Twisted Integration of Complex Oxide Magnetoelectric Heterostructures via Water-Etching and Transfer Process
Corresponding Author: Zhongqiang Hu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 19
Abstract
Manipulating strain mode and degree that can be applied to epitaxial complex oxide thin films have been a cornerstone of strain engineering. In recent years, lift-off and transfer technology of the epitaxial oxide thin films have been developed that enabled the integration of heterostructures without the limitation of material types and crystal orientations. Moreover, twisted integration would provide a more interesting strategy in artificial magnetoelectric heterostructures. A specific twist angle between the ferroelectric and ferromagnetic oxide layers corresponds to the distinct strain regulation modes in the magnetoelectric coupling process, which could provide some insight in to the physical phenomena. In this work, the La0.67Sr0.33MnO3 (001)/0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 (011) (LSMO/PMN-PT) heterostructures with 45º and 0º twist angles were assembled via water-etching and transfer process. The transferred LSMO films exhibit a fourfold magnetic anisotropy with easy axis along LSMO < 110 >. A coexistence of uniaxial and fourfold magnetic anisotropy with LSMO [110] easy axis is observed for the 45° Sample by applying a 7.2 kV cm−1 electrical field, significantly different from a uniaxial anisotropy with LSMO [100] easy axis for the 0° Sample. The fitting of the ferromagnetic resonance field reveals that the strain coupling generated by the 45° twist angle causes different lattice distortion of LSMO, thereby enhancing both the fourfold and uniaxial anisotropy. This work confirms the twisting degrees of freedom for magnetoelectric coupling and opens opportunities for fabricating artificial magnetoelectric heterostructures.
Highlights:
1 The (001)-oriented ferromagnetic La0.67Sr0.33MnO3 films are stuck onto the (011)-oriented ferroelectric single-crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 substrate with 0° and 45° twist angle.
2 By applying a 7.2 kV cm−1 electric field, the coexistence of uniaxial and fourfold in-plane magnetic anisotropy is observed in 45° Sample, while a typical uniaxial anisotropy is found in 0° Sample.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa et al., Emergent phenomena at oxide interfaces. Nat. Mater. 11(2), 103–113 (2012). https://doi.org/10.1038/nmat3223
- Y. Tokura, N. Nagaosa, Orbital physics in transition-metal oxides. Science 288(5465), 462–468 (2000). https://doi.org/10.1126/science.288.5465.462
- M.C. Weber, M. Guennou, N. Dix, D. Pesquera, F. Sanchez et al., Multiple strain-induced phase transitions in LaNiO3 thin films. Phys. Rev. B 94(1), 014118 (2016). https://doi.org/10.1103/PhysRevB.94.014118
- K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert et al., Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306(5698), 1005–1009 (2004). https://doi.org/10.1126/science.1103218
- Y. Konishi, Z. Fang, M. Izumi, T. Manako, M. Kasai et al., Orbital-state-mediated phase-control of manganites. J. Phys. Soc. Japan 68(12), 3790–3793 (1999). https://doi.org/10.1143/jpsj.68.3790
- N.B. Aetukuri, A.X. Gray, M. Drouard, M. Cossale, L. Gao et al., Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy. Nat. Phys. 9(10), 661–666 (2013). https://doi.org/10.1038/nphys2733
- T. Mayeshiba, D. Morgan, Strain effects on oxygen vacancy formation energy in perovskites. Solid State Ion. 311(15), 105–117 (2017). https://doi.org/10.1016/j.ssi.2017.09.021
- J.H. Park, J.H. Lee, M.G. Kim, Y.K. Jeong, M.A. Oak et al., In-plane strain control of the magnetic remanence and cation-charge redistribution in CoFe2O4 thin film grown on a piezoelectric substrate. Phys. Rev. B 81(13), 134401 (2010). https://doi.org/10.1103/PhysRevB.81.134401
- W.P. Zhou, Q. Li, Y.Q. Xiong, Q.M. Zhang, D.H. Wang et al., Electric field manipulation of magnetic and transport properties in SrRuO3/Pb(Mg1/3Nb2/3)O-3-PbTiO3 heterostructure. Sci. Rep. 4, 6691 (2014). https://doi.org/10.1038/srep06991
- W. Eerenstein, M. Wiora, J.L. Prieto, J.F. Scott, N.D. Mathur, Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6(5), 348–351 (2007). https://doi.org/10.1038/nmat1886
- C. Thiele, K. Dorr, O. Bilani, J. Rodel, L. Schultz, Influence of strain on the magnetization and magnetoelectric effect in La(0.7)a(0.3)MnO(3)/PMN-Pt(001) (a=Sr, Ca). Phys. Rev. B 75(5), 054408 (2007). https://doi.org/10.1103/PhysRevB.75.054408
- H. Xu, M. Feng, M. Liu, X.D. Sun, L. Wang et al., Strain-mediated converse magnetoelectric coupling in La0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)O-3-PbTiO3 multiferroic heterostructures. Cryst. Growth Des. 18(10), 5934–5939 (2018). https://doi.org/10.1021/acs.cgd.8b00702
- O. Bilani-Zeneli, A.D. Rata, A. Herklotz, O. Mieth, L.M. Eng et al., SrTiO3 on piezoelectric PMN-PT(001) for application of variable strain. J. Appl. Phys. 104(5), 054108 (2008). https://doi.org/10.1063/1.2975167
- S.R. Bakaul, C.R. Serrao, M. Lee, C.W. Yeung, A. Sarke et al., Single crystal functional oxides on silicon. Nat. Commun. 7, 10547 (2016). https://doi.org/10.1038/ncomms10547
- D.M. Paskiewicz, R. Sichel-Tissot, E. Karapetrova, L. Stan, D.D. Fong, Single-crystalline SrRuO3 nanomembranes: A platform for flexible oxide electronics. Nano Lett. 16(1), 534–542 (2016). https://doi.org/10.1021/acs.nanolett.5b04176
- Y. Zhang, L. Shen, M. Liu, X. Li, X. Lu et al., Flexible quasi-two-dimensional CoFe2O4 epitaxial thin films for continuous strain tuning of magnetic properties. ACS Nano 11(8), 8002–8009 (2017). https://doi.org/10.1021/acsnano.7b02637
- H.N. Peng, N.P. Lu, S.Z. Yang, Y.J. Lyu, Z.W. Liu et al., A generic sacrificial layer for wide-range freestanding oxides with modulated magnetic anisotropy. Adv. Funct. Mater. 32(28), 2111907 (2022). https://doi.org/10.1002/adfm.202111907
- H.S. Kum, H. Lee, S. Kim, S. Lindemann, W. Kong et al., Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578(7793), 75–81 (2020). https://doi.org/10.1038/s41586-020-1939-z
- D. Lu, D.J. Baek, S.S. Hong, L.F. Kourkoutis, Y. Hikita et al., Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15(12), 1255–1260 (2016). https://doi.org/10.1038/nmat4749
- D. Ji, S. Cai, T.R. Paudel, H. Sun, C. Zhang et al., Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570(7759), 87–90 (2019). https://doi.org/10.1038/s41586-019-1255-7
- D. Pesquera, E. Khestanova, M. Ghidini, S. Zhang, A.P. Rooney et al., Large magnetoelectric coupling in multiferroic oxide heterostructures assembled via epitaxial lift-off. Nat. Commun. 11, 3190 (2020). https://doi.org/10.1038/s41467-020-16942-x
- Y. Li, C. Xiang, F.M. Chiabrera, S. Yun, H. Zhang et al., Stacking and twisting of freestanding complex oxide thin films. Adv. Mater. 34(38), 2203187 (2022). https://doi.org/10.1002/adma.202203187
- H.Y. Sun, J.R. Wang, Y.S. Wang, C.Q. Guo, J.H. Gu, W. Mao, J.F. Yang, Y.W. Liu, T.T. Zhang, T.Y. Gao, H.Y. Fu, T.J. Zhang, Y.F. Hao, Z.B. Gu, P. Wang, H.B. Huang, Y.F. Nie, Nonvolatile ferroelectric domain wall memory integrated on silicon. Nat. Commun. 13, 4332 (2022). https://doi.org/10.1038/s41467-022-31763-w
- Y. Liu, Y. Huang, X. Duan, Van der Waals integration before and beyond two-dimensional materials. Nature 567(7748), 323–333 (2019). https://doi.org/10.1038/s41586-019-1013-x
- J. Shen, Z. Dong, M. Qi, Y. Zhang, C. Zhu et al., Observation of moire patterns in twisted stacks of bilayer perovskite oxide nanomembranes with various lattice symmetries. ACS Appl. Mater. Interfaces 14(44), 50386–50392 (2022). https://doi.org/10.1021/acsami.2c14746
- S. Chen, Q. Zhang, D. Rong, Y. Xu, J. Zhang et al., Braiding lateral morphotropic grain boundaries in homogenetic oxides. Adv. Mater. 35(2), 2206961 (2022). https://doi.org/10.1002/adma.202206961
- M. Liu, B.M. Howe, L. Grazulis, K. Mahalingam, T. Nan et al., Voltage-impulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv. Mater. 25(35), 4886–4892 (2013). https://doi.org/10.1002/adma.201301989
- M. Shanthi, L.C. Lim, Combined electric field and stress-induced r-o phase transformation in [011]-poled Pb(Mg1/3Nb2/3)O3–(28–32)%PbTiO3 single crystals of [01-1]-length cut. Appl. Phys. Lett. 95(10), 10290 (2009). https://doi.org/10.1063/1.3222870
- W.H. Liang, F.X. Hu, J. Zhang, H. Kuang, J. Li et al., Anisotropic nonvolatile magnetization controlled by electric field in amorphous SmCo thin films grown on (011)-cut PMN-PT substrates. Nanoscale 11(1), 246–257 (2019). https://doi.org/10.1039/c8nr06449k
- W.H. Liang, H.B. Zhou, K.M. Qiao, F.X. Hu, J. Zhang et al., Multilevel nonvolatile regulation of magnetism by electric field in amorphous hard magnetic SmCo/PMN-PT(011) heterostructure. Appl. Phys. Lett. 117(20), 202403 (2020). https://doi.org/10.1063/5.0024587
- Y. Ba, Y. Liu, P.S. Li, L. Wu, J. Unguris et al., Spatially resolved electric-field manipulation of magnetism for CoFeB mesoscopic discs on ferroelectrics. Adv. Funct. Mater. 28(11), 1706448 (2018). https://doi.org/10.1002/adfm.201706448
- S. Zhang, Y.G. Zhao, P.S. Li, J.J. Yang, S. Rizwan et al., Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)(0.7)Ti0.3O3 structure at room temperature. Phys. Rev. Lett. 108(13), 137203 (2012). https://doi.org/10.1103/PhysRevLett.108.137203
- M. Liu, O. Obi, J. Lou, Y.J. Chen, Z.H. Cai et al., Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv. Funct. Mater. 19(11), 1826–1831 (2009). https://doi.org/10.1002/adfm.200801907
- M. Liu, O. Obi, Z.H. Cai, J. Lou, G.M. Yang et al., Electrical tuning of magnetism in Fe3O4/PZN-PT multiferroic heterostructures derived by reactive magnetron sputtering. J. Appl. Phys. 107(7), 073916 (2010). https://doi.org/10.1063/1.3354104
- G. Panchal, D.M. Phase, V.R. Reddy, R.J. Choudhary, Strain-induced elastically controlled magnetic anisotropy switching in epitaxial La0.7Sr0.3MnO3 thin films on BaTiO3 (001). Phys. Rev. B 98(4), 045417 (2018). https://doi.org/10.1103/PhysRevB.98.045417
- P. Ghising, B. Samantaray, Z. Hossain, Spin inhomogeneities at the interface and inverted hysteresis loop in La0.7Sr0.3MnO3/SrTiO3. Phys. Rev. B 101(2), 024408 (2020). https://doi.org/10.1103/PhysRevB.101.024408
- N.A. Pertsev, Giant magnetoelectric effect via strain-induced spin reorientation transitions in ferromagnetic films. Phys. Rev. B 78(21), 212102 (2008). https://doi.org/10.1103/PhysRevB.78.212102
- N.A. Pertsev, Converse magnetoelectric effect via strain-driven magnetization reorientations in ultrathin ferromagnetic films on ferroelectric substrates. Phys. Rev. B 92(1), 014416 (2015). https://doi.org/10.1103/PhysRevB.92.014416
- N.A. Pertsev, H. Kohlstedt, R. Knochel, Ferromagnetic resonance in epitaxial films: Effects of lattice strains and voltage control via ferroelectric substrate. Phys. Rev. B 84(1), 014423 (2011). https://doi.org/10.1103/PhysRevB.84.014423
References
H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa et al., Emergent phenomena at oxide interfaces. Nat. Mater. 11(2), 103–113 (2012). https://doi.org/10.1038/nmat3223
Y. Tokura, N. Nagaosa, Orbital physics in transition-metal oxides. Science 288(5465), 462–468 (2000). https://doi.org/10.1126/science.288.5465.462
M.C. Weber, M. Guennou, N. Dix, D. Pesquera, F. Sanchez et al., Multiple strain-induced phase transitions in LaNiO3 thin films. Phys. Rev. B 94(1), 014118 (2016). https://doi.org/10.1103/PhysRevB.94.014118
K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert et al., Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306(5698), 1005–1009 (2004). https://doi.org/10.1126/science.1103218
Y. Konishi, Z. Fang, M. Izumi, T. Manako, M. Kasai et al., Orbital-state-mediated phase-control of manganites. J. Phys. Soc. Japan 68(12), 3790–3793 (1999). https://doi.org/10.1143/jpsj.68.3790
N.B. Aetukuri, A.X. Gray, M. Drouard, M. Cossale, L. Gao et al., Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy. Nat. Phys. 9(10), 661–666 (2013). https://doi.org/10.1038/nphys2733
T. Mayeshiba, D. Morgan, Strain effects on oxygen vacancy formation energy in perovskites. Solid State Ion. 311(15), 105–117 (2017). https://doi.org/10.1016/j.ssi.2017.09.021
J.H. Park, J.H. Lee, M.G. Kim, Y.K. Jeong, M.A. Oak et al., In-plane strain control of the magnetic remanence and cation-charge redistribution in CoFe2O4 thin film grown on a piezoelectric substrate. Phys. Rev. B 81(13), 134401 (2010). https://doi.org/10.1103/PhysRevB.81.134401
W.P. Zhou, Q. Li, Y.Q. Xiong, Q.M. Zhang, D.H. Wang et al., Electric field manipulation of magnetic and transport properties in SrRuO3/Pb(Mg1/3Nb2/3)O-3-PbTiO3 heterostructure. Sci. Rep. 4, 6691 (2014). https://doi.org/10.1038/srep06991
W. Eerenstein, M. Wiora, J.L. Prieto, J.F. Scott, N.D. Mathur, Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6(5), 348–351 (2007). https://doi.org/10.1038/nmat1886
C. Thiele, K. Dorr, O. Bilani, J. Rodel, L. Schultz, Influence of strain on the magnetization and magnetoelectric effect in La(0.7)a(0.3)MnO(3)/PMN-Pt(001) (a=Sr, Ca). Phys. Rev. B 75(5), 054408 (2007). https://doi.org/10.1103/PhysRevB.75.054408
H. Xu, M. Feng, M. Liu, X.D. Sun, L. Wang et al., Strain-mediated converse magnetoelectric coupling in La0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)O-3-PbTiO3 multiferroic heterostructures. Cryst. Growth Des. 18(10), 5934–5939 (2018). https://doi.org/10.1021/acs.cgd.8b00702
O. Bilani-Zeneli, A.D. Rata, A. Herklotz, O. Mieth, L.M. Eng et al., SrTiO3 on piezoelectric PMN-PT(001) for application of variable strain. J. Appl. Phys. 104(5), 054108 (2008). https://doi.org/10.1063/1.2975167
S.R. Bakaul, C.R. Serrao, M. Lee, C.W. Yeung, A. Sarke et al., Single crystal functional oxides on silicon. Nat. Commun. 7, 10547 (2016). https://doi.org/10.1038/ncomms10547
D.M. Paskiewicz, R. Sichel-Tissot, E. Karapetrova, L. Stan, D.D. Fong, Single-crystalline SrRuO3 nanomembranes: A platform for flexible oxide electronics. Nano Lett. 16(1), 534–542 (2016). https://doi.org/10.1021/acs.nanolett.5b04176
Y. Zhang, L. Shen, M. Liu, X. Li, X. Lu et al., Flexible quasi-two-dimensional CoFe2O4 epitaxial thin films for continuous strain tuning of magnetic properties. ACS Nano 11(8), 8002–8009 (2017). https://doi.org/10.1021/acsnano.7b02637
H.N. Peng, N.P. Lu, S.Z. Yang, Y.J. Lyu, Z.W. Liu et al., A generic sacrificial layer for wide-range freestanding oxides with modulated magnetic anisotropy. Adv. Funct. Mater. 32(28), 2111907 (2022). https://doi.org/10.1002/adfm.202111907
H.S. Kum, H. Lee, S. Kim, S. Lindemann, W. Kong et al., Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578(7793), 75–81 (2020). https://doi.org/10.1038/s41586-020-1939-z
D. Lu, D.J. Baek, S.S. Hong, L.F. Kourkoutis, Y. Hikita et al., Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15(12), 1255–1260 (2016). https://doi.org/10.1038/nmat4749
D. Ji, S. Cai, T.R. Paudel, H. Sun, C. Zhang et al., Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570(7759), 87–90 (2019). https://doi.org/10.1038/s41586-019-1255-7
D. Pesquera, E. Khestanova, M. Ghidini, S. Zhang, A.P. Rooney et al., Large magnetoelectric coupling in multiferroic oxide heterostructures assembled via epitaxial lift-off. Nat. Commun. 11, 3190 (2020). https://doi.org/10.1038/s41467-020-16942-x
Y. Li, C. Xiang, F.M. Chiabrera, S. Yun, H. Zhang et al., Stacking and twisting of freestanding complex oxide thin films. Adv. Mater. 34(38), 2203187 (2022). https://doi.org/10.1002/adma.202203187
H.Y. Sun, J.R. Wang, Y.S. Wang, C.Q. Guo, J.H. Gu, W. Mao, J.F. Yang, Y.W. Liu, T.T. Zhang, T.Y. Gao, H.Y. Fu, T.J. Zhang, Y.F. Hao, Z.B. Gu, P. Wang, H.B. Huang, Y.F. Nie, Nonvolatile ferroelectric domain wall memory integrated on silicon. Nat. Commun. 13, 4332 (2022). https://doi.org/10.1038/s41467-022-31763-w
Y. Liu, Y. Huang, X. Duan, Van der Waals integration before and beyond two-dimensional materials. Nature 567(7748), 323–333 (2019). https://doi.org/10.1038/s41586-019-1013-x
J. Shen, Z. Dong, M. Qi, Y. Zhang, C. Zhu et al., Observation of moire patterns in twisted stacks of bilayer perovskite oxide nanomembranes with various lattice symmetries. ACS Appl. Mater. Interfaces 14(44), 50386–50392 (2022). https://doi.org/10.1021/acsami.2c14746
S. Chen, Q. Zhang, D. Rong, Y. Xu, J. Zhang et al., Braiding lateral morphotropic grain boundaries in homogenetic oxides. Adv. Mater. 35(2), 2206961 (2022). https://doi.org/10.1002/adma.202206961
M. Liu, B.M. Howe, L. Grazulis, K. Mahalingam, T. Nan et al., Voltage-impulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv. Mater. 25(35), 4886–4892 (2013). https://doi.org/10.1002/adma.201301989
M. Shanthi, L.C. Lim, Combined electric field and stress-induced r-o phase transformation in [011]-poled Pb(Mg1/3Nb2/3)O3–(28–32)%PbTiO3 single crystals of [01-1]-length cut. Appl. Phys. Lett. 95(10), 10290 (2009). https://doi.org/10.1063/1.3222870
W.H. Liang, F.X. Hu, J. Zhang, H. Kuang, J. Li et al., Anisotropic nonvolatile magnetization controlled by electric field in amorphous SmCo thin films grown on (011)-cut PMN-PT substrates. Nanoscale 11(1), 246–257 (2019). https://doi.org/10.1039/c8nr06449k
W.H. Liang, H.B. Zhou, K.M. Qiao, F.X. Hu, J. Zhang et al., Multilevel nonvolatile regulation of magnetism by electric field in amorphous hard magnetic SmCo/PMN-PT(011) heterostructure. Appl. Phys. Lett. 117(20), 202403 (2020). https://doi.org/10.1063/5.0024587
Y. Ba, Y. Liu, P.S. Li, L. Wu, J. Unguris et al., Spatially resolved electric-field manipulation of magnetism for CoFeB mesoscopic discs on ferroelectrics. Adv. Funct. Mater. 28(11), 1706448 (2018). https://doi.org/10.1002/adfm.201706448
S. Zhang, Y.G. Zhao, P.S. Li, J.J. Yang, S. Rizwan et al., Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)(0.7)Ti0.3O3 structure at room temperature. Phys. Rev. Lett. 108(13), 137203 (2012). https://doi.org/10.1103/PhysRevLett.108.137203
M. Liu, O. Obi, J. Lou, Y.J. Chen, Z.H. Cai et al., Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv. Funct. Mater. 19(11), 1826–1831 (2009). https://doi.org/10.1002/adfm.200801907
M. Liu, O. Obi, Z.H. Cai, J. Lou, G.M. Yang et al., Electrical tuning of magnetism in Fe3O4/PZN-PT multiferroic heterostructures derived by reactive magnetron sputtering. J. Appl. Phys. 107(7), 073916 (2010). https://doi.org/10.1063/1.3354104
G. Panchal, D.M. Phase, V.R. Reddy, R.J. Choudhary, Strain-induced elastically controlled magnetic anisotropy switching in epitaxial La0.7Sr0.3MnO3 thin films on BaTiO3 (001). Phys. Rev. B 98(4), 045417 (2018). https://doi.org/10.1103/PhysRevB.98.045417
P. Ghising, B. Samantaray, Z. Hossain, Spin inhomogeneities at the interface and inverted hysteresis loop in La0.7Sr0.3MnO3/SrTiO3. Phys. Rev. B 101(2), 024408 (2020). https://doi.org/10.1103/PhysRevB.101.024408
N.A. Pertsev, Giant magnetoelectric effect via strain-induced spin reorientation transitions in ferromagnetic films. Phys. Rev. B 78(21), 212102 (2008). https://doi.org/10.1103/PhysRevB.78.212102
N.A. Pertsev, Converse magnetoelectric effect via strain-driven magnetization reorientations in ultrathin ferromagnetic films on ferroelectric substrates. Phys. Rev. B 92(1), 014416 (2015). https://doi.org/10.1103/PhysRevB.92.014416
N.A. Pertsev, H. Kohlstedt, R. Knochel, Ferromagnetic resonance in epitaxial films: Effects of lattice strains and voltage control via ferroelectric substrate. Phys. Rev. B 84(1), 014423 (2011). https://doi.org/10.1103/PhysRevB.84.014423