Soft Mesoporous Organosilica Nanoplatforms Improve Blood Circulation, Tumor Accumulation/Penetration, and Photodynamic Efficacy
Corresponding Author: Zhaogang Teng
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 137
Abstract
To date, the ability of nanoplatforms to achieve excellent therapeutic responses is hindered by short blood circulation and limited tumor accumulation/penetration. Herein, a soft mesoporous organosilica nanoplatform modified with hyaluronic acid and cyanine 5.5 are prepared, denoted SMONs-HA-Cy5.5, and comparative studies between SMONs-HA-Cy5.5 (24.2 MPa) and stiff counterparts (79.2 MPa) are conducted. Results indicate that, apart from exhibiting a twofold increase in tumor cellular uptake, the soft nanoplatforms also display a remarkable pharmacokinetic advantage, resulting in considerably improved tumor accumulation. Moreover, SMONs-HA-Cy5.5 exhibits a significantly higher tumor penetration, achieving 30-μm deeper tissue permeability in multicellular spheroids relative to the stiff counterparts. Results further reveal that the soft nanoplatforms have an easier extravasation from the tumor vessels, diffuse farther in the dense extracellular matrix, and reach deeper tumor tissues compared to the stiff ones. Specifically, the soft nanoplatforms generate a 16-fold improvement (43 vs. 2.72 μm) in diffusion distance in tumor parenchyma. Based on the significantly improved blood circulation and tumor accumulation/penetration, a soft therapeutic nanoplatform is constructed by loading photosensitizer chlorin e6 in SMONs-HA-Cy5.5. The resulting nanoplatform exhibits considerably higher therapeutic efficacy on tumors compared to the stiff ones.
Highlights:
1 Soft mesoporous organosilica nanoplatforms modified with hyaluronic acid and cyanine 5.5 are constructed.
2 Therapeutic efficacy of the soft nanoplatforms on tumor is higher both in vitro and in vivo after loading photosensitizer chlorin e6 compared to that of stiff counterparts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Wang, X. Ma, X. Hong, Y. Cheng, Y. Tian et al., Adjuvant photothermal therapy inhibits local recurrences after breast-conserving surgery with little skin damage. ACS Nano 12(1), 662–670 (2018). https://doi.org/10.1021/acsnano.7b07757
- Y. Yang, J. Tang, M. Zhang, Z. Gu, H. Song, Y. Yang, C. Yu, Responsively aggregatable sub-6 nm nanochelators induce simultaneous antiangiogenesis and vascular obstruction for enhanced tumor vasculature targeted therapy. Nano Lett. 19(11), 7750–7759 (2019). https://doi.org/10.1021/acs.nanolett.9b02691
- D. Li, S. He, Y. Wu, J. Liu, Q. Liu et al., Excretable lanthanide nanoparticle for biomedical imaging and surgical navigation in the second near-infrared window. Adv. Sci. 6(23), 1902042 (2019). https://doi.org/10.1002/advs.201902042
- H. Chen, J. Wang, X. Feng, M. Zhu, S. Hoffmann et al., Mitochondria-targeting fluorescent molecules for high efficiency cancer growth inhibition and imaging. Chem. Sci. 10(34), 7946–7951 (2019). https://doi.org/10.1039/c9sc01410a
- S.K. Golombek, J.N. May, B. Theek, L. Appold, N. Drude, F. Kiessling, T. Lammers, Tumor targeting via EPR: strategies to enhance patient responses. Adv. Drug Deliv. Rev. 130, 17–38 (2018). https://doi.org/10.1016/j.addr.2018.07.007
- H.F. Wang, R. Ran, Y. Liu, Y. Hui, B. Zeng et al., Tumor-vasculature-on-a-chip for investigating nanoparticle extravasation and tumor accumulation. ACS Nano 12(11), 11600–11609 (2018). https://doi.org/10.1021/acsnano.8b06846
- J. Liu, P. Du, H. Mao, L. Zhang, H. Ju, J. Lei, Dual-triggered oxygen self-supply black phosphorus nanosystem for enhanced photodynamic therapy. Biomaterials 172, 83–91 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.051
- M. Satpathy, L. Wang, R.J. Zielinski, W. Qian, Y.A. Wang et al., Targeted drug delivery and image-guided therapy of heterogeneous ovarian cancer using her2-targeted theranostic nanoparticles. Theranostics 9(3), 778–795 (2019). https://doi.org/10.7150/thno.29964
- D. Huo, X. Jiang, Y. Hu, Recent advances in nanostrategies capable of overcoming biological barriers for tumor management. Adv. Mater. (2019). https://doi.org/10.1002/adma.201904337
- J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17(1), 20–37 (2017). https://doi.org/10.1038/nrc.2016.108
- Y.S. Youn, Y.H. Bae, Perspectives on the past, present, and future of cancer nanomedicine. Adv. Drug Deliv. Rev. 130, 3–11 (2018). https://doi.org/10.1016/j.addr.2018.05.008
- H.H. Gustafson, D. Holt-Casper, D.W. Grainger, H. Ghandehari, Nanoparticle uptake: the phagocyte problem. Nano Today 10(4), 487–510 (2015). https://doi.org/10.1016/j.nantod.2015.06.006
- Q. Dai, S. Wilhelm, D. Ding, A.M. Syed, S. Sindhwani et al., Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 12(8), 8423–8435 (2018). https://doi.org/10.1021/acsnano.8b03900
- M.W. Dewhirst, T.W. Secomb, Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer 17(12), 738–750 (2017). https://doi.org/10.1038/nrc.2017.93
- H. Zhou, Z. Fan, P.Y. Li, J. Deng, D.C. Arhontoulis et al., Dense and dynamic polyethylene glycol shells cloak nanoparticles from uptake by liver endothelial cells for long blood circulation. ACS Nano 12(10), 10130–10141 (2018). https://doi.org/10.1021/acsnano.8b04947
- P. Jin, R. Sha, Y. Zhang, L. Liu, Y. Bian et al., Blood circulation-prolonging peptides for engineered nanoparticles identified via phage display. Nano Lett. 19(3), 1467–1478 (2019). https://doi.org/10.1021/acs.nanolett.8b04007
- M. Huo, W. Li, A.S. Chaudhuri, Y. Fan, X. Han, C. Yang, Z. Wu, X. Qi, Bio-stimuli-responsive multi-scale hyaluronic acid nanoparticles for deepened tumor penetration and enhanced therapy. Carbohydr. Polym. 171, 173–182 (2017). https://doi.org/10.1016/j.carbpol.2017.05.017
- G. Yang, S.Z.F. Phua, W.Q. Lim, R. Zhang, L. Feng et al., A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy. Adv. Mater. 31(25), 1901513 (2019). https://doi.org/10.1002/adma.201901513
- J. Kim, C. Jo, W.G. Lim, S. Jung, Y.M. Lee et al., Programmed nanoparticle-loaded nanoparticles for deep-penetrating 3d cancer therapy. Adv. Mater. 30(29), 1707557 (2018). https://doi.org/10.1002/adma.201707557
- S. Wang, Y. Tian, W. Tian, J. Sun, S. Zhao et al., Selectively sensitizing malignant cells to photothermal therapy using a cd44-targeting heat shock protein 72 depletion nanosystem. ACS Nano 10(9), 8578–8590 (2016). https://doi.org/10.1021/acsnano.6b03874
- J. Mougin, S.O. Yesylevskyy, C. Bourgaux, D. Chapron, J.P. Michel et al., Stacking as a key property for creating nanoparticles with tunable shape: the case of squalenoyl-doxorubicin. ACS Nano 13(11), 12870–12879 (2019). https://doi.org/10.1021/acsnano.9b05303
- D. Wang, C. Gao, W. Wang, M. Sun, B. Guo, H. Xie, Q. He, Shape-transformable, fusible rodlike swimming liquid metal nanomachine. ACS Nano 12(10), 10212–10220 (2018). https://doi.org/10.1021/acsnano.8b05203
- L. Yang, Z. Zhou, J. Song, X. Chen, Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chem. Soc. Rev. 48(19), 5140–5176 (2019). https://doi.org/10.1039/c9cs00011a
- Z. Zhang, C. Liu, C. Li, W. Wu, X. Jiang, Shape effects of cylindrical versus spherical unimolecular polymer nanomaterials on in vitro and in vivo behaviors. Research (Washington, DC) 2019, 2391486 (2019). https://doi.org/10.34133/2019/2391486
- H.J. Li, J.Z. Du, J. Liu, X.J. Du, S. Shen et al., Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano 10(7), 6753–6761 (2016). https://doi.org/10.1021/acsnano.6b02326
- J. Wang, W. Mao, L.L. Lock, J. Tang, M. Sui et al., The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano 9(7), 7195–7206 (2015). https://doi.org/10.1021/acsnano.5b02017
- T. Zhao, P. Wang, Q. Li, A.A. Al-Khalaf, W.N. Hozzein, F. Zhang, X. Li, D. Zhao, Near-infrared triggered decomposition of nanocapsules with high tumor accumulation and stimuli responsive fast elimination. Angew. Chem. Int. Ed. 57(10), 2611–2615 (2018). https://doi.org/10.1002/anie.201711354
- J.S. Suk, Q. Xu, N. Kim, J. Hanes, L.M. Ensign, Pegylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99(Pt A), 28–51 (2016). https://doi.org/10.1016/j.addr.2015.09.012
- K.L. Zhang, J. Zhou, H. Zhou, Y. Wu, R. Liu et al., Bioinspired “active” stealth magneto-nanomicelles for theranostics combining efficient MRI and enhanced drug delivery. ACS Appl. Mater. Interfaces. 9(36), 30502–30509 (2017). https://doi.org/10.1021/acsami.7b10086
- Y. Zou, Y. Liu, Z. Yang, D. Zhang, Y. Lu et al., Effective and targeted human orthotopic glioblastoma xenograft therapy via a multifunctional biomimetic nanomedicine. Adv. Mater. 30(51), 1803717 (2018). https://doi.org/10.1002/adma.201803717
- Y. Chen, J. Shi, Chemistry of mesoporous organosilica in nanotechnology: molecularly organic-inorganic hybridization into frameworks. Adv. Mater. 28(17), 3235–3272 (2016). https://doi.org/10.1002/adma.201505147
- T.L. Nguyen, Y. Choi, J. Kim, Mesoporous silica as a versatile platform for cancer immunotherapy. Adv. Mater. 31(34), 1803953 (2019). https://doi.org/10.1002/adma.201803953
- Z. Teng, W. Li, Y. Tang, A. Elzatahry, G. Lu, D. Zhao, Mesoporous organosilica hollow nanoparticles: synthesis and applications. Adv. Mater. 31(38), 1707612 (2019). https://doi.org/10.1002/adma.201707612
- L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang et al., Actively targeted deep tissue imaging and photothermal-chemo therapy of breast cancer by antibody-functionalized drug-loaded x-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles. Adv. Funct. Mater. 28(5), 1704623 (2018). https://doi.org/10.1002/adfm.201704623
- M. Huo, L. Wang, Y. Chen, J. Shi, Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8(1), 357 (2017). https://doi.org/10.1038/s41467-017-00424-8
- Y. Lu, Y. Yang, Z. Gu, J. Zhang, H. Song, G. Xiang, C. Yu, Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and co-delivery platform for enhanced cancer immunotherapy. Biomaterials 175, 82–92 (2018). https://doi.org/10.1016/j.biomaterials.2018.05.025
- Z. Teng, C. Wang, Y. Tang, W. Li, L. Bao et al., Deformable hollow periodic mesoporous organosilica nanocapsules for significantly improved cellular uptake. J. Am. Chem. Soc. 140(4), 1385–1393 (2018). https://doi.org/10.1021/jacs.7b10694
- Q. Chen, L. Feng, J. Liu, W. Zhu, Z. Dong, Y. Wu, Z. Liu, Intelligent albumin-mno2 nanoparticles as PH-/H2 O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 28(33), 7129–7136 (2016). https://doi.org/10.1002/adma.201601902
- Z. Teng, X. Su, B. Lee, C. Huang, Y. Liu et al., Yolk–shell structured mesoporous nanoparticles with thioether-bridged organosilica frameworks. Chem. Mater. 26(20), 5980–5987 (2014). https://doi.org/10.1021/cm502777e
- B.P. Jiang, L. Zhang, X.L. Guo, X.C. Shen, Y. Wang, Y. Zhu, H. Liang, Poly(n-phenylglycine)-based nanoparticles as highly effective and targeted near-infrared photothermal therapy/photodynamic therapeutic agents for malignant melanoma. Small 13(8), 1602496 (2017). https://doi.org/10.1002/smll.201602496
- Q. Sun, Z. Zhou, N. Qiu, Y. Shen, Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv. Mater. 29(14), 1606628 (2017). https://doi.org/10.1002/adma.201606628
- Y. Hui, X. Yi, F. Hou, D. Wibowo, F. Zhang, D. Zhao, H. Gao, C.X. Zhao, Role of nanoparticle mechanical properties in cancer drug delivery. ACS Nano 13(7), 7410–7424 (2019). https://doi.org/10.1021/acsnano.9b03924
- A.C. Anselmo, S. Mitragotri, Impact of particle elasticity on particle-based drug delivery systems. Adv. Drug Deliv. Rev. 108, 51–67 (2017). https://doi.org/10.1016/j.addr.2016.01.007
- K.M. Tsoi, S.A. MacParland, X.Z. Ma, V.N. Spetzler, J. Echeverri et al., Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15(11), 1212–1221 (2016). https://doi.org/10.1038/nmat4718
- S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, W.C.W. Chan, Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. (2016). https://doi.org/10.1038/natrevmats.2016.14
- C. Xu, Z. Teng, Y. Zhang, L. Yuwen, Q. Zhang et al., Flexible MoS2-embedded human serum albumin hollow nanocapsules with long circulation times and high targeting ability for efficient tumor ablation. Adv. Funct. Mater. 28(45), 1804081 (2018). https://doi.org/10.1002/adfm.201804081
- P.L. Latreille, V. Adibnia, A. Nour, J.M. Rabanel, A. Lalloz et al., Spontaneous shrinking of soft nanoparticles boosts their diffusion in confined media. Nat. Commun. 10(1), 4294 (2019). https://doi.org/10.1038/s41467-019-12246-x
References
S. Wang, X. Ma, X. Hong, Y. Cheng, Y. Tian et al., Adjuvant photothermal therapy inhibits local recurrences after breast-conserving surgery with little skin damage. ACS Nano 12(1), 662–670 (2018). https://doi.org/10.1021/acsnano.7b07757
Y. Yang, J. Tang, M. Zhang, Z. Gu, H. Song, Y. Yang, C. Yu, Responsively aggregatable sub-6 nm nanochelators induce simultaneous antiangiogenesis and vascular obstruction for enhanced tumor vasculature targeted therapy. Nano Lett. 19(11), 7750–7759 (2019). https://doi.org/10.1021/acs.nanolett.9b02691
D. Li, S. He, Y. Wu, J. Liu, Q. Liu et al., Excretable lanthanide nanoparticle for biomedical imaging and surgical navigation in the second near-infrared window. Adv. Sci. 6(23), 1902042 (2019). https://doi.org/10.1002/advs.201902042
H. Chen, J. Wang, X. Feng, M. Zhu, S. Hoffmann et al., Mitochondria-targeting fluorescent molecules for high efficiency cancer growth inhibition and imaging. Chem. Sci. 10(34), 7946–7951 (2019). https://doi.org/10.1039/c9sc01410a
S.K. Golombek, J.N. May, B. Theek, L. Appold, N. Drude, F. Kiessling, T. Lammers, Tumor targeting via EPR: strategies to enhance patient responses. Adv. Drug Deliv. Rev. 130, 17–38 (2018). https://doi.org/10.1016/j.addr.2018.07.007
H.F. Wang, R. Ran, Y. Liu, Y. Hui, B. Zeng et al., Tumor-vasculature-on-a-chip for investigating nanoparticle extravasation and tumor accumulation. ACS Nano 12(11), 11600–11609 (2018). https://doi.org/10.1021/acsnano.8b06846
J. Liu, P. Du, H. Mao, L. Zhang, H. Ju, J. Lei, Dual-triggered oxygen self-supply black phosphorus nanosystem for enhanced photodynamic therapy. Biomaterials 172, 83–91 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.051
M. Satpathy, L. Wang, R.J. Zielinski, W. Qian, Y.A. Wang et al., Targeted drug delivery and image-guided therapy of heterogeneous ovarian cancer using her2-targeted theranostic nanoparticles. Theranostics 9(3), 778–795 (2019). https://doi.org/10.7150/thno.29964
D. Huo, X. Jiang, Y. Hu, Recent advances in nanostrategies capable of overcoming biological barriers for tumor management. Adv. Mater. (2019). https://doi.org/10.1002/adma.201904337
J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17(1), 20–37 (2017). https://doi.org/10.1038/nrc.2016.108
Y.S. Youn, Y.H. Bae, Perspectives on the past, present, and future of cancer nanomedicine. Adv. Drug Deliv. Rev. 130, 3–11 (2018). https://doi.org/10.1016/j.addr.2018.05.008
H.H. Gustafson, D. Holt-Casper, D.W. Grainger, H. Ghandehari, Nanoparticle uptake: the phagocyte problem. Nano Today 10(4), 487–510 (2015). https://doi.org/10.1016/j.nantod.2015.06.006
Q. Dai, S. Wilhelm, D. Ding, A.M. Syed, S. Sindhwani et al., Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 12(8), 8423–8435 (2018). https://doi.org/10.1021/acsnano.8b03900
M.W. Dewhirst, T.W. Secomb, Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer 17(12), 738–750 (2017). https://doi.org/10.1038/nrc.2017.93
H. Zhou, Z. Fan, P.Y. Li, J. Deng, D.C. Arhontoulis et al., Dense and dynamic polyethylene glycol shells cloak nanoparticles from uptake by liver endothelial cells for long blood circulation. ACS Nano 12(10), 10130–10141 (2018). https://doi.org/10.1021/acsnano.8b04947
P. Jin, R. Sha, Y. Zhang, L. Liu, Y. Bian et al., Blood circulation-prolonging peptides for engineered nanoparticles identified via phage display. Nano Lett. 19(3), 1467–1478 (2019). https://doi.org/10.1021/acs.nanolett.8b04007
M. Huo, W. Li, A.S. Chaudhuri, Y. Fan, X. Han, C. Yang, Z. Wu, X. Qi, Bio-stimuli-responsive multi-scale hyaluronic acid nanoparticles for deepened tumor penetration and enhanced therapy. Carbohydr. Polym. 171, 173–182 (2017). https://doi.org/10.1016/j.carbpol.2017.05.017
G. Yang, S.Z.F. Phua, W.Q. Lim, R. Zhang, L. Feng et al., A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy. Adv. Mater. 31(25), 1901513 (2019). https://doi.org/10.1002/adma.201901513
J. Kim, C. Jo, W.G. Lim, S. Jung, Y.M. Lee et al., Programmed nanoparticle-loaded nanoparticles for deep-penetrating 3d cancer therapy. Adv. Mater. 30(29), 1707557 (2018). https://doi.org/10.1002/adma.201707557
S. Wang, Y. Tian, W. Tian, J. Sun, S. Zhao et al., Selectively sensitizing malignant cells to photothermal therapy using a cd44-targeting heat shock protein 72 depletion nanosystem. ACS Nano 10(9), 8578–8590 (2016). https://doi.org/10.1021/acsnano.6b03874
J. Mougin, S.O. Yesylevskyy, C. Bourgaux, D. Chapron, J.P. Michel et al., Stacking as a key property for creating nanoparticles with tunable shape: the case of squalenoyl-doxorubicin. ACS Nano 13(11), 12870–12879 (2019). https://doi.org/10.1021/acsnano.9b05303
D. Wang, C. Gao, W. Wang, M. Sun, B. Guo, H. Xie, Q. He, Shape-transformable, fusible rodlike swimming liquid metal nanomachine. ACS Nano 12(10), 10212–10220 (2018). https://doi.org/10.1021/acsnano.8b05203
L. Yang, Z. Zhou, J. Song, X. Chen, Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chem. Soc. Rev. 48(19), 5140–5176 (2019). https://doi.org/10.1039/c9cs00011a
Z. Zhang, C. Liu, C. Li, W. Wu, X. Jiang, Shape effects of cylindrical versus spherical unimolecular polymer nanomaterials on in vitro and in vivo behaviors. Research (Washington, DC) 2019, 2391486 (2019). https://doi.org/10.34133/2019/2391486
H.J. Li, J.Z. Du, J. Liu, X.J. Du, S. Shen et al., Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano 10(7), 6753–6761 (2016). https://doi.org/10.1021/acsnano.6b02326
J. Wang, W. Mao, L.L. Lock, J. Tang, M. Sui et al., The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano 9(7), 7195–7206 (2015). https://doi.org/10.1021/acsnano.5b02017
T. Zhao, P. Wang, Q. Li, A.A. Al-Khalaf, W.N. Hozzein, F. Zhang, X. Li, D. Zhao, Near-infrared triggered decomposition of nanocapsules with high tumor accumulation and stimuli responsive fast elimination. Angew. Chem. Int. Ed. 57(10), 2611–2615 (2018). https://doi.org/10.1002/anie.201711354
J.S. Suk, Q. Xu, N. Kim, J. Hanes, L.M. Ensign, Pegylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99(Pt A), 28–51 (2016). https://doi.org/10.1016/j.addr.2015.09.012
K.L. Zhang, J. Zhou, H. Zhou, Y. Wu, R. Liu et al., Bioinspired “active” stealth magneto-nanomicelles for theranostics combining efficient MRI and enhanced drug delivery. ACS Appl. Mater. Interfaces. 9(36), 30502–30509 (2017). https://doi.org/10.1021/acsami.7b10086
Y. Zou, Y. Liu, Z. Yang, D. Zhang, Y. Lu et al., Effective and targeted human orthotopic glioblastoma xenograft therapy via a multifunctional biomimetic nanomedicine. Adv. Mater. 30(51), 1803717 (2018). https://doi.org/10.1002/adma.201803717
Y. Chen, J. Shi, Chemistry of mesoporous organosilica in nanotechnology: molecularly organic-inorganic hybridization into frameworks. Adv. Mater. 28(17), 3235–3272 (2016). https://doi.org/10.1002/adma.201505147
T.L. Nguyen, Y. Choi, J. Kim, Mesoporous silica as a versatile platform for cancer immunotherapy. Adv. Mater. 31(34), 1803953 (2019). https://doi.org/10.1002/adma.201803953
Z. Teng, W. Li, Y. Tang, A. Elzatahry, G. Lu, D. Zhao, Mesoporous organosilica hollow nanoparticles: synthesis and applications. Adv. Mater. 31(38), 1707612 (2019). https://doi.org/10.1002/adma.201707612
L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang et al., Actively targeted deep tissue imaging and photothermal-chemo therapy of breast cancer by antibody-functionalized drug-loaded x-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles. Adv. Funct. Mater. 28(5), 1704623 (2018). https://doi.org/10.1002/adfm.201704623
M. Huo, L. Wang, Y. Chen, J. Shi, Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8(1), 357 (2017). https://doi.org/10.1038/s41467-017-00424-8
Y. Lu, Y. Yang, Z. Gu, J. Zhang, H. Song, G. Xiang, C. Yu, Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and co-delivery platform for enhanced cancer immunotherapy. Biomaterials 175, 82–92 (2018). https://doi.org/10.1016/j.biomaterials.2018.05.025
Z. Teng, C. Wang, Y. Tang, W. Li, L. Bao et al., Deformable hollow periodic mesoporous organosilica nanocapsules for significantly improved cellular uptake. J. Am. Chem. Soc. 140(4), 1385–1393 (2018). https://doi.org/10.1021/jacs.7b10694
Q. Chen, L. Feng, J. Liu, W. Zhu, Z. Dong, Y. Wu, Z. Liu, Intelligent albumin-mno2 nanoparticles as PH-/H2 O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 28(33), 7129–7136 (2016). https://doi.org/10.1002/adma.201601902
Z. Teng, X. Su, B. Lee, C. Huang, Y. Liu et al., Yolk–shell structured mesoporous nanoparticles with thioether-bridged organosilica frameworks. Chem. Mater. 26(20), 5980–5987 (2014). https://doi.org/10.1021/cm502777e
B.P. Jiang, L. Zhang, X.L. Guo, X.C. Shen, Y. Wang, Y. Zhu, H. Liang, Poly(n-phenylglycine)-based nanoparticles as highly effective and targeted near-infrared photothermal therapy/photodynamic therapeutic agents for malignant melanoma. Small 13(8), 1602496 (2017). https://doi.org/10.1002/smll.201602496
Q. Sun, Z. Zhou, N. Qiu, Y. Shen, Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv. Mater. 29(14), 1606628 (2017). https://doi.org/10.1002/adma.201606628
Y. Hui, X. Yi, F. Hou, D. Wibowo, F. Zhang, D. Zhao, H. Gao, C.X. Zhao, Role of nanoparticle mechanical properties in cancer drug delivery. ACS Nano 13(7), 7410–7424 (2019). https://doi.org/10.1021/acsnano.9b03924
A.C. Anselmo, S. Mitragotri, Impact of particle elasticity on particle-based drug delivery systems. Adv. Drug Deliv. Rev. 108, 51–67 (2017). https://doi.org/10.1016/j.addr.2016.01.007
K.M. Tsoi, S.A. MacParland, X.Z. Ma, V.N. Spetzler, J. Echeverri et al., Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15(11), 1212–1221 (2016). https://doi.org/10.1038/nmat4718
S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, W.C.W. Chan, Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. (2016). https://doi.org/10.1038/natrevmats.2016.14
C. Xu, Z. Teng, Y. Zhang, L. Yuwen, Q. Zhang et al., Flexible MoS2-embedded human serum albumin hollow nanocapsules with long circulation times and high targeting ability for efficient tumor ablation. Adv. Funct. Mater. 28(45), 1804081 (2018). https://doi.org/10.1002/adfm.201804081
P.L. Latreille, V. Adibnia, A. Nour, J.M. Rabanel, A. Lalloz et al., Spontaneous shrinking of soft nanoparticles boosts their diffusion in confined media. Nat. Commun. 10(1), 4294 (2019). https://doi.org/10.1038/s41467-019-12246-x