Commercially Viable Hybrid Li-Ion/Metal Batteries with High Energy Density Realized by Symbiotic Anode and Prelithiated Cathode
Corresponding Author: Xianying Qin
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 149
Abstract
The energy density of commercial lithium (Li) ion batteries with graphite anode is reaching the limit. It is believed that directly utilizing Li metal as anode without a host could enhance the battery’s energy density to the maximum extent. However, the poor reversibility and infinite volume change of Li metal hinder the realistic implementation of Li metal in battery community. Herein, a commercially viable hybrid Li-ion/metal battery is realized by a coordinated strategy of symbiotic anode and prelithiated cathode. To be specific, a scalable template-removal method is developed to fabricate the porous graphite layer (PGL), which acts as a symbiotic host for Li ion intercalation and subsequent Li metal deposition due to the enhanced lithiophilicity and sufficient ion-conducting pathways. A continuous dissolution-deintercalation mechanism during delithiation process further ensures the elimination of dead Li. As a result, when the excess plating Li reaches 30%, the PGL could deliver an ultrahigh average Coulombic efficiency of 99.5% for 180 cycles with a capacity of 2.48 mAh cm−2 in traditional carbonate electrolyte. Meanwhile, an air-stable recrystallized lithium oxalate with high specific capacity (514.3 mAh g−1) and moderate operating potential (4.7–5.0 V) is introduced as a sacrificial cathode to compensate the initial loss and provide Li source for subsequent cycles. Based on the prelithiated cathode and initial Li-free symbiotic anode, under a practical-level 3 mAh capacity, the assembled hybrid Li-ion/metal full cell with a P/N ratio (capacity ratio of LiNi0.8Co0.1Mn0.1O2 to graphite) of 1.3 exhibits significantly improved capacity retention after 300 cycles, indicating its great potential for high-energy-density Li batteries.
Highlights:
1 A symbiotic host of porous graphite layer is designed as hybrid Li anode for Li ion intercalation and subsequent uniform plating.
2 An ultrahigh plating reversibility of 99.5% is achieved in the carbonate electrolyte.
3 An air-stable cathode prelithiation agent is introduced to provide extra Li source, resulting high energy density of the as-developed practical hybrid Li-ion/metal full cell.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
- X. Xu, K. Lin, D. Zhou, Q. Liu, X. Qin et al., Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem 6(4), 902–918 (2020)
- X. Xu, D. Zhou, X. Qin, K. Lin, F. Kang et al., A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat. Commun. 9, 3870 (2018). https://doi.org/10.1038/s41467-018-06443-3
- J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
- Z. Xie, Z. Wu, X. An, X. Yue, J. Wang et al., Anode-free rechargeable lithium metal batteries: progress and prospects. Energy Storage Mater. 32, 386–401 (2020). https://doi.org/10.1016/j.ensm.2020.07.004
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- S. Nanda, A. Gupta, A. Manthiram, Anode-free full cells: a pathway to high-energy density lithium-metal batteries. Adv. Energy Mater. 11(2), 2000804 (2021). https://doi.org/10.1002/aenm.202000804
- X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
- C.J. Huang, B. Thirumalraj, H.C. Tao, K.N. Shitaw, H. Sutiono et al., Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nat. Commun. 12, 1452 (2021). https://doi.org/10.1038/s41467-021-21683-6
- K. Lin, X. Xu, X. Qin, J. Wu, Q. Liu et al., In situ constructed ionic-electronic dual-conducting scaffold with reinforced interface for high-performance sodium metal anodes. Small 17(45), 2104021 (2021). https://doi.org/10.1002/smll.202104021
- A.J. Louli, M. Genovese, R. Weber, S.G. Hames, E.R. Logan et al., Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells. J. Electrochem. Soc. 166, A1291–A1299 (2019). https://doi.org/10.1149/2.0091908jes
- Z. Yu, P.E. Rudnicki, Z. Zhang, Z. Huang, H. Celik et al., Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022). https://doi.org/10.1038/s41560-021-00962-y
- S. Zhang, Suppressing Li dendrites via electrolyte engineering by crown ethers for lithium metal batteries. Nano-Micro Lett. 12, 158 (2020). https://doi.org/10.1007/s40820-020-00501-6
- R. Weber, M. Genovese, A.J. Louli, S. Hames, C. Martin et al., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019). https://doi.org/10.1038/s41560-019-0428-9
- A.J. Louli, A. Eldesoky, R. Weber, M. Genovese, M. Coon et al., Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020). https://doi.org/10.1038/s41560-020-0668-8
- S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard et al., High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30(21), 1706102 (2018). https://doi.org/10.1002/adma.201706102
- S. Chen, J. Zheng, L. Yu, X. Ren, M.H. Engelhard et al., High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2(8), 1548–1558 (2018). https://doi.org/10.1016/j.joule.2018.05.002
- M.S. Kim, Z. Zhang, P.E. Rudnicki, Z. Yu, J. Wang et al., Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 21, 445–454 (2022). https://doi.org/10.1038/s41563-021-01172-3
- J. Xiao, Q. Li, Y. Bi, M. Cai, B. Dunn et al., Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020). https://doi.org/10.1038/s41560-020-0648-z
- K. Lin, X. Xu, X. Qin, S. Wang, C. Han et al., Dendrite-free lithium deposition enabled by a vertically aligned graphene pillar architecture. Carbon 185, 152–160 (2021). https://doi.org/10.1016/j.carbon.2021.09.001
- Y. Zhao, L. Ren, A. Wang, J. Luo, Composite anodes for lithium metal batteries. Acta Phys. Chim. Sin. 37(2), 2008090 (2021). https://doi.org/10.3866/PKU.WHXB202008090
- K. Lin, X. Xu, X. Qin, G. Zhang, M. Liu et al., Restructured rimous copper foam as robust lithium host. Energy Storage Mater. 26, 250–259 (2020). https://doi.org/10.1016/j.ensm.2020.01.001
- K. Lin, T. Li, S.W. Chiang, M. Liu, X. Qin et al., Facile synthesis of ant-nest-like porous duplex copper as deeply cycling host for lithium metal anodes. Small 16(37), 2001784 (2020). https://doi.org/10.1002/smll.202001784
- K. Lin, X. Qin, M. Liu, X. Xu, G. Liang et al., Ultrafine titanium nitride sheath decorated carbon nanofiber network enabling stable lithium metal anodes. Adv. Funct. Mater. 29(46), 1903229 (2019). https://doi.org/10.1002/adfm.201903229
- Y. Liu, X. Qin, F. Liu, B. Huang, S. Zhang et al., Basal nanosuit of graphite for high-energy hybrid Li batteries. ACS Nano 14(2), 1837–1845 (2020). https://doi.org/10.1021/acsnano.9b07706
- T. Liu, J. Wang, Y. Xu, Y. Zhang, Y. Wang, Dendrite-free and stable lithium metal battery achieved by a model of stepwise lithium deposition and stripping. Nano-Micro Lett. 13, 170 (2021). https://doi.org/10.1007/s40820-021-00687-3
- L. Chen, X. Fan, X. Ji, J. Chen, S. Hou et al., High-energy Li metal battery with lithiated host. Joule 3(3), 732–744 (2019). https://doi.org/10.1016/j.joule.2018.11.025
- C. Martin, M. Genovese, A.J. Louli, R. Weber, J.R. Dahn, Cycling lithium metal on graphite to form hybrid lithium-ion/lithium metal cells. Joule 4(6), 1296–1310 (2020). https://doi.org/10.1016/j.joule.2020.04.003
- X. Xing, Y. Li, S. Wang, H. Liu, Z. Wu et al., Graphite-based lithium-free 3D hybrid anodes for high energy density all-solid-state batteries. ACS Energy Lett. 6(5), 1831–1838 (2021). https://doi.org/10.1021/acsenergylett.1c00627
- S. Zhou, W. Chen, J. Shi, G. Li, F. Pei et al., Efficient diffusion of superdense lithium via atomic channels for dendrite-free lithium-metal batteries. Energy Environ. Sci. 15, 196–205 (2022). https://doi.org/10.1039/D1EE02205A
- P. Shi, L.P. Hou, C.B. Jin, Y. Xiao, Y.X. Yao et al., A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes. J. Am. Chem. Soc. 144(1), 212–218 (2022). https://doi.org/10.1021/jacs.1c08606
- W. Mei, L. Jiang, C. Liang, J. Sun, Q. Wang, Understanding of Li-plating on graphite electrode: detection, quantification and mechanism revelation. Energy Storage Mater. 41, 209–221 (2021). https://doi.org/10.1016/j.ensm.2021.06.013
- W. Cai, C. Yan, Y.X. Yao, L. Xu, X.R. Chen et al., The boundary of lithium plating in graphite electrode for safe lithium-ion batteries. Angew. Chem. Int. Ed. 60(23), 13007–13012 (2021). https://doi.org/10.1002/anie.202102593
- C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang et al., Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019). https://doi.org/10.1038/s41586-019-1481-z
- Y. Yuan, F. Wu, Y. Bai, Y. Li, G. Chen et al., Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Mater. 16, 411–418 (2019). https://doi.org/10.1016/j.ensm.2018.06.022
- J. Xiao, P. Zhai, Y. Wei, X. Zhang, W. Yang et al., In-situ formed protecting layer from organic/inorganic concrete for dendrite-free lithium metal anodes. Nano Lett. 20, 3911–3917 (2020). https://doi.org/10.1021/acs.nanolett.0c01085
- J. Luo, C.C. Fang, N.L. Wu, High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 8(2), 1701482 (2018). https://doi.org/10.1002/aenm.201701482
- G.M. Hobold, J. Lopez, R. Guo, N. Minafra, A. Banerjee et al., Moving beyond 99.9% coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021). https://doi.org/10.1038/s41560-021-00910-w
- F. Wang, B. Wang, J. Li, B. Wang, Y. Zhou et al., Prelithiation: a crucial strategy for boosting the practical application of next-generation lithium ion battery. ACS Nano 15(2), 2197–2218 (2021). https://doi.org/10.1021/acsnano.0c10664
- L. Lin, K. Qin, Q. Zhang, L. Gu, L. Suo et al., Li-rich Li2[Ni0.8Co0.1Mn0.1]O2 for anode-free lithium metal batteries. Angew. Chem. Int. Ed. 60(15), 8289–8296 (2021). https://doi.org/10.1002/anie.202017063
- Y. Shen, J. Qian, H. Yang, F. Zhong, X. Ai, Chemically prelithiated hard-carbon anode for high power and high capacity Li-ion batteries. Small 16(7), 1907602 (2020). https://doi.org/10.1002/smll.201907602
- Y. Shen, J. Zhang, Y. Pu, H. Wang, B. Wang et al., Effective chemical prelithiation strategy for building a silicon/sulfur Li-ion battery. ACS Energy Lett. 4(7), 1717–1724 (2019). https://doi.org/10.1021/acsenergylett.9b00889
- M. Liu, J. Zhang, S. Guo, B. Wang, Y. Shen et al., Chemically presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries. ACS Appl. Mater. Interfaces 12(15), 17620–17627 (2020). https://doi.org/10.1021/acsami.0c02230
- S.W. Park, H.J. Choi, Y. Yoo, H.D. Lim, J.W. Park et al., Stable cycling of all-solid-state batteries with sacrificial cathode and lithium-free indium layer. Adv. Funct. Mater. 32(5), 2108203 (2022). https://doi.org/10.1002/adfm.202108203
- Y. Qiao, H. Yang, Z. Chang, H. Deng, X. Li et al., A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 6, 653–662 (2021). https://doi.org/10.1038/s41560-021-00839-0
- S. Solchenbach, M. Wetjen, D. Pritzl, K.U. Schwenke, H.A. Gasteiger, Lithium oxalate as capacity and cycle-life enhancer in LNMO/graphite and LNMO/SiG full cells. J. Electrochem. Soc. 165, A512–A524 (2018). https://doi.org/10.1149/2.0611803jes
- T. Osaka, T. Momma, Y. Matsumoto, Y. Uchida, Surface characterization of electrodeposited lithium anode with enhanced cycleability obtained by CO2 addition. J. Electrochem. Soc. 144, 1709–1713 (1997). https://doi.org/10.1149/1.1837665
References
M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
X. Xu, K. Lin, D. Zhou, Q. Liu, X. Qin et al., Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem 6(4), 902–918 (2020)
X. Xu, D. Zhou, X. Qin, K. Lin, F. Kang et al., A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat. Commun. 9, 3870 (2018). https://doi.org/10.1038/s41467-018-06443-3
J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
Z. Xie, Z. Wu, X. An, X. Yue, J. Wang et al., Anode-free rechargeable lithium metal batteries: progress and prospects. Energy Storage Mater. 32, 386–401 (2020). https://doi.org/10.1016/j.ensm.2020.07.004
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
S. Nanda, A. Gupta, A. Manthiram, Anode-free full cells: a pathway to high-energy density lithium-metal batteries. Adv. Energy Mater. 11(2), 2000804 (2021). https://doi.org/10.1002/aenm.202000804
X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
C.J. Huang, B. Thirumalraj, H.C. Tao, K.N. Shitaw, H. Sutiono et al., Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nat. Commun. 12, 1452 (2021). https://doi.org/10.1038/s41467-021-21683-6
K. Lin, X. Xu, X. Qin, J. Wu, Q. Liu et al., In situ constructed ionic-electronic dual-conducting scaffold with reinforced interface for high-performance sodium metal anodes. Small 17(45), 2104021 (2021). https://doi.org/10.1002/smll.202104021
A.J. Louli, M. Genovese, R. Weber, S.G. Hames, E.R. Logan et al., Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells. J. Electrochem. Soc. 166, A1291–A1299 (2019). https://doi.org/10.1149/2.0091908jes
Z. Yu, P.E. Rudnicki, Z. Zhang, Z. Huang, H. Celik et al., Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022). https://doi.org/10.1038/s41560-021-00962-y
S. Zhang, Suppressing Li dendrites via electrolyte engineering by crown ethers for lithium metal batteries. Nano-Micro Lett. 12, 158 (2020). https://doi.org/10.1007/s40820-020-00501-6
R. Weber, M. Genovese, A.J. Louli, S. Hames, C. Martin et al., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019). https://doi.org/10.1038/s41560-019-0428-9
A.J. Louli, A. Eldesoky, R. Weber, M. Genovese, M. Coon et al., Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020). https://doi.org/10.1038/s41560-020-0668-8
S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard et al., High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30(21), 1706102 (2018). https://doi.org/10.1002/adma.201706102
S. Chen, J. Zheng, L. Yu, X. Ren, M.H. Engelhard et al., High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2(8), 1548–1558 (2018). https://doi.org/10.1016/j.joule.2018.05.002
M.S. Kim, Z. Zhang, P.E. Rudnicki, Z. Yu, J. Wang et al., Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 21, 445–454 (2022). https://doi.org/10.1038/s41563-021-01172-3
J. Xiao, Q. Li, Y. Bi, M. Cai, B. Dunn et al., Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020). https://doi.org/10.1038/s41560-020-0648-z
K. Lin, X. Xu, X. Qin, S. Wang, C. Han et al., Dendrite-free lithium deposition enabled by a vertically aligned graphene pillar architecture. Carbon 185, 152–160 (2021). https://doi.org/10.1016/j.carbon.2021.09.001
Y. Zhao, L. Ren, A. Wang, J. Luo, Composite anodes for lithium metal batteries. Acta Phys. Chim. Sin. 37(2), 2008090 (2021). https://doi.org/10.3866/PKU.WHXB202008090
K. Lin, X. Xu, X. Qin, G. Zhang, M. Liu et al., Restructured rimous copper foam as robust lithium host. Energy Storage Mater. 26, 250–259 (2020). https://doi.org/10.1016/j.ensm.2020.01.001
K. Lin, T. Li, S.W. Chiang, M. Liu, X. Qin et al., Facile synthesis of ant-nest-like porous duplex copper as deeply cycling host for lithium metal anodes. Small 16(37), 2001784 (2020). https://doi.org/10.1002/smll.202001784
K. Lin, X. Qin, M. Liu, X. Xu, G. Liang et al., Ultrafine titanium nitride sheath decorated carbon nanofiber network enabling stable lithium metal anodes. Adv. Funct. Mater. 29(46), 1903229 (2019). https://doi.org/10.1002/adfm.201903229
Y. Liu, X. Qin, F. Liu, B. Huang, S. Zhang et al., Basal nanosuit of graphite for high-energy hybrid Li batteries. ACS Nano 14(2), 1837–1845 (2020). https://doi.org/10.1021/acsnano.9b07706
T. Liu, J. Wang, Y. Xu, Y. Zhang, Y. Wang, Dendrite-free and stable lithium metal battery achieved by a model of stepwise lithium deposition and stripping. Nano-Micro Lett. 13, 170 (2021). https://doi.org/10.1007/s40820-021-00687-3
L. Chen, X. Fan, X. Ji, J. Chen, S. Hou et al., High-energy Li metal battery with lithiated host. Joule 3(3), 732–744 (2019). https://doi.org/10.1016/j.joule.2018.11.025
C. Martin, M. Genovese, A.J. Louli, R. Weber, J.R. Dahn, Cycling lithium metal on graphite to form hybrid lithium-ion/lithium metal cells. Joule 4(6), 1296–1310 (2020). https://doi.org/10.1016/j.joule.2020.04.003
X. Xing, Y. Li, S. Wang, H. Liu, Z. Wu et al., Graphite-based lithium-free 3D hybrid anodes for high energy density all-solid-state batteries. ACS Energy Lett. 6(5), 1831–1838 (2021). https://doi.org/10.1021/acsenergylett.1c00627
S. Zhou, W. Chen, J. Shi, G. Li, F. Pei et al., Efficient diffusion of superdense lithium via atomic channels for dendrite-free lithium-metal batteries. Energy Environ. Sci. 15, 196–205 (2022). https://doi.org/10.1039/D1EE02205A
P. Shi, L.P. Hou, C.B. Jin, Y. Xiao, Y.X. Yao et al., A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes. J. Am. Chem. Soc. 144(1), 212–218 (2022). https://doi.org/10.1021/jacs.1c08606
W. Mei, L. Jiang, C. Liang, J. Sun, Q. Wang, Understanding of Li-plating on graphite electrode: detection, quantification and mechanism revelation. Energy Storage Mater. 41, 209–221 (2021). https://doi.org/10.1016/j.ensm.2021.06.013
W. Cai, C. Yan, Y.X. Yao, L. Xu, X.R. Chen et al., The boundary of lithium plating in graphite electrode for safe lithium-ion batteries. Angew. Chem. Int. Ed. 60(23), 13007–13012 (2021). https://doi.org/10.1002/anie.202102593
C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang et al., Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019). https://doi.org/10.1038/s41586-019-1481-z
Y. Yuan, F. Wu, Y. Bai, Y. Li, G. Chen et al., Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Mater. 16, 411–418 (2019). https://doi.org/10.1016/j.ensm.2018.06.022
J. Xiao, P. Zhai, Y. Wei, X. Zhang, W. Yang et al., In-situ formed protecting layer from organic/inorganic concrete for dendrite-free lithium metal anodes. Nano Lett. 20, 3911–3917 (2020). https://doi.org/10.1021/acs.nanolett.0c01085
J. Luo, C.C. Fang, N.L. Wu, High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 8(2), 1701482 (2018). https://doi.org/10.1002/aenm.201701482
G.M. Hobold, J. Lopez, R. Guo, N. Minafra, A. Banerjee et al., Moving beyond 99.9% coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021). https://doi.org/10.1038/s41560-021-00910-w
F. Wang, B. Wang, J. Li, B. Wang, Y. Zhou et al., Prelithiation: a crucial strategy for boosting the practical application of next-generation lithium ion battery. ACS Nano 15(2), 2197–2218 (2021). https://doi.org/10.1021/acsnano.0c10664
L. Lin, K. Qin, Q. Zhang, L. Gu, L. Suo et al., Li-rich Li2[Ni0.8Co0.1Mn0.1]O2 for anode-free lithium metal batteries. Angew. Chem. Int. Ed. 60(15), 8289–8296 (2021). https://doi.org/10.1002/anie.202017063
Y. Shen, J. Qian, H. Yang, F. Zhong, X. Ai, Chemically prelithiated hard-carbon anode for high power and high capacity Li-ion batteries. Small 16(7), 1907602 (2020). https://doi.org/10.1002/smll.201907602
Y. Shen, J. Zhang, Y. Pu, H. Wang, B. Wang et al., Effective chemical prelithiation strategy for building a silicon/sulfur Li-ion battery. ACS Energy Lett. 4(7), 1717–1724 (2019). https://doi.org/10.1021/acsenergylett.9b00889
M. Liu, J. Zhang, S. Guo, B. Wang, Y. Shen et al., Chemically presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries. ACS Appl. Mater. Interfaces 12(15), 17620–17627 (2020). https://doi.org/10.1021/acsami.0c02230
S.W. Park, H.J. Choi, Y. Yoo, H.D. Lim, J.W. Park et al., Stable cycling of all-solid-state batteries with sacrificial cathode and lithium-free indium layer. Adv. Funct. Mater. 32(5), 2108203 (2022). https://doi.org/10.1002/adfm.202108203
Y. Qiao, H. Yang, Z. Chang, H. Deng, X. Li et al., A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 6, 653–662 (2021). https://doi.org/10.1038/s41560-021-00839-0
S. Solchenbach, M. Wetjen, D. Pritzl, K.U. Schwenke, H.A. Gasteiger, Lithium oxalate as capacity and cycle-life enhancer in LNMO/graphite and LNMO/SiG full cells. J. Electrochem. Soc. 165, A512–A524 (2018). https://doi.org/10.1149/2.0611803jes
T. Osaka, T. Momma, Y. Matsumoto, Y. Uchida, Surface characterization of electrodeposited lithium anode with enhanced cycleability obtained by CO2 addition. J. Electrochem. Soc. 144, 1709–1713 (1997). https://doi.org/10.1149/1.1837665