Assembling SnO Nanosheets into Microhydrangeas: Gas Phase Synthesis and Their Optical Property
Corresponding Author: Xiang Wu
Nano-Micro Letters,
Vol. 4 No. 4 (2012), Article Number: 215-219
Abstract
Large scale SnO microhydrangeas are obtained successfully through thermally evaporating of SnO2 powder wrapped by a filter paper at 1050°C and using gold coated Si wafer as the substrate. The as-obtained SnO microhydrangeas are consisted of many thin nanosheets with the thicknesses of 30–60 nm and the diameters of 500–600 nm. A vapor-liquid-solid (VLS) growth mechanism for the as-synthesized SnO microhydrangeas was proposed based on experimental results. Photoluminescence spectrum (PL) shows that there is a strong sharp ultraviolet emission peak at 390 nm, revealing that these three-dimensional SnO microhydrangeas may have potential applications in optoelectronic fields.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. N. Xu, J. Tamaki, N. Miura and N. Yamazoe, Sens. Actuators B 3, 147 (1991). http://dx.doi.org/10.1016/0925-4005(91)80207-Z
- Y. L. Wang, X. C. Jiang and Y. N. Xia, J. Am. Chem. Soc. 125, 16176 (2003). http://dx.doi.org/10.1021/ja037743f
- A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer and M. Moskovits, Nano Lett. 5, 667 (2005). http://dx.doi.org/10.1021/nl050082v
- F. G. Fagan and V. R. Amarakoon, Am. Ceram. Soc. Bull. 72, 119 (1993).
- Y. T. Han, X. Wu, G. Z. Shen, B. Dierre, L. H. Gong, F.Y. Qu, Y. Bando, T. Sekiguchi, F. Fabbri, and D. Golberg, J. Phys. Chem. C 114, 8235 (2010). http://dx.doi.org/10.1021/jp100942m
- Q. H. Wang, D. W. Wang and T. M. Wang, Nano-Micro Lett. 3, 34 (2011). http://dx.doi.org/10.3786/nml.v3i1.p34-42
- Y. Wang, F. Su, J. Y. Lee and X. S. Zhao, Chem. Mater. 18, 1347 (2006). http://dx.doi.org/10.1021/cm052219o
- C. J. Kim, M. J. Noh, M. S. Choi, J. Cho and B. W. Park, Chem. Mater. 17, 3297 (2005). http://dx.doi.org/10.1021/cm048003o
- B. X. Jia, W. N. Jia, Y. L. Ma, X. Wu and F. Y, Qu, Sci. Adv. Mater. 4, 702 (2012). http://dx.doi.org/10.1166/sam.2012.1341
- H. T. Huang, S. Q. Tian, J. Xu, Z. Xie, D. W. Zeng, D. Chen and G. Z. Shen, Nanotechnology 23, 105502 (2012). http://dx.doi.org/10.1088/0957-4484/23/10/105502
- Y. H. Han, X. Wu, Y. L. Ma, L. H. Gong, F. Y. Qu and H. J. Fan, Cryst. Eng. Comm. 13, 3506 (2011). http://dx.doi.org/10.1039/c1ce05171g
- Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, Appl. Phys. Lett. 93, 032113 (2008). http://dx.doi.org/10.1063/1.2964197
- K. Sakaushi, Y. Oaki, H. Uchiyama, E. Hosono, H. S. Zhou and H. Imai, Small 6, 776 (2010). http://dx.doi.org/10.1002/smll.200902207
- K. Sakaushi, Y. Oaki, H. Uchiyama, E. Hosono, H. S. Zhou and H. Imai, Nanoscale 2, 2424 (2010). http://dx.doi.org/10.1039/c0nr00370k
- Z. R. Dai, Z. W. Pan and Z. L. Wang, J. Am. Chem. Soc. 124, 8673 (2002). http://dx.doi.org/10.1021/ja026262d
- Z. L. Wang and Z. W. Pan, Adv. Mater. 14, 1029 (2002). http://dx.doi.org/10.1002/1521-4095(20020805)14:15<1029::AID-ADMA1029>3.0.CO;2-3
- D. Aurbach, A. Nimberger, B. Markovsky, E. Levi, E. Sominski and A. Gedanken, Chem. Mater. 14, 4155 (2002). http://dx.doi.org/10.1021/cm021137m
- J. J. Ning, T. Jiang, K. K. Men, Q. Q. Dai, D. M. Li, Y. J. Wei, B. B. Liu, G. Chen, B. Zou and G. T. Zou, J. Phys. Chem. C 113, 14140 (2009). http://dx.doi.org/10.1021/jp905668p
- Z. J. Wang, S. C. Qu, X. B. Zeng, J. P. Liu, F. R. Tan, Y. Bi and Z. G. Wang, Acta Mater. 58, 4950 (2010). http://dx.doi.org/10.1016/j.actamat.2010.05.022
- B. Liu, J. H. Ma, H. Zhao, Y. Chen and H. Q. Yang, Appl. Phys. A 107, 437 (2012). http://dx.doi.org/10.1007/s00339-012-6760-6
- J. Geurts, S. Rau, W. Richter and F. J. Schmitte, Thin Solid Films 121, 217 (1984). http://dx.doi.org/10.1016/0040-6090(84)90303-1
- Y. Q. Guo, R. Q. Tan, X. Li, J. H. Zhao, Z. L. Luo, C. Gao and W. J. Song. Cryst. Eng. Comm. 13, 5677 (2011). http://dx.doi.org/10.1039/c0ce00949k
- J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee and S. T. Lee, J. Phys. Chem. B 106, 3823 (2002). http://dx.doi.org/10.1021/jp0125552
- J. X. Wang, D. F. Liu, X. Q. Yan, H. J. Yuan, L. J. Ci, Z. P. Zhou, Y. Gao, L. Song, L. F. Liu, W. Y. Zhou, G. Wang and S. S. Xie, Solid State Commun. 130, 89 (2004). http://dx.doi.org/10.1016/j.ssc.2004.01.003
- X. Wu, W. Cai and F. Y. Qu, Chin. Phys. B 18, 1669 (2009). http://dx.doi.org/10.1088/1674-1056/18/4/065
- S. Y. Bae, J. Lee, H. Jung, J. Park and J. Ahn, J. Am. Chem. Soc. 127, 10802 (2005). http://dx.doi.org/10.1021/ja0534102
- T. W. Kim, D. U. Lee and Y. S. Yoon, J. Appl. Phys. 88, 3759 (2000). http://dx.doi.org/10.1063/1.1288021
References
C. N. Xu, J. Tamaki, N. Miura and N. Yamazoe, Sens. Actuators B 3, 147 (1991). http://dx.doi.org/10.1016/0925-4005(91)80207-Z
Y. L. Wang, X. C. Jiang and Y. N. Xia, J. Am. Chem. Soc. 125, 16176 (2003). http://dx.doi.org/10.1021/ja037743f
A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer and M. Moskovits, Nano Lett. 5, 667 (2005). http://dx.doi.org/10.1021/nl050082v
F. G. Fagan and V. R. Amarakoon, Am. Ceram. Soc. Bull. 72, 119 (1993).
Y. T. Han, X. Wu, G. Z. Shen, B. Dierre, L. H. Gong, F.Y. Qu, Y. Bando, T. Sekiguchi, F. Fabbri, and D. Golberg, J. Phys. Chem. C 114, 8235 (2010). http://dx.doi.org/10.1021/jp100942m
Q. H. Wang, D. W. Wang and T. M. Wang, Nano-Micro Lett. 3, 34 (2011). http://dx.doi.org/10.3786/nml.v3i1.p34-42
Y. Wang, F. Su, J. Y. Lee and X. S. Zhao, Chem. Mater. 18, 1347 (2006). http://dx.doi.org/10.1021/cm052219o
C. J. Kim, M. J. Noh, M. S. Choi, J. Cho and B. W. Park, Chem. Mater. 17, 3297 (2005). http://dx.doi.org/10.1021/cm048003o
B. X. Jia, W. N. Jia, Y. L. Ma, X. Wu and F. Y, Qu, Sci. Adv. Mater. 4, 702 (2012). http://dx.doi.org/10.1166/sam.2012.1341
H. T. Huang, S. Q. Tian, J. Xu, Z. Xie, D. W. Zeng, D. Chen and G. Z. Shen, Nanotechnology 23, 105502 (2012). http://dx.doi.org/10.1088/0957-4484/23/10/105502
Y. H. Han, X. Wu, Y. L. Ma, L. H. Gong, F. Y. Qu and H. J. Fan, Cryst. Eng. Comm. 13, 3506 (2011). http://dx.doi.org/10.1039/c1ce05171g
Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, Appl. Phys. Lett. 93, 032113 (2008). http://dx.doi.org/10.1063/1.2964197
K. Sakaushi, Y. Oaki, H. Uchiyama, E. Hosono, H. S. Zhou and H. Imai, Small 6, 776 (2010). http://dx.doi.org/10.1002/smll.200902207
K. Sakaushi, Y. Oaki, H. Uchiyama, E. Hosono, H. S. Zhou and H. Imai, Nanoscale 2, 2424 (2010). http://dx.doi.org/10.1039/c0nr00370k
Z. R. Dai, Z. W. Pan and Z. L. Wang, J. Am. Chem. Soc. 124, 8673 (2002). http://dx.doi.org/10.1021/ja026262d
Z. L. Wang and Z. W. Pan, Adv. Mater. 14, 1029 (2002). http://dx.doi.org/10.1002/1521-4095(20020805)14:15<1029::AID-ADMA1029>3.0.CO;2-3
D. Aurbach, A. Nimberger, B. Markovsky, E. Levi, E. Sominski and A. Gedanken, Chem. Mater. 14, 4155 (2002). http://dx.doi.org/10.1021/cm021137m
J. J. Ning, T. Jiang, K. K. Men, Q. Q. Dai, D. M. Li, Y. J. Wei, B. B. Liu, G. Chen, B. Zou and G. T. Zou, J. Phys. Chem. C 113, 14140 (2009). http://dx.doi.org/10.1021/jp905668p
Z. J. Wang, S. C. Qu, X. B. Zeng, J. P. Liu, F. R. Tan, Y. Bi and Z. G. Wang, Acta Mater. 58, 4950 (2010). http://dx.doi.org/10.1016/j.actamat.2010.05.022
B. Liu, J. H. Ma, H. Zhao, Y. Chen and H. Q. Yang, Appl. Phys. A 107, 437 (2012). http://dx.doi.org/10.1007/s00339-012-6760-6
J. Geurts, S. Rau, W. Richter and F. J. Schmitte, Thin Solid Films 121, 217 (1984). http://dx.doi.org/10.1016/0040-6090(84)90303-1
Y. Q. Guo, R. Q. Tan, X. Li, J. H. Zhao, Z. L. Luo, C. Gao and W. J. Song. Cryst. Eng. Comm. 13, 5677 (2011). http://dx.doi.org/10.1039/c0ce00949k
J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee and S. T. Lee, J. Phys. Chem. B 106, 3823 (2002). http://dx.doi.org/10.1021/jp0125552
J. X. Wang, D. F. Liu, X. Q. Yan, H. J. Yuan, L. J. Ci, Z. P. Zhou, Y. Gao, L. Song, L. F. Liu, W. Y. Zhou, G. Wang and S. S. Xie, Solid State Commun. 130, 89 (2004). http://dx.doi.org/10.1016/j.ssc.2004.01.003
X. Wu, W. Cai and F. Y. Qu, Chin. Phys. B 18, 1669 (2009). http://dx.doi.org/10.1088/1674-1056/18/4/065
S. Y. Bae, J. Lee, H. Jung, J. Park and J. Ahn, J. Am. Chem. Soc. 127, 10802 (2005). http://dx.doi.org/10.1021/ja0534102
T. W. Kim, D. U. Lee and Y. S. Yoon, J. Appl. Phys. 88, 3759 (2000). http://dx.doi.org/10.1063/1.1288021