Novel Insights into Energy Storage Mechanism of Aqueous Rechargeable Zn/MnO2 Batteries with Participation of Mn2+
Corresponding Author: Chengjun Xu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 49
Abstract
Aqueous rechargeable Zn/MnO2 zinc-ion batteries (ZIBs) are reviving recently due to their low cost, non-toxicity, and natural abundance. However, their energy storage mechanism remains controversial due to their complicated electrochemical reactions. Meanwhile, to achieve satisfactory cyclic stability and rate performance of the Zn/MnO2 ZIBs, Mn2+ is introduced in the electrolyte (e.g., ZnSO4 solution), which leads to more complicated reactions inside the ZIBs systems. Herein, based on comprehensive analysis methods including electrochemical analysis and Pourbaix diagram, we provide novel insights into the energy storage mechanism of Zn/MnO2 batteries in the presence of Mn2+. A complex series of electrochemical reactions with the co-participation of Zn2+, H+, Mn2+, SO42−, and OH− were revealed. During the first discharge process, co-insertion of Zn2+ and H+ promotes the transformation of MnO2 into ZnxMnO4, MnOOH, and Mn2O3, accompanying with increased electrolyte pH and the formation of ZnSO4·3Zn(OH)2·5H2O. During the subsequent charge process, ZnxMnO4, MnOOH, and Mn2O3 revert to α-MnO2 with the extraction of Zn2+ and H+, while ZnSO4·3Zn(OH)2·5H2O reacts with Mn2+ to form ZnMn3O7·3H2O. In the following charge/discharge processes, besides aforementioned electrochemical reactions, Zn2+ reversibly insert into/extract from α-MnO2, ZnxMnO4, and ZnMn3O7·3H2O hosts; ZnSO4·3Zn(OH)2·5H2O, Zn2Mn3O8, and ZnMn2O4 convert mutually with the participation of Mn2+. This work is believed to provide theoretical guidance for further research on high-performance ZIBs.
Highlights:
1 Pourbaix diagram of Mn–Zn–H2O system was used to analyze the charge–discharge processes of Zn/MnO2 batteries.
2 Electrochemical reactions with the participation of various ions inside Zn/MnO2 batteries were revealed.
3 A detailed explanation of phase evolution inside Zn/MnO2 batteries was provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.-H. Kim, J.-S. Park, S.K. Chang, S. Choi, J.H. Ryu, H.-K. Song, The current move of lithium-ion batteries towards the next phase. Adv. Energy Mater. 2, 860–872 (2012). https://doi.org/10.1002/aenm.201200028
- B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741
- H. Sun, J.-G. Wang, Y. Zhang, W. Hua, Y. Li, H. Liu, Ultrafast lithium energy storage enabled by interfacial construction of interlayer-expanded MoS2/N-doped carbon nanowires. J. Mater. Chem. A 6, 13419–13427 (2018). https://doi.org/10.1039/C8TA04852E
- J.-G. Wang, H. Liu, R. Zhou, X. Liu, B. Wei, Onion-like nanospheres organized by carbon encapsulated few-layer MoS2 nanosheets with enhanced lithium storage performance. J. Power Sources 413, 327–333 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.055
- C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, F. Weill, Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 7, 665–671 (2008). https://doi.org/10.1038/nmat2230
- N. Alias, A.A. Mohamad, Advances of aqueous rechargeable lithium-ion battery: a review. J. Power Sources 274, 237–251 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.009
- J.O.G. Posada, A.J.R. Rennie, S.P. Villar, V.L. Martins, J. Marinaccio et al., Aqueous batteries as grid-scale energy storage solutions. Renew. Sustain. Energy Rev. 68, 1174–1182 (2017). https://doi.org/10.1016/j.rser.2016.02.024
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012). https://doi.org/10.1002/anie.201106307
- L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015). https://doi.org/10.1002/aenm.201400930
- R. Trocoli, F. La Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. Chemsuschem 8, 481–485 (2015). https://doi.org/10.1002/cssc.201403143
- Z. Liu, G. Pulletikurthi, F. Endres, A prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte. ACS Appl. Mater. Interfaces 8, 12158–12164 (2016). https://doi.org/10.1021/acsami.6b01592
- Y. Wu, Y. Yang, X. Zhao, Y. Tan, Y. Liu, Z. Wang, F. Ran, A novel hierarchical porous 3D structured vanadium nitride/carbon membranes for high-performance supercapacitor negative electrodes. Nano-Micro Lett. 10, 63 (2018). https://doi.org/10.1007/s40820-018-0217-1
- Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11, 3157–3162 (2018). https://doi.org/10.1039/C8EE01651H
- J.H. Jo, Y.-K. Sun, S.-T. Myung, Hollandite-type al-doped VO1.52(OH)0.77 as a zinc ion insertion host material. J. Mater. Chem. A 5, 8367–8375 (2017). https://doi.org/10.1039/C7TA01765K
- X. Guo, G. Fang, W. Zhang, J. Zhou, L. Shan et al., Mechanistic insights of Zn2+ storage in sodium vanadates. Adv. Energy Mater. 18, 1801819 (2018). https://doi.org/10.1002/aenm.201801819
- D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- C.W. Mason, F. Lange, Aqueous ion battery systems using sodium vanadium phosphate stabilized by titanium substitution. ECS Electrochem. Lett. 4, A79–A82 (2015). https://doi.org/10.1149/2.0011508eel
- H.B. Zhao, C.J. Hu, H.W. Cheng, J.H. Fang, Y.P. Xie et al., Novel rechargeable M3V2(PO4)3//zinc (M = Li, Na) hybrid aqueous batteries with excellent cycling performance. Sci. Rep. 6, 25809 (2016). https://doi.org/10.1038/srep25809
- B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei, C. Wang, T. Lin, Y. Tang, S. Liang, Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51, 579–587 (2018). https://doi.org/10.1016/j.nanoen.2018.07.014
- B. Zhang, Y. Liu, X. Wu, Y. Yang, Z. Chang, Z. Wen, Y. Wu, An aqueous rechargeable battery based on zinc anode and Na0.95MnO2. Chem. Commun. 50, 1209–1211 (2014). https://doi.org/10.1039/C3CC48382G
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
- G. Yuan, J. Bai, T.N.L. Doan, P. Chen, Synthesis and electrochemical investigation of nanosized LiMn2O4 as cathode material for rechargeable hybrid aqueous batteries. Mater. Lett. 137, 311–314 (2014). https://doi.org/10.1016/j.matlet.2014.09.019
- J. Zhao, Y. Li, X. Peng, S. Dong, J. Ma, G. Cui, L. Chen, High-voltage Zn/LiMn0.8Fe0.2PO4 aqueous rechargeable battery by virtue of “water-in-salt” electrolyte. Electrochem. Commun. 69, 6–10 (2016). https://doi.org/10.1016/j.elecom.2016.05.014
- G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang, X. Cao, X. Zheng, A. Pan, S. Liang, Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 29, 1808375 (2019). https://doi.org/10.1002/adfm.201808375
- J. Lee, J.B. Ju, W.I. Cho, B.W. Cho, S.H. Oh, Todorokite-type MnO2 as a Zinc-ion intercalating material. Electrochim. Acta 112, 138–143 (2013). https://doi.org/10.1016/j.electacta.2013.08.136
- T. Yamamoto, T. Shoji, Rechargeable Zn–ZnSO4–MnO2-type cells. Inorg. Chim. Acta 117, L27–L28 (1986). https://doi.org/10.1016/S0020-1693(00)82175-1
- M.H. Alfaruqi, S. Islam, J. Gim, J. Song, S. Kim et al., A high surface area tunnel-type α- MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries. Chem. Phys. Lett. 650, 64–68 (2016). https://doi.org/10.1016/j.cplett.2016.02.067
- M.H. Alfaruqi, J. Gim, S. Kim, J. Song, D.T. Pham, J. Jo, Z. Xiu, V. Mathew, J. Kim, A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 60, 121–125 (2015). https://doi.org/10.1016/j.elecom.2015.08.019
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7, 601920 (2017). https://doi.org/10.1002/aenm.201601920
- Y. Cheng, L. Luo, L. Zhong, J. Chen, B. Li et al., Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries. ACS Appl. Mater. Interfaces 8, 13673–13677 (2016). https://doi.org/10.1021/acsami.6b03197
- M.H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J.P. Baboo, S.H. Choi, J. Kim, Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 26, 3609–3620 (2015). https://doi.org/10.1021/cm504717p
- B. Lee, H.R. Lee, H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, Elucidating the intercalation mechanism of zinc ions into alpha-MnO2 for rechargeable zinc batteries. Chem. Commun. 51, 9265–9268 (2015). https://doi.org/10.1039/C5CC02585K
- B. Lee, H.R. Seo, H.R. Lee, C.S. Yoon, J.H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. Chemsuschem 9, 2948–2956 (2016). https://doi.org/10.1002/cssc.201600702
- B. Lee, C.S. Yoon, H.R. Lee, K.Y. Chung, B.W. Cho, S.H. Oh, Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci. Rep. 4, 6066 (2014). https://doi.org/10.1038/srep06066
- M.H. Alfaruqi, J. Gim, S. Kim, J. Song, J. Jo, S. Kim, V. Mathew, J. Kim, Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J. Power Sources 288, 320–327 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.140
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139, 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
- G.G. Yadav, J.W. Gallaway, D.E. Turney, M. Nyce, J. Huang, X. Wei, S. Banerjee, Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nat. Commun. 8, 14424 (2017). https://doi.org/10.1038/ncomms14424
- N. Jabeen, A. Hussain, Q. Xia, S. Sun, J. Zhu, H. Xia, High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 29, 1700804 (2017). https://doi.org/10.1002/adma.201700804
- A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.-K. Sun, S.-T. Myung, Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3, 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu, F. Kang, Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 259, 170–178 (2018). https://doi.org/10.1016/j.electacta.2017.10.166
- D. Grujicic, B. Pesic, Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon. Electrochim. Acta 50, 4426–4443 (2005). https://doi.org/10.1016/j.electacta.2005.02.012
- A. Anderko, S.J. Sanders, R.D. Young, Real-solution stability diagrams: a thermodynamic tool for modeling corrosion in wide temperature and concentration ranges. Corrosion 53, 43–53 (1997). https://doi.org/10.5006/1.3280432
- A.G. Tyurin, A role of manganese in the corrosion and electrochemical behavior of stainless steels. Prot. Met. 41, 68–75 (2005). https://doi.org/10.1007/s11124-005-0010-7
- X. Zhou, C. Wei, M. Li, S. Qiu, X. Li, Thermodynamics of vanadium–sulfur–water systems at 298 K. Hydrometallurgy 106, 104–112 (2011). https://doi.org/10.1016/j.hydromet.2010.12.003
- M. Chamoun, W.R. Brant, C.-W. Tai, G. Karlsson, D. Noréus, Rechargeability of aqueous sulfate Zn/MnO-2 batteries enhanced by accessible Mn2+ ions. Energy Storage Mater. 15, 351–360 (2018). https://doi.org/10.1016/j.ensm.2018.06.019
- K.J. Vetter, A general thermodynamic theory of the potential of passive electrodes and its influence on passive corrosion. J. Electrochem. Soc. 110, 597–605 (1963). https://doi.org/10.1149/1.2425837
References
T.-H. Kim, J.-S. Park, S.K. Chang, S. Choi, J.H. Ryu, H.-K. Song, The current move of lithium-ion batteries towards the next phase. Adv. Energy Mater. 2, 860–872 (2012). https://doi.org/10.1002/aenm.201200028
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741
H. Sun, J.-G. Wang, Y. Zhang, W. Hua, Y. Li, H. Liu, Ultrafast lithium energy storage enabled by interfacial construction of interlayer-expanded MoS2/N-doped carbon nanowires. J. Mater. Chem. A 6, 13419–13427 (2018). https://doi.org/10.1039/C8TA04852E
J.-G. Wang, H. Liu, R. Zhou, X. Liu, B. Wei, Onion-like nanospheres organized by carbon encapsulated few-layer MoS2 nanosheets with enhanced lithium storage performance. J. Power Sources 413, 327–333 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.055
C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, F. Weill, Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 7, 665–671 (2008). https://doi.org/10.1038/nmat2230
N. Alias, A.A. Mohamad, Advances of aqueous rechargeable lithium-ion battery: a review. J. Power Sources 274, 237–251 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.009
J.O.G. Posada, A.J.R. Rennie, S.P. Villar, V.L. Martins, J. Marinaccio et al., Aqueous batteries as grid-scale energy storage solutions. Renew. Sustain. Energy Rev. 68, 1174–1182 (2017). https://doi.org/10.1016/j.rser.2016.02.024
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012). https://doi.org/10.1002/anie.201106307
L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015). https://doi.org/10.1002/aenm.201400930
R. Trocoli, F. La Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. Chemsuschem 8, 481–485 (2015). https://doi.org/10.1002/cssc.201403143
Z. Liu, G. Pulletikurthi, F. Endres, A prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte. ACS Appl. Mater. Interfaces 8, 12158–12164 (2016). https://doi.org/10.1021/acsami.6b01592
Y. Wu, Y. Yang, X. Zhao, Y. Tan, Y. Liu, Z. Wang, F. Ran, A novel hierarchical porous 3D structured vanadium nitride/carbon membranes for high-performance supercapacitor negative electrodes. Nano-Micro Lett. 10, 63 (2018). https://doi.org/10.1007/s40820-018-0217-1
Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11, 3157–3162 (2018). https://doi.org/10.1039/C8EE01651H
J.H. Jo, Y.-K. Sun, S.-T. Myung, Hollandite-type al-doped VO1.52(OH)0.77 as a zinc ion insertion host material. J. Mater. Chem. A 5, 8367–8375 (2017). https://doi.org/10.1039/C7TA01765K
X. Guo, G. Fang, W. Zhang, J. Zhou, L. Shan et al., Mechanistic insights of Zn2+ storage in sodium vanadates. Adv. Energy Mater. 18, 1801819 (2018). https://doi.org/10.1002/aenm.201801819
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
C.W. Mason, F. Lange, Aqueous ion battery systems using sodium vanadium phosphate stabilized by titanium substitution. ECS Electrochem. Lett. 4, A79–A82 (2015). https://doi.org/10.1149/2.0011508eel
H.B. Zhao, C.J. Hu, H.W. Cheng, J.H. Fang, Y.P. Xie et al., Novel rechargeable M3V2(PO4)3//zinc (M = Li, Na) hybrid aqueous batteries with excellent cycling performance. Sci. Rep. 6, 25809 (2016). https://doi.org/10.1038/srep25809
B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei, C. Wang, T. Lin, Y. Tang, S. Liang, Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51, 579–587 (2018). https://doi.org/10.1016/j.nanoen.2018.07.014
B. Zhang, Y. Liu, X. Wu, Y. Yang, Z. Chang, Z. Wen, Y. Wu, An aqueous rechargeable battery based on zinc anode and Na0.95MnO2. Chem. Commun. 50, 1209–1211 (2014). https://doi.org/10.1039/C3CC48382G
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
G. Yuan, J. Bai, T.N.L. Doan, P. Chen, Synthesis and electrochemical investigation of nanosized LiMn2O4 as cathode material for rechargeable hybrid aqueous batteries. Mater. Lett. 137, 311–314 (2014). https://doi.org/10.1016/j.matlet.2014.09.019
J. Zhao, Y. Li, X. Peng, S. Dong, J. Ma, G. Cui, L. Chen, High-voltage Zn/LiMn0.8Fe0.2PO4 aqueous rechargeable battery by virtue of “water-in-salt” electrolyte. Electrochem. Commun. 69, 6–10 (2016). https://doi.org/10.1016/j.elecom.2016.05.014
G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang, X. Cao, X. Zheng, A. Pan, S. Liang, Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 29, 1808375 (2019). https://doi.org/10.1002/adfm.201808375
J. Lee, J.B. Ju, W.I. Cho, B.W. Cho, S.H. Oh, Todorokite-type MnO2 as a Zinc-ion intercalating material. Electrochim. Acta 112, 138–143 (2013). https://doi.org/10.1016/j.electacta.2013.08.136
T. Yamamoto, T. Shoji, Rechargeable Zn–ZnSO4–MnO2-type cells. Inorg. Chim. Acta 117, L27–L28 (1986). https://doi.org/10.1016/S0020-1693(00)82175-1
M.H. Alfaruqi, S. Islam, J. Gim, J. Song, S. Kim et al., A high surface area tunnel-type α- MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries. Chem. Phys. Lett. 650, 64–68 (2016). https://doi.org/10.1016/j.cplett.2016.02.067
M.H. Alfaruqi, J. Gim, S. Kim, J. Song, D.T. Pham, J. Jo, Z. Xiu, V. Mathew, J. Kim, A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 60, 121–125 (2015). https://doi.org/10.1016/j.elecom.2015.08.019
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7, 601920 (2017). https://doi.org/10.1002/aenm.201601920
Y. Cheng, L. Luo, L. Zhong, J. Chen, B. Li et al., Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries. ACS Appl. Mater. Interfaces 8, 13673–13677 (2016). https://doi.org/10.1021/acsami.6b03197
M.H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J.P. Baboo, S.H. Choi, J. Kim, Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 26, 3609–3620 (2015). https://doi.org/10.1021/cm504717p
B. Lee, H.R. Lee, H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, Elucidating the intercalation mechanism of zinc ions into alpha-MnO2 for rechargeable zinc batteries. Chem. Commun. 51, 9265–9268 (2015). https://doi.org/10.1039/C5CC02585K
B. Lee, H.R. Seo, H.R. Lee, C.S. Yoon, J.H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. Chemsuschem 9, 2948–2956 (2016). https://doi.org/10.1002/cssc.201600702
B. Lee, C.S. Yoon, H.R. Lee, K.Y. Chung, B.W. Cho, S.H. Oh, Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci. Rep. 4, 6066 (2014). https://doi.org/10.1038/srep06066
M.H. Alfaruqi, J. Gim, S. Kim, J. Song, J. Jo, S. Kim, V. Mathew, J. Kim, Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J. Power Sources 288, 320–327 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.140
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139, 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
G.G. Yadav, J.W. Gallaway, D.E. Turney, M. Nyce, J. Huang, X. Wei, S. Banerjee, Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nat. Commun. 8, 14424 (2017). https://doi.org/10.1038/ncomms14424
N. Jabeen, A. Hussain, Q. Xia, S. Sun, J. Zhu, H. Xia, High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 29, 1700804 (2017). https://doi.org/10.1002/adma.201700804
A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.-K. Sun, S.-T. Myung, Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3, 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564
J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu, F. Kang, Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 259, 170–178 (2018). https://doi.org/10.1016/j.electacta.2017.10.166
D. Grujicic, B. Pesic, Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon. Electrochim. Acta 50, 4426–4443 (2005). https://doi.org/10.1016/j.electacta.2005.02.012
A. Anderko, S.J. Sanders, R.D. Young, Real-solution stability diagrams: a thermodynamic tool for modeling corrosion in wide temperature and concentration ranges. Corrosion 53, 43–53 (1997). https://doi.org/10.5006/1.3280432
A.G. Tyurin, A role of manganese in the corrosion and electrochemical behavior of stainless steels. Prot. Met. 41, 68–75 (2005). https://doi.org/10.1007/s11124-005-0010-7
X. Zhou, C. Wei, M. Li, S. Qiu, X. Li, Thermodynamics of vanadium–sulfur–water systems at 298 K. Hydrometallurgy 106, 104–112 (2011). https://doi.org/10.1016/j.hydromet.2010.12.003
M. Chamoun, W.R. Brant, C.-W. Tai, G. Karlsson, D. Noréus, Rechargeability of aqueous sulfate Zn/MnO-2 batteries enhanced by accessible Mn2+ ions. Energy Storage Mater. 15, 351–360 (2018). https://doi.org/10.1016/j.ensm.2018.06.019
K.J. Vetter, A general thermodynamic theory of the potential of passive electrodes and its influence on passive corrosion. J. Electrochem. Soc. 110, 597–605 (1963). https://doi.org/10.1149/1.2425837