1), 56–64 (2015). https://doi.org/10.1021/ar5002846
- L. Yang, W. Hong, Y. Tian, G. Zou, H. Hou et al., Heteroatom-doped carbon inlaid with Sb2X3 (X=S, Se) nanodots for high-performance potassium-ion batteries. Chem. Engin. J. 385, 123838 (2020). https://doi.org/10.1016/j.cej.2019.123838
- H. Hu, J. Zhang, B. Guan, X.W. Lou, Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem. Int. Ed. 55(33), 9514–9518 (2016). https://doi.org/10.1002/anie.201603852
- M. Zhong, L. Kong, N. Li, Y.-Y. Liu, J. Zhu et al., Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries. Coord. Chem. Rev. 388, 172–201 (2019). https://doi.org/10.1016/j.ccr.2019.02.029
- H. Wang, Y. Jiang, A. Manthiram, Long cycle life, low self-discharge sodium–selenium batteries with high selenium loading and suppressed polyselenide shuttling. Adv. Energy Mater. 8(7), 1701953 (2018). https://doi.org/10.1002/aenm.201701953
- Y. He, L. Wang, C. Dong, C. Li, X. Ding et al., In-situ rooting ZnSe/n-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater. 23, 35–45 (2019). https://doi.org/10.1016/j.ensm.2019.05.039
- J. Yang, H. Gao, S. Men, Z. Shi, Z. Lin et al., CoSe2 nanoparticles encapsulated by n-doped carbon framework intertwined with carbon nanotubes: High-performance dual-role anode materials for both Li- and Na-ion batteries. Adv. Sci. 5(12), 1800763 (2018). https://doi.org/10.1002/advs.201800763
- J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438
- K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4418 (2004). https://doi.org/10.1021/cr030203g
- J. Zhang, D.-W. Wang, W. Lv, L. Qin, S. Niu et al., Ethers illume sodium-based battery chemistry: Uniqueness, surprise and challenges. Adv. Energy Mater. 8(26), 1801361 (2018). https://doi.org/10.1002/aenm.201801361
- Y. Huang, L. Zhao, L. Li, M. Xie, F. Wu et al., Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: From scientific research to practical application. Adv. Mater. 31(21), 1808393 (2019). https://doi.org/10.1002/adma.201808393
- Z. Lin, Q. Xia, W. Wang, W. Li, S. Chou, Recent research progresses in ether—and ester-based electrolytes for sodium-ion batteries. InfoMat 1(3), 376–389 (2019). https://doi.org/10.1002/inf2.12023
- D. Su, K. Kretschmer, G. Wang, Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: A case study of ZnS nanospheres. Adv. Energy Mater. 6(2), 1501785 (2016). https://doi.org/10.1002/aenm.201501785
- J. Chen, L. Mohrhusen, G. Ali, S. Li, K.Y. Chung et al., Electrochemical mechanism investigation of Cu2MoS4 hollow nanospheres for fast and stable sodium ion storage. Adv. Funct. Mater. 29(7), 1807753 (2019). https://doi.org/10.1002/adfm.201807753
- P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli et al., Advanced capabilities for materials modelling with quantum espresso. J. Phys. Condes. Matter. 29(46), 465901 (2017). https://doi.org/10.1088/1361-648x/aa8f79
- M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Van der Waals density functional for general geometries. Phys. Rev. Lett. 92(24), 246401 (2004). https://doi.org/10.1103/PhysRevLett.92.246401
- B. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34(2), 210–213 (2001). https://doi.org/10.1107/S0021889801002242
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mat. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
- X. Zhao, A. Vashisth, E. Prehn, W. Sun, S.A. Shah et al., Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1(2), 513–526 (2019). https://doi.org/10.1016/j.matt.2019.05.020
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4(1), 1716 (2013). https://doi.org/10.1038/ncomms2664
- L.-P. Lv, C. Zhi, Y. Gao, X. Yin, Y. Hu et al., Hierarchical “tube-on-fiber” carbon/mixed-metal selenide nanostructures for high-performance hybrid supercapacitors. Nanoscale 11(29), 13996–14009 (2019). https://doi.org/10.1039/C9NR03088C
- W. Zhang, X. Jiang, X. Wang, Y.V. Kaneti, Y. Chen et al., Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew. Chem. Int. Ed. 56(29), 8435–8440 (2017). https://doi.org/10.1002/anie.201701252
- J. Meng, C. Niu, L. Xu, J. Li, X. Liu et al., General oriented formation of carbon nanotubes from metal–organic frameworks. J. Am. Chem. Soc. 139(24), 8212–8221 (2017). https://doi.org/10.1021/jacs.7b01942
- Y. He, M. Luo, C. Dong, X. Ding, C. Yin et al., Coral-like NixCo1−xSe2 for Na-ion battery with ultralong cycle life and ultrahigh rate capability. J. Mater. Chem. A 7(8), 3933–3940 (2019). https://doi.org/10.1039/C8TA10114K
- J. Gao, Y. Li, L. Shi, J. Li, G. Zhang, Rational design of hierarchical nanotubes through encapsulating Cose2 nanoparticles into MoSe2/C composite shells with enhanced lithium and sodium storage performance. ACS Appl. Mater. Interfaces 10(24), 20635–20642 (2018). https://doi.org/10.1021/acsami.8b06442
- H. Huang, J. Cui, G. Liu, R. Bi, L. Zhang, Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 13(3), 3448–3456 (2019). https://doi.org/10.1021/acsnano.8b09548
- S.-K. Park, Y.C. Kang, MOF-templated n-doped carbon-coated CoSe2 nanorods supported on porous CNT microspheres with excellent sodium-ion storage and electrocatalytic properties. ACS Appl. Mater. Interfaces 10(20), 17203–17213 (2018). https://doi.org/10.1021/acsami.8b03607
- D. Wang, F. Li, R. Lian, J. Xu, D. Kan et al., A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium–sulfur batteries. ACS Nano 13(10), 11078–11086 (2019). https://doi.org/10.1021/acsnano.9b03412
- X. Wang, C. Yang, X. Xiong, G. Chen, M. Huang et al., A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Storage Mater. 16, 344–353 (2019). https://doi.org/10.1016/j.ensm.2018.06.015
- G. Fang, Q. Wang, J. Zhou, Y. Lei, Z. Chen et al., Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13(5), 5635–5645 (2019). https://doi.org/10.1021/acsnano.9b00816
- H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3d porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27(47), 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
- P.L. Taberna, P. Simon, J.F. Fauvarque, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 150(3), A292–A300 (2003). https://doi.org/10.1149/1.1543948
- H. Wang, D. Jiang, Y. Zhang, G. Li, X. Lan et al., Self-combustion synthesis of Na3V2(PO4)3 nanoparticles coated with carbon shell as cathode materials for sodium-ion batteries. Electrochim. Acta 155, 23–28 (2015). https://doi.org/10.1016/j.electacta.2014.12.160
References
Y. Huang, Y. Zheng, X. Li, F. Adams, W. Luo et al., Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett. 3(7), 1604–1612 (2018). https://doi.org/10.1021/acsenergylett.8b00609
R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3(4), 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3(4), 18013 (2018). https://doi.org/10.1038/natrevmats.2018.13
G.-L. Xu, R. Amine, A. Abouimrane, H. Che, M. Dahbi et al., Challenges in developing electrodes, electrolytes and diagnostics tools to understand and advance sodium-ion batteries. Adv. Energy Mater. 8(14), 1702403 (2018). https://doi.org/10.1002/aenm.201702403
L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao et al., Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci. 11(9), 2310–2340 (2018). https://doi.org/10.1039/C8EE01023D
Y. You, A. Manthiram, Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 8(2), 1701785 (2018). https://doi.org/10.1002/aenm.201701785
X. Xu, D. Zhou, X. Qin, K. Lin, F. Kang et al., A room-temperature sodium–sulfur battery with high capacity and stable cycling performance. Nat. Commun. 9(1), 3870 (2018). https://doi.org/10.1038/s41467-018-06443-3
X. Xu, K. Lin, D. Zhou, Q. Liu, X. Qin et al., Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem 6(4), 902–918 (2020). https://doi.org/10.1016/j.chempr.2020.01.008
J.-L. Ma, F.-L. Meng, Y. Yu, D.-P. Liu, J.-M. Yan et al., Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy–O2 batteries. Nat. Chem. 11(1), 64–70 (2019). https://doi.org/10.1038/s41557-018-0166-9
Y. Li, Y. Lu, C. Zhao, Y.-S. Hu, M.-M. Titirici et al., Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 7, 130–151 (2017). https://doi.org/10.1016/j.ensm.2017.01.002
N. Choudhary, M.A. Islam, J.H. Kim, T.-J. Ko, A. Schropp et al., Two-dimensional transition metal dichalcogenide hybrid materials for energy applications. Nano Today 19, 16–40 (2018). https://doi.org/10.1016/j.nantod.2018.02.007
W. Kang, Y. Wang, J. Xu, Recent progress in layered metal dichalcogenide nanostructures as electrodes for high-performance sodium-ion batteries. J. Mater. Chem. A 5(17), 7667–7690 (2017). https://doi.org/10.1039/C7TA00003K
R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun et al., Transition metal dichalcogenides and beyond: Synthesis, properties and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48(1), 56–64 (2015). https://doi.org/10.1021/ar5002846
L. Yang, W. Hong, Y. Tian, G. Zou, H. Hou et al., Heteroatom-doped carbon inlaid with Sb2X3 (X=S, Se) nanodots for high-performance potassium-ion batteries. Chem. Engin. J. 385, 123838 (2020). https://doi.org/10.1016/j.cej.2019.123838
H. Hu, J. Zhang, B. Guan, X.W. Lou, Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem. Int. Ed. 55(33), 9514–9518 (2016). https://doi.org/10.1002/anie.201603852
M. Zhong, L. Kong, N. Li, Y.-Y. Liu, J. Zhu et al., Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries. Coord. Chem. Rev. 388, 172–201 (2019). https://doi.org/10.1016/j.ccr.2019.02.029
H. Wang, Y. Jiang, A. Manthiram, Long cycle life, low self-discharge sodium–selenium batteries with high selenium loading and suppressed polyselenide shuttling. Adv. Energy Mater. 8(7), 1701953 (2018). https://doi.org/10.1002/aenm.201701953
Y. He, L. Wang, C. Dong, C. Li, X. Ding et al., In-situ rooting ZnSe/n-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater. 23, 35–45 (2019). https://doi.org/10.1016/j.ensm.2019.05.039
J. Yang, H. Gao, S. Men, Z. Shi, Z. Lin et al., CoSe2 nanoparticles encapsulated by n-doped carbon framework intertwined with carbon nanotubes: High-performance dual-role anode materials for both Li- and Na-ion batteries. Adv. Sci. 5(12), 1800763 (2018). https://doi.org/10.1002/advs.201800763
J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4418 (2004). https://doi.org/10.1021/cr030203g
J. Zhang, D.-W. Wang, W. Lv, L. Qin, S. Niu et al., Ethers illume sodium-based battery chemistry: Uniqueness, surprise and challenges. Adv. Energy Mater. 8(26), 1801361 (2018). https://doi.org/10.1002/aenm.201801361
Y. Huang, L. Zhao, L. Li, M. Xie, F. Wu et al., Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: From scientific research to practical application. Adv. Mater. 31(21), 1808393 (2019). https://doi.org/10.1002/adma.201808393
Z. Lin, Q. Xia, W. Wang, W. Li, S. Chou, Recent research progresses in ether—and ester-based electrolytes for sodium-ion batteries. InfoMat 1(3), 376–389 (2019). https://doi.org/10.1002/inf2.12023
D. Su, K. Kretschmer, G. Wang, Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: A case study of ZnS nanospheres. Adv. Energy Mater. 6(2), 1501785 (2016). https://doi.org/10.1002/aenm.201501785
J. Chen, L. Mohrhusen, G. Ali, S. Li, K.Y. Chung et al., Electrochemical mechanism investigation of Cu2MoS4 hollow nanospheres for fast and stable sodium ion storage. Adv. Funct. Mater. 29(7), 1807753 (2019). https://doi.org/10.1002/adfm.201807753
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli et al., Advanced capabilities for materials modelling with quantum espresso. J. Phys. Condes. Matter. 29(46), 465901 (2017). https://doi.org/10.1088/1361-648x/aa8f79
M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Van der Waals density functional for general geometries. Phys. Rev. Lett. 92(24), 246401 (2004). https://doi.org/10.1103/PhysRevLett.92.246401
B. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34(2), 210–213 (2001). https://doi.org/10.1107/S0021889801002242
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mat. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
X. Zhao, A. Vashisth, E. Prehn, W. Sun, S.A. Shah et al., Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1(2), 513–526 (2019). https://doi.org/10.1016/j.matt.2019.05.020
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4(1), 1716 (2013). https://doi.org/10.1038/ncomms2664
L.-P. Lv, C. Zhi, Y. Gao, X. Yin, Y. Hu et al., Hierarchical “tube-on-fiber” carbon/mixed-metal selenide nanostructures for high-performance hybrid supercapacitors. Nanoscale 11(29), 13996–14009 (2019). https://doi.org/10.1039/C9NR03088C
W. Zhang, X. Jiang, X. Wang, Y.V. Kaneti, Y. Chen et al., Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew. Chem. Int. Ed. 56(29), 8435–8440 (2017). https://doi.org/10.1002/anie.201701252
J. Meng, C. Niu, L. Xu, J. Li, X. Liu et al., General oriented formation of carbon nanotubes from metal–organic frameworks. J. Am. Chem. Soc. 139(24), 8212–8221 (2017). https://doi.org/10.1021/jacs.7b01942
Y. He, M. Luo, C. Dong, X. Ding, C. Yin et al., Coral-like NixCo1−xSe2 for Na-ion battery with ultralong cycle life and ultrahigh rate capability. J. Mater. Chem. A 7(8), 3933–3940 (2019). https://doi.org/10.1039/C8TA10114K
J. Gao, Y. Li, L. Shi, J. Li, G. Zhang, Rational design of hierarchical nanotubes through encapsulating Cose2 nanoparticles into MoSe2/C composite shells with enhanced lithium and sodium storage performance. ACS Appl. Mater. Interfaces 10(24), 20635–20642 (2018). https://doi.org/10.1021/acsami.8b06442
H. Huang, J. Cui, G. Liu, R. Bi, L. Zhang, Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 13(3), 3448–3456 (2019). https://doi.org/10.1021/acsnano.8b09548
S.-K. Park, Y.C. Kang, MOF-templated n-doped carbon-coated CoSe2 nanorods supported on porous CNT microspheres with excellent sodium-ion storage and electrocatalytic properties. ACS Appl. Mater. Interfaces 10(20), 17203–17213 (2018). https://doi.org/10.1021/acsami.8b03607
D. Wang, F. Li, R. Lian, J. Xu, D. Kan et al., A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium–sulfur batteries. ACS Nano 13(10), 11078–11086 (2019). https://doi.org/10.1021/acsnano.9b03412
X. Wang, C. Yang, X. Xiong, G. Chen, M. Huang et al., A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Storage Mater. 16, 344–353 (2019). https://doi.org/10.1016/j.ensm.2018.06.015
G. Fang, Q. Wang, J. Zhou, Y. Lei, Z. Chen et al., Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13(5), 5635–5645 (2019). https://doi.org/10.1021/acsnano.9b00816
H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3d porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27(47), 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
P.L. Taberna, P. Simon, J.F. Fauvarque, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 150(3), A292–A300 (2003). https://doi.org/10.1149/1.1543948
H. Wang, D. Jiang, Y. Zhang, G. Li, X. Lan et al., Self-combustion synthesis of Na3V2(PO4)3 nanoparticles coated with carbon shell as cathode materials for sodium-ion batteries. Electrochim. Acta 155, 23–28 (2015). https://doi.org/10.1016/j.electacta.2014.12.160