Hollow Metal–Organic Framework/MXene/Nanocellulose Composite Films for Giga/Terahertz Electromagnetic Shielding and Photothermal Conversion
Corresponding Author: Ming‑Guo Ma
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 169
Abstract
With the continuous advancement of communication technology, the escalating demand for electromagnetic shielding interference (EMI) materials with multifunctional and wideband EMI performance has become urgent. Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest, but remain a huge challenge. Herein, we reported the alternating electromagnetic structure composite films composed of hollow metal–organic frameworks/layered MXene/nanocellulose (HMN) by alternating vacuum-assisted filtration process. The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency (66.8 dB at Ka-band) and THz frequency (114.6 dB at 0.1–4.0 THz). Besides, the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz. Moreover, HMN composite films show remarkable photothermal conversion performance, which can reach 104.6 °C under 2.0 Sun and 235.4 °C under 0.8 W cm−2, respectively. The unique micro- and macro-structural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect. These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.
Highlights:
1 The composite films are composed of hollow metal–organic frameworks/layered MXene/nanocellulose with unique alternating electromagnetic structures.
2 The optimized composite films exhibit excellent EMI shielding performance of 66.8 dB at GHz frequency and 114.6 dB at THz frequency.
3 The EMI shielding ability of composite films to electromagnetic waves is verified by practical visualized application simulation.
4 The composite films show remarkable photothermal conversion performance, which can reach 235.4 °C under 0.8 W cm−2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- Z. Zeng, G. Wang, B.F. Wolan, N. Wu, C. Wang et al., Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 14, 179 (2022). https://doi.org/10.1007/s40820-022-00883-9
- C. Ma, Q. Yuan, M.-G. Ma, MXenes for electromagnetic interference (EMI) shielding. Fundamental Aspects and Perspectives of MXenes. (Springer, Cham, 2022), 219–240. https://doi.org/10.1007/978-3-031-05006-0_9
- P.-L. Wang, T. Mai, X.-X. Ji, P. Hu, M.-G. Ma, Aerogel-based composites for electromagnetic interface shielding applications. Compos. Interfaces 29, 1483–1503 (2022). https://doi.org/10.1080/09276440.2022.2069320
- Z. Barani, F. Kargar, Y. Ghafouri, S. Ghosh, K. Godziszewski et al., Electrically insulating flexible films with quasi-1D van der waals fillers as efficient electromagnetic shields in the GHz and sub-THz frequency bands. Adv. Mater. 33, e2007286 (2021). https://doi.org/10.1002/adma.202007286
- J. Wang, X. Wu, Y. Wang, W. Zhao, Y. Zhao et al., Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nano-Micro Lett. 15, 11 (2022). https://doi.org/10.1007/s40820-022-00982-7
- Q. Lu, Y. Chen, W. Song, C. Tao, J. Zhang et al., Mechanistic role of γ-valerolactone co-solvent to promote ethyl levulinate production from cellulose transformation in ethanol. Fuel 346, 128371 (2023). https://doi.org/10.1016/j.fuel.2023.128371
- Z. Zhang, T. Yuan, Y. Miao, Q. Liu, J. Mu et al., Carboxyl-functionalized graphene oxide/cellulose nanofiber as adsorbents toward methylene blue. Chem. Phys. Lett. 837, 141064 (2024). https://doi.org/10.1016/j.cplett.2024.141064
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- F. Shahzad, A. Iqbal, H. Kim, C.M. Koo, 2D transition metal carbides (MXenes): applications as an electrically conducting material. Adv. Mater. 32, e2002159 (2020). https://doi.org/10.1002/adma.202002159
- M.M. Hasan, M.M. Hossain, H.K. Chowdhury, Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. J. Mater. Chem. A 9, 3231–3269 (2021). https://doi.org/10.1039/D0TA11103A
- Z. Liu, J. Chen, M. Que, H. Zheng, L. Yang et al., 2D Ti3C2T MXene/MOFs composites derived CoNi bimetallic nanops for enhanced microwave absorption. Chem. Eng. J. 450, 138442 (2022). https://doi.org/10.1016/j.cej.2022.138442
- Y. Wang, Y. Yang, M. Miao, X. Feng, Carbon nanotube arrays@cobalt hybrids derived from metal-organic framework ZIF-67 for enhanced electromagnetic wave absorption. Mater. Today Phys. 35, 101110 (2023). https://doi.org/10.1016/j.mtphys.2023.101110
- H. Zhang, X.-Y. Zheng, R. Jiang, Z. Liu, W. Li et al., Research progress of functional composite electromagnetic shielding materials. Eur. Polym. J. 185, 111825 (2023). https://doi.org/10.1016/j.eurpolymj.2023.111825
- Y. Fei, M. Liang, Y. Chen, H. Zou, Sandwich-like magnetic graphene papers prepared with MOF-derived Fe3O4–C for absorption-dominated electromagnetic interference shielding. Ind. Eng. Chem. Res. 59, 154–165 (2020). https://doi.org/10.1021/acs.iecr.9b04416
- Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15, 240 (2023). https://doi.org/10.1007/s40820-023-01203-5
- W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
- G. Hu, C. Wu, Q. Wang, F. Dong, Y. Xiong, Ultrathin nanocomposite films with asymmetric gradient alternating multilayer structures exhibit superhigh electromagnetic interference shielding performances and robust mechanical properties. Chem. Eng. J. 447, 137537 (2022). https://doi.org/10.1016/j.cej.2022.137537
- Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu et al., Core-shell ZIF-8@ZIF-67-derived CoP nanop-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140, 2610–2618 (2018). https://doi.org/10.1021/jacs.7b12420
- Z. Xiang, X. Wang, X. Zhang, Y. Shi, L. Cai et al., Self-assembly of nano/microstructured 2D Ti3CNTx MXene-based composites for electromagnetic pollution elimination and Joule energy conversion application. Carbon 189, 305–318 (2022). https://doi.org/10.1016/j.carbon.2021.12.075
- Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
- Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 29 (2021). https://doi.org/10.1007/s40820-021-00766-5
- Z. Huang, H. Chen, S. Xu, L.Y. Chen, Y. Huang et al., Graphene-based composites combining both excellent terahertz shielding and stealth performance. Adv. Opt. Mater. 6, 1801165 (2018). https://doi.org/10.1002/adom.201801165
- P.-L. Wang, T. Mai, W. Zhang, M.-Y. Qi, L. Chen et al., Robust and multifunctional Ti3C2Tx/modified sawdust composite paper for electromagnetic interference shielding and wearable thermal management. Small 20, e2304914 (2024). https://doi.org/10.1002/smll.202304914
- Y. Sun, H. Jia, J. Liu, H. Yu, X. Jiang, Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies. J. Mater. Sci. Mater. Electron. 31, 11700–11713 (2020). https://doi.org/10.1007/s10854-020-03721-z
- R. Qiang, Y. Du, D. Chen, W. Ma, Y. Wang et al., Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). J. Alloys Compd. 681, 384–393 (2016). https://doi.org/10.1016/j.jallcom.2016.04.225
- P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
- Y. Fan, C. Zhuang, S. Li, Y. Wang, X. Zou et al., Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. J. Mater. Chem. A 9, 1110–1118 (2021). https://doi.org/10.1039/D0TA10838C
- B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou et al., A metal–organic framework-derived bifunctional oxygenelectrocatalyst. Nat. Energy 1, 15006 (2016). https://doi.org/10.1038/nenergy.2015.6
- Y. Fan, S. Li, Y. Wang, C. Zhuang, X. Liu et al., Tuning the synthesis of polymetallic-doped ZIF derived materials for efficient hydrogenation of furfural to furfuryl alcohol. Nanoscale 12, 18296–18304 (2020). https://doi.org/10.1039/d0nr04098c
- C. Ma, T. Mai, P.-L. Wang, W.-Y. Guo, M.-G. Ma, Flexible MXene/nanocellulose composite aerogel film with cellular structure for electromagnetic interference shielding and photothermal conversion. ACS Appl. Mater. Interfaces 15, 47425–47433 (2023). https://doi.org/10.1021/acsami.3c12171
- H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
- T. Mai, P.-L. Wang, Q. Yuan, C. Ma, M.-G. Ma, In situ anchoring Zn-doped ZIF-67 on carboxymethylated bacterial cellulose for effective indigo carmine capture. Nanoscale 13, 18210–18217 (2021). https://doi.org/10.1039/d1nr05388d
- Z. Guang, Y. Huang, C. Chen, X. Liu, Z. Xu et al., Engineering a light-weight, thin and dual-functional interlayer as “polysulfides sieve” capable of synergistic adsorption for high-performance lithium-sulfur batteries. Chem. Eng. J. 383, 123163 (2020). https://doi.org/10.1016/j.cej.2019.123163
- E. Duraisamy, H.T. Das, A. Selva Sharma, P. Elumalai, Supercapacitor and photocatalytic performances of hydrothermally-derived Co3O4/CoO@carbon nanocomposite. New J. Chem. 42, 6114–6124 (2018). https://doi.org/10.1039/C7NJ04638C
- M.-Y. Qi, P.-L. Wang, L.-Z. Huang, Q. Yuan, T. Mai et al., Cellulose nanofiber/MXene/luffa aerogel for all-weather and high-efficiency cleanup of crude oil spills. Int. J. Biol. Macromol. 242, 124895 (2023). https://doi.org/10.1016/j.ijbiomac.2023.124895
- L. Luo, Z. Fang, W. Zhang, S. Geng, B. Chen et al., Preparation of methylated TEMPO-oxidized cellulose nanofibril hydrogel with high-temperature sensitivity. Cellulose 29, 8599–8609 (2022). https://doi.org/10.1007/s10570-022-04811-3
- T. Mai, W.Y. Guo, P.L. Wang, L. Chen, M.Y. Qi et al., Bilayer metal-organic frameworks/MXene/nanocellulose paper with electromagnetic double loss for absorption-dominated electromagnetic interference shielding. Chem. Eng. J. 464, 142517 (2023). https://doi.org/10.1016/j.cej.2023.142517
- Q.-W. Wang, H.-B. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29, 1806819 (2019). https://doi.org/10.1002/adfm.201806819
- S.A. Al Kiey, H.N. Abdelhamid, Metal-organic frameworks (MOFs)-derived Co3O4@N-doped carbon as an electrode materials for supercapacitor. J. Energy Storage 55, 105449 (2022). https://doi.org/10.1016/j.est.2022.105449
- Z. Zhang, D. Li, J. Wang, J. Jiang, Cascade upcycling polystyrene waste into ethylbenzene over Fe2N@C. Appl. Catal. B Environ. 323, 122164 (2023). https://doi.org/10.1016/j.apcatb.2022.122164
- D.-D. Li, Q. Yuan, L.-Z. Huang, W. Zhang, W.-Y. Guo et al., Preparation of flexible N-doped carbon nanotube/MXene/PAN nanocomposite films with improved electrochemical properties. Ind. Eng. Chem. Res. 60, 15352–15363 (2021). https://doi.org/10.1021/acs.iecr.1c03182
- N. Jia, D. Li, G. Huang, J. Sun, P. Lu et al., Carbon fibers-coated Co@N-doped porous carbon derived from ZIF-67/alginate fibers for efficient oxygen reduction reaction. J. Photonics Energy 10(2), 023507 (2020). https://doi.org/10.1117/1.JPE.10.023507
- S. Yi, X. Yue, D. Xu, Z. Liu, F. Zhao et al., Study on photogenerated charge transfer properties and enhanced visible-light photocatalytic activity of p-type Bi2O3/n-type ZnO heterojunctions. New J. Chem. 39, 2917–2924 (2015). https://doi.org/10.1039/C4NJ01738B
- W. Yang, Z. Zhao, K. Wu, R. Huang, T. Liu et al., Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 5, 3748–3756 (2017). https://doi.org/10.1039/C7TC00400A
- Y. Wang, W. Zhao, L. Tan, Y. Li, L. Qin et al., Review of polymer-based composites for electromagnetic shielding application. Molecules 28, 5628 (2023). https://doi.org/10.3390/molecules28155628
- X. Pei, G. Liu, H. Shi, R. Yu, S. Wang et al., Directional electromagnetic interference shielding of asymmetric structure based on dual-needle 3D printing. Compos. Sci. Technol. 233, 109909 (2023). https://doi.org/10.1016/j.compscitech.2023.109909
- S.M. Seyedi Ghezghapan, A. Javadi, Effect of processing methods on electrical percolation and electromagnetic shielding of PC/MWCNTs nanocomposites. Polym. Compos. 38, E269–E276 (2017). https://doi.org/10.1002/pc.24037
- B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12, 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
- T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
- B. Xue, Y. Li, Z. Cheng, S. Yang, L. Xie et al., Directional electromagnetic interference shielding based on step-wise asymmetric conductive networks. Nano-Micro Lett. 14, 16 (2021). https://doi.org/10.1007/s40820-021-00743-y
- X. Li, H. Luo, Maximizing terahertz energy absorption with MXene absorber. Nano-Micro Lett. 15, 198 (2023). https://doi.org/10.1007/s40820-023-01167-6
- A.R. Pai, Y. Lu, S. Joseph, N.M. Santhosh, R. Degl’Innocenti et al., Ultra-broadband shielding of cellulose nanofiber commingled biocarbon functional constructs: A paradigm shift towards sustainable terahertz absorbers. Chem. Eng. J. 467, 143213 (2023). https://doi.org/10.1016/j.cej.2023.143213
- H.M. Schlicke, Theory of simulated-skin-effect filters a thin film approach to EMI. IEEE Trans. Electromagn. Compat. 6, 47–54 (1964). https://doi.org/10.1109/TEMC.1964.4307329
- B. Zhao, Y. Li, H. Ji, P. Bai, S. Wang et al., Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon 176, 411–420 (2021). https://doi.org/10.1016/j.carbon.2021.01.136
- L. Ma, M. Hamidinejad, B. Zhao, C. Liang, C.B. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14, 19 (2021). https://doi.org/10.1007/s40820-021-00759-4
- B. Zhao, Y. Du, Z. Yan, L. Rao, G. Chen et al., Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 33, 2209924 (2023). https://doi.org/10.1002/adfm.202209924
- B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35, e2210243 (2023). https://doi.org/10.1002/adma.202210243
- B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15, 79 (2023). https://doi.org/10.1007/s40820-023-01043-3
- B. Zhao, S. Zeng, X. Li, X. Guo, Z. Bai et al., Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. J. Mater. Chem. C 8, 500–509 (2020). https://doi.org/10.1039/C9TC05462F
- C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
- D. Gao, S. Guo, Y. Zhou, B. Lyu, X. Li et al., Absorption-dominant, low-reflection multifunctional electromagnetic shielding material derived from hydrolysate of waste leather scraps. ACS Appl. Mater. Interfaces 14, 38077–38089 (2022). https://doi.org/10.1021/acsami.2c10787
- J.-R. Tao, X.-H. Tang, Q.-M. He, M. Wang, Effect of surface conductivity on electromagnetic shielding of multi-walled carbon nanotubes/Poly(ε-caprolactone) composites. Compos. Sci. Technol. 229, 109715 (2022). https://doi.org/10.1016/j.compscitech.2022.109715
- H. Wang, S. Li, M. Liu, J. Li, X. Zhou, Review on shielding mechanism and structural design of electromagnetic interference shielding composites. Macromol. Mater. Eng. 306(6), 2100032 (2021). https://doi.org/10.1002/mame.202100032
- S. Yang, R. Yang, Z. Lin, X. Wang, S. Liu et al., Ultrathin, flexible, and high-strength polypyrrole/Ti3C2Tx film for wide-band gigahertz and terahertz electromagnetic interference shielding. J. Mater. Chem. A 10, 23570–23579 (2022). https://doi.org/10.1039/D2TA06805B
- B. Zhao, R. Wang, Y. Li, Y. Ren, X. Li et al., Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. J. Mater. Chem. C 8, 7401–7410 (2020). https://doi.org/10.1039/D0TC00987C
- H. Liu, Z. Cui, L. Luo, Q. Liao, R. Xiong et al., Facile fabrication of flexible and ultrathin self-assembled Ti3C2Tx/bacterial cellulose composite films with enhanced electromagnetic shielding and photothermal conversion performances. Chem. Eng. J. 454, 140288 (2022). https://doi.org/10.1016/j.cej.2022.140288
- Y. Gao, J. Lin, X. Chen, Z. Tang, G. Qin et al., Engineering 2D MXene and LDH into 3D hollow framework for boosting photothermal energy storage and microwave absorption. Small 19, e2303113 (2023). https://doi.org/10.1002/smll.202303113
- S. Ding, L. Ma, J. Feng, Y. Chen, D. Yang et al., Surface-roughness-adjustable Au nanorods with strong plasmon absorption and abundant hotspots for improved SERS and photothermal performances. Nano Res. 15, 2715–2721 (2022). https://doi.org/10.1007/s12274-021-3740-1
- J. Ye, Y. Wang, L. Luo, K. Qian, J. Zhou et al., Carbon nanotube films embedded with Cu@C nanocubes for electromagnetic interference shielding. J. Polym. Sci. 61, 2688–2696 (2023). https://doi.org/10.1002/pol.20230184
- L. Chen, T. Mai, X.-X. Ji, P.-L. Wang, M.-Y. Qi et al., 3D printing of customizable and lightweight multilayer MXene/nanocellulose architectures for tunable electromagnetic interference shielding via direct ink writing. Chem. Eng. J. 476, 146652 (2023). https://doi.org/10.1016/j.cej.2023.146652
References
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
Z. Zeng, G. Wang, B.F. Wolan, N. Wu, C. Wang et al., Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 14, 179 (2022). https://doi.org/10.1007/s40820-022-00883-9
C. Ma, Q. Yuan, M.-G. Ma, MXenes for electromagnetic interference (EMI) shielding. Fundamental Aspects and Perspectives of MXenes. (Springer, Cham, 2022), 219–240. https://doi.org/10.1007/978-3-031-05006-0_9
P.-L. Wang, T. Mai, X.-X. Ji, P. Hu, M.-G. Ma, Aerogel-based composites for electromagnetic interface shielding applications. Compos. Interfaces 29, 1483–1503 (2022). https://doi.org/10.1080/09276440.2022.2069320
Z. Barani, F. Kargar, Y. Ghafouri, S. Ghosh, K. Godziszewski et al., Electrically insulating flexible films with quasi-1D van der waals fillers as efficient electromagnetic shields in the GHz and sub-THz frequency bands. Adv. Mater. 33, e2007286 (2021). https://doi.org/10.1002/adma.202007286
J. Wang, X. Wu, Y. Wang, W. Zhao, Y. Zhao et al., Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nano-Micro Lett. 15, 11 (2022). https://doi.org/10.1007/s40820-022-00982-7
Q. Lu, Y. Chen, W. Song, C. Tao, J. Zhang et al., Mechanistic role of γ-valerolactone co-solvent to promote ethyl levulinate production from cellulose transformation in ethanol. Fuel 346, 128371 (2023). https://doi.org/10.1016/j.fuel.2023.128371
Z. Zhang, T. Yuan, Y. Miao, Q. Liu, J. Mu et al., Carboxyl-functionalized graphene oxide/cellulose nanofiber as adsorbents toward methylene blue. Chem. Phys. Lett. 837, 141064 (2024). https://doi.org/10.1016/j.cplett.2024.141064
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
F. Shahzad, A. Iqbal, H. Kim, C.M. Koo, 2D transition metal carbides (MXenes): applications as an electrically conducting material. Adv. Mater. 32, e2002159 (2020). https://doi.org/10.1002/adma.202002159
M.M. Hasan, M.M. Hossain, H.K. Chowdhury, Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. J. Mater. Chem. A 9, 3231–3269 (2021). https://doi.org/10.1039/D0TA11103A
Z. Liu, J. Chen, M. Que, H. Zheng, L. Yang et al., 2D Ti3C2T MXene/MOFs composites derived CoNi bimetallic nanops for enhanced microwave absorption. Chem. Eng. J. 450, 138442 (2022). https://doi.org/10.1016/j.cej.2022.138442
Y. Wang, Y. Yang, M. Miao, X. Feng, Carbon nanotube arrays@cobalt hybrids derived from metal-organic framework ZIF-67 for enhanced electromagnetic wave absorption. Mater. Today Phys. 35, 101110 (2023). https://doi.org/10.1016/j.mtphys.2023.101110
H. Zhang, X.-Y. Zheng, R. Jiang, Z. Liu, W. Li et al., Research progress of functional composite electromagnetic shielding materials. Eur. Polym. J. 185, 111825 (2023). https://doi.org/10.1016/j.eurpolymj.2023.111825
Y. Fei, M. Liang, Y. Chen, H. Zou, Sandwich-like magnetic graphene papers prepared with MOF-derived Fe3O4–C for absorption-dominated electromagnetic interference shielding. Ind. Eng. Chem. Res. 59, 154–165 (2020). https://doi.org/10.1021/acs.iecr.9b04416
Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15, 240 (2023). https://doi.org/10.1007/s40820-023-01203-5
W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
G. Hu, C. Wu, Q. Wang, F. Dong, Y. Xiong, Ultrathin nanocomposite films with asymmetric gradient alternating multilayer structures exhibit superhigh electromagnetic interference shielding performances and robust mechanical properties. Chem. Eng. J. 447, 137537 (2022). https://doi.org/10.1016/j.cej.2022.137537
Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu et al., Core-shell ZIF-8@ZIF-67-derived CoP nanop-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140, 2610–2618 (2018). https://doi.org/10.1021/jacs.7b12420
Z. Xiang, X. Wang, X. Zhang, Y. Shi, L. Cai et al., Self-assembly of nano/microstructured 2D Ti3CNTx MXene-based composites for electromagnetic pollution elimination and Joule energy conversion application. Carbon 189, 305–318 (2022). https://doi.org/10.1016/j.carbon.2021.12.075
Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 29 (2021). https://doi.org/10.1007/s40820-021-00766-5
Z. Huang, H. Chen, S. Xu, L.Y. Chen, Y. Huang et al., Graphene-based composites combining both excellent terahertz shielding and stealth performance. Adv. Opt. Mater. 6, 1801165 (2018). https://doi.org/10.1002/adom.201801165
P.-L. Wang, T. Mai, W. Zhang, M.-Y. Qi, L. Chen et al., Robust and multifunctional Ti3C2Tx/modified sawdust composite paper for electromagnetic interference shielding and wearable thermal management. Small 20, e2304914 (2024). https://doi.org/10.1002/smll.202304914
Y. Sun, H. Jia, J. Liu, H. Yu, X. Jiang, Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies. J. Mater. Sci. Mater. Electron. 31, 11700–11713 (2020). https://doi.org/10.1007/s10854-020-03721-z
R. Qiang, Y. Du, D. Chen, W. Ma, Y. Wang et al., Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). J. Alloys Compd. 681, 384–393 (2016). https://doi.org/10.1016/j.jallcom.2016.04.225
P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
Y. Fan, C. Zhuang, S. Li, Y. Wang, X. Zou et al., Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. J. Mater. Chem. A 9, 1110–1118 (2021). https://doi.org/10.1039/D0TA10838C
B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou et al., A metal–organic framework-derived bifunctional oxygenelectrocatalyst. Nat. Energy 1, 15006 (2016). https://doi.org/10.1038/nenergy.2015.6
Y. Fan, S. Li, Y. Wang, C. Zhuang, X. Liu et al., Tuning the synthesis of polymetallic-doped ZIF derived materials for efficient hydrogenation of furfural to furfuryl alcohol. Nanoscale 12, 18296–18304 (2020). https://doi.org/10.1039/d0nr04098c
C. Ma, T. Mai, P.-L. Wang, W.-Y. Guo, M.-G. Ma, Flexible MXene/nanocellulose composite aerogel film with cellular structure for electromagnetic interference shielding and photothermal conversion. ACS Appl. Mater. Interfaces 15, 47425–47433 (2023). https://doi.org/10.1021/acsami.3c12171
H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
T. Mai, P.-L. Wang, Q. Yuan, C. Ma, M.-G. Ma, In situ anchoring Zn-doped ZIF-67 on carboxymethylated bacterial cellulose for effective indigo carmine capture. Nanoscale 13, 18210–18217 (2021). https://doi.org/10.1039/d1nr05388d
Z. Guang, Y. Huang, C. Chen, X. Liu, Z. Xu et al., Engineering a light-weight, thin and dual-functional interlayer as “polysulfides sieve” capable of synergistic adsorption for high-performance lithium-sulfur batteries. Chem. Eng. J. 383, 123163 (2020). https://doi.org/10.1016/j.cej.2019.123163
E. Duraisamy, H.T. Das, A. Selva Sharma, P. Elumalai, Supercapacitor and photocatalytic performances of hydrothermally-derived Co3O4/CoO@carbon nanocomposite. New J. Chem. 42, 6114–6124 (2018). https://doi.org/10.1039/C7NJ04638C
M.-Y. Qi, P.-L. Wang, L.-Z. Huang, Q. Yuan, T. Mai et al., Cellulose nanofiber/MXene/luffa aerogel for all-weather and high-efficiency cleanup of crude oil spills. Int. J. Biol. Macromol. 242, 124895 (2023). https://doi.org/10.1016/j.ijbiomac.2023.124895
L. Luo, Z. Fang, W. Zhang, S. Geng, B. Chen et al., Preparation of methylated TEMPO-oxidized cellulose nanofibril hydrogel with high-temperature sensitivity. Cellulose 29, 8599–8609 (2022). https://doi.org/10.1007/s10570-022-04811-3
T. Mai, W.Y. Guo, P.L. Wang, L. Chen, M.Y. Qi et al., Bilayer metal-organic frameworks/MXene/nanocellulose paper with electromagnetic double loss for absorption-dominated electromagnetic interference shielding. Chem. Eng. J. 464, 142517 (2023). https://doi.org/10.1016/j.cej.2023.142517
Q.-W. Wang, H.-B. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29, 1806819 (2019). https://doi.org/10.1002/adfm.201806819
S.A. Al Kiey, H.N. Abdelhamid, Metal-organic frameworks (MOFs)-derived Co3O4@N-doped carbon as an electrode materials for supercapacitor. J. Energy Storage 55, 105449 (2022). https://doi.org/10.1016/j.est.2022.105449
Z. Zhang, D. Li, J. Wang, J. Jiang, Cascade upcycling polystyrene waste into ethylbenzene over Fe2N@C. Appl. Catal. B Environ. 323, 122164 (2023). https://doi.org/10.1016/j.apcatb.2022.122164
D.-D. Li, Q. Yuan, L.-Z. Huang, W. Zhang, W.-Y. Guo et al., Preparation of flexible N-doped carbon nanotube/MXene/PAN nanocomposite films with improved electrochemical properties. Ind. Eng. Chem. Res. 60, 15352–15363 (2021). https://doi.org/10.1021/acs.iecr.1c03182
N. Jia, D. Li, G. Huang, J. Sun, P. Lu et al., Carbon fibers-coated Co@N-doped porous carbon derived from ZIF-67/alginate fibers for efficient oxygen reduction reaction. J. Photonics Energy 10(2), 023507 (2020). https://doi.org/10.1117/1.JPE.10.023507
S. Yi, X. Yue, D. Xu, Z. Liu, F. Zhao et al., Study on photogenerated charge transfer properties and enhanced visible-light photocatalytic activity of p-type Bi2O3/n-type ZnO heterojunctions. New J. Chem. 39, 2917–2924 (2015). https://doi.org/10.1039/C4NJ01738B
W. Yang, Z. Zhao, K. Wu, R. Huang, T. Liu et al., Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 5, 3748–3756 (2017). https://doi.org/10.1039/C7TC00400A
Y. Wang, W. Zhao, L. Tan, Y. Li, L. Qin et al., Review of polymer-based composites for electromagnetic shielding application. Molecules 28, 5628 (2023). https://doi.org/10.3390/molecules28155628
X. Pei, G. Liu, H. Shi, R. Yu, S. Wang et al., Directional electromagnetic interference shielding of asymmetric structure based on dual-needle 3D printing. Compos. Sci. Technol. 233, 109909 (2023). https://doi.org/10.1016/j.compscitech.2023.109909
S.M. Seyedi Ghezghapan, A. Javadi, Effect of processing methods on electrical percolation and electromagnetic shielding of PC/MWCNTs nanocomposites. Polym. Compos. 38, E269–E276 (2017). https://doi.org/10.1002/pc.24037
B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12, 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
B. Xue, Y. Li, Z. Cheng, S. Yang, L. Xie et al., Directional electromagnetic interference shielding based on step-wise asymmetric conductive networks. Nano-Micro Lett. 14, 16 (2021). https://doi.org/10.1007/s40820-021-00743-y
X. Li, H. Luo, Maximizing terahertz energy absorption with MXene absorber. Nano-Micro Lett. 15, 198 (2023). https://doi.org/10.1007/s40820-023-01167-6
A.R. Pai, Y. Lu, S. Joseph, N.M. Santhosh, R. Degl’Innocenti et al., Ultra-broadband shielding of cellulose nanofiber commingled biocarbon functional constructs: A paradigm shift towards sustainable terahertz absorbers. Chem. Eng. J. 467, 143213 (2023). https://doi.org/10.1016/j.cej.2023.143213
H.M. Schlicke, Theory of simulated-skin-effect filters a thin film approach to EMI. IEEE Trans. Electromagn. Compat. 6, 47–54 (1964). https://doi.org/10.1109/TEMC.1964.4307329
B. Zhao, Y. Li, H. Ji, P. Bai, S. Wang et al., Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon 176, 411–420 (2021). https://doi.org/10.1016/j.carbon.2021.01.136
L. Ma, M. Hamidinejad, B. Zhao, C. Liang, C.B. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14, 19 (2021). https://doi.org/10.1007/s40820-021-00759-4
B. Zhao, Y. Du, Z. Yan, L. Rao, G. Chen et al., Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 33, 2209924 (2023). https://doi.org/10.1002/adfm.202209924
B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35, e2210243 (2023). https://doi.org/10.1002/adma.202210243
B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15, 79 (2023). https://doi.org/10.1007/s40820-023-01043-3
B. Zhao, S. Zeng, X. Li, X. Guo, Z. Bai et al., Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. J. Mater. Chem. C 8, 500–509 (2020). https://doi.org/10.1039/C9TC05462F
C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
D. Gao, S. Guo, Y. Zhou, B. Lyu, X. Li et al., Absorption-dominant, low-reflection multifunctional electromagnetic shielding material derived from hydrolysate of waste leather scraps. ACS Appl. Mater. Interfaces 14, 38077–38089 (2022). https://doi.org/10.1021/acsami.2c10787
J.-R. Tao, X.-H. Tang, Q.-M. He, M. Wang, Effect of surface conductivity on electromagnetic shielding of multi-walled carbon nanotubes/Poly(ε-caprolactone) composites. Compos. Sci. Technol. 229, 109715 (2022). https://doi.org/10.1016/j.compscitech.2022.109715
H. Wang, S. Li, M. Liu, J. Li, X. Zhou, Review on shielding mechanism and structural design of electromagnetic interference shielding composites. Macromol. Mater. Eng. 306(6), 2100032 (2021). https://doi.org/10.1002/mame.202100032
S. Yang, R. Yang, Z. Lin, X. Wang, S. Liu et al., Ultrathin, flexible, and high-strength polypyrrole/Ti3C2Tx film for wide-band gigahertz and terahertz electromagnetic interference shielding. J. Mater. Chem. A 10, 23570–23579 (2022). https://doi.org/10.1039/D2TA06805B
B. Zhao, R. Wang, Y. Li, Y. Ren, X. Li et al., Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. J. Mater. Chem. C 8, 7401–7410 (2020). https://doi.org/10.1039/D0TC00987C
H. Liu, Z. Cui, L. Luo, Q. Liao, R. Xiong et al., Facile fabrication of flexible and ultrathin self-assembled Ti3C2Tx/bacterial cellulose composite films with enhanced electromagnetic shielding and photothermal conversion performances. Chem. Eng. J. 454, 140288 (2022). https://doi.org/10.1016/j.cej.2022.140288
Y. Gao, J. Lin, X. Chen, Z. Tang, G. Qin et al., Engineering 2D MXene and LDH into 3D hollow framework for boosting photothermal energy storage and microwave absorption. Small 19, e2303113 (2023). https://doi.org/10.1002/smll.202303113
S. Ding, L. Ma, J. Feng, Y. Chen, D. Yang et al., Surface-roughness-adjustable Au nanorods with strong plasmon absorption and abundant hotspots for improved SERS and photothermal performances. Nano Res. 15, 2715–2721 (2022). https://doi.org/10.1007/s12274-021-3740-1
J. Ye, Y. Wang, L. Luo, K. Qian, J. Zhou et al., Carbon nanotube films embedded with Cu@C nanocubes for electromagnetic interference shielding. J. Polym. Sci. 61, 2688–2696 (2023). https://doi.org/10.1002/pol.20230184
L. Chen, T. Mai, X.-X. Ji, P.-L. Wang, M.-Y. Qi et al., 3D printing of customizable and lightweight multilayer MXene/nanocellulose architectures for tunable electromagnetic interference shielding via direct ink writing. Chem. Eng. J. 476, 146652 (2023). https://doi.org/10.1016/j.cej.2023.146652