Biodegradable, Super-Strong, and Conductive Cellulose Macrofibers for Fabric-Based Triboelectric Nanogenerator
Corresponding Author: Guang Yang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 115
Abstract
Electronic fibers used to fabricate wearable triboelectric nanogenerator (TENG) for harvesting human mechanical energy have been extensively explored. However, little attention is paid to their mutual advantages of environmental friendliness, mechanical properties, and stability. Here, we report a super-strong, biodegradable, and washable cellulose-based conductive macrofibers, which is prepared by wet-stretching and wet-twisting bacterial cellulose hydrogel incorporated with carbon nanotubes and polypyrrole. The cellulose-based conductive macrofibers possess high tensile strength of 449 MPa (able to lift 2 kg weights), good electrical conductivity (~ 5.32 S cm−1), and excellent stability (Tensile strength and conductivity only decrease by 6.7% and 8.1% after immersing in water for 1 day). The degradation experiment demonstrates macrofibers can be degraded within 108 h in the cellulase solution. The designed fabric-based TENG from the cellulose-base conductive macrofibers shows a maximum open-circuit voltage of 170 V, short-circuit current of 0.8 µA, and output power at 352 μW, which is capable of powering the commercial electronics by charging the capacitors. More importantly, the fabric-based TENGs can be attached to the human body and work as self-powered sensors to effectively monitor human motions. This study suggests the potential of biodegradable, super-strong, and washable conductive cellulose-based fiber for designing eco-friendly fabric-based TENG for energy harvesting and biomechanical monitoring.
Highlights:
1 The cellulosed-based macrofibers possess super-strong tensile strength of 449 MPa and excellent electrical conductivity of 5.32 S cm−1.
2 The cellulosed-based macrofiber can be degraded within 108 h in the cellulase solution.
3 The designed fabric-based triboelectric nanogenerator (TENG) shows a maximum output power of 352 μW, which can effectively drive commercial electronics.
4 The designed fabric-based TENG as self-powered sensors can effectively monitor the human movement of walking, running, jumping, arm lifting, arm bending, and leg lifting.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- Y. Xi, J. Wang, Y. Zi, X. Li, C. Han et al., High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy 38, 101–108 (2017). https://doi.org/10.1016/j.nanoen.2017.04.053
- X. Wei, Z. Zhao, C. Zhang, W. Yuan, Z. Wu et al., All-weather droplet-based triboelectric nanogenerator for wave energy harvesting. ACS Nano 15(8), 13200–13208 (2021). https://doi.org/10.1021/acsnano.1c02790
- L.Y. Xu, L. Xu, J. Luo, Y. Yan, B.E. Jia et al., Hybrid all-in-one power source based on high-performance spherical triboelectric nanogenerators for harvesting environmental energy. Adv. Energy Mater. 10(36), 2001669 (2020). https://doi.org/10.1002/aenm.202001669
- Y.C. Lai, J. Deng, S.L. Zhang, S. Niu, H. Guo et al., Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv. Funct. Mater. 27(1), 1604462 (2017). https://doi.org/10.1002/adfm.201604462
- C. Wu, T.W. Kim, F. Li, T. Guo, Wearable electricity generators fabricated utilizing transparent electronic textiles based on polyester/Ag nanowires/graphene core-shell nanocomposites. ACS Nano 10(7), 6449–6457 (2016). https://doi.org/10.1021/acsnano.5b08137
- T. Zhou, C. Zhang, C.B. Han, F.R. Fan, W. Tang et al., Woven structured triboelectric nanogenerator for wearable devices. ACS Appl. Mater. Interfaces 6(16), 14695–14701 (2014). https://doi.org/10.1021/am504110u
- L. Zhang, Y. Yu, G.P. Eyer, G. Suo, L.A. Kozik et al., All-textile triboelectric generator compatible with traditional textile process. Adv. Mater. Technol. 1(9), 1600147 (2016). https://doi.org/10.1002/admt.201600147
- H.J. Sim, C. Choi, S.H. Kim, K.M. Kim, C.J. Lee et al., Stretchable triboelectric fiber for self-powered kinematic sensing textile. Sci. Rep. 6, 35153 (2016). https://doi.org/10.1038/srep35153
- R. Cheng, K. Dong, L. Liu, C. Ning, P. Chen et al., Flame-retardant textile-based triboelectric nanogenerators for fire protection applications. ACS Nano 14(11), 15853–15863 (2020). https://doi.org/10.1021/acsnano.0c07148
- K. Dong, J. Deng, Y. Zi, Y.C. Wang, C. Xu et al., 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 29(38), 1702648 (2017). https://doi.org/10.1002/adma.201702648
- J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida et al., Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat. Commun. 9, 4280 (2018). https://doi.org/10.1038/s41467-018-06759-0
- H. Li, S.Y. Zhou, X.Y. Du, J.N. Wang, R. Cao et al., A compound yarn based wearable triboelectric nanogenerator for self-powered wearable electronics. Adv. Mater. Technol. 3(6), 1800065 (2018). https://doi.org/10.1002/admt.201800065
- X. Pu, L. Li, M. Liu, C. Jiang, C. Du et al., Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016). https://doi.org/10.1002/adma.201504403
- M. Salauddin, S.M.S. Rana, M.T. Rahman, M. Sharifuzzaman, P. Maharjan et al., Fabric-assisted mxene/silicone nanocomposite-based triboelectric nanogenerators for self-powered sensors and wearable electronics. Adv. Funct. Mater. 32(5), 2107143 (2021). https://doi.org/10.1002/adfm.202107143
- Y. Shin, J. Lee, Y. Park, S.H. Hwang, H. Chae et al., Sewing machine stitching of polyvinylidene fluoride fibers: programmable textile patterns for wearable triboelectric sensors. J. Mater. Chem. A 6, 22879–22888 (2018). https://doi.org/10.1039/c8ta08485h
- Z. Zhou, S. Padgett, Z. Cai, G. Conta, Y. Wu et al., Single-layered ultra-soft washable smart textiles for all-around ball is to cardiograph, respiration, and posture monitoring during sleep. Biosens. Bioelectron. 155, 112064 (2020). https://doi.org/10.1016/j.bios.2020.112064
- J. Wang, X.H. Li, Y.L. Zi, S.H. Wang, Z.L. Li et al., A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27, 4830–4836 (2015). https://doi.org/10.1002/adma.201501934
- S. Dong, F. Xu, Y. Sheng, Z. Guo, X. Pu et al., Seamlessly knitted stretchable comfortable textile triboelectric nanogenerators for E-textile power sources. Nano Energy 78, 105327 (2020). https://doi.org/10.1016/j.nanoen.2020.105327
- R. Cao, X. Pu, X. Du, W. Yang, J. Wang et al., Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human-machine interaction. ACS Nano 12(6), 5190–5196 (2018). https://doi.org/10.1021/acsnano.8b02477
- M. Zhu, Y. Huang, W.S. Ng, J. Liu, Z. Wang et al., 3D spacer fabric based multifunctional triboelectric nanogenerator with great feasibility for mechanized large-scale production. Nano Energy 27, 439–446 (2016). https://doi.org/10.1016/j.nanoen.2016.07.016
- S. Junk, J. Lee, T. Hyeon, M. Lee, D.H. Kim, Fabric-based integrated energy devices for wearable activity monitors. Adv. Mater. 26(36), 6329–6334 (2014). https://doi.org/10.1002/adma.201402439
- W. Zhong, Y. Zhang, Q. Zhong, Y. Hu, Z. Wang et al., Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8(6), 6273–6280 (2014). https://doi.org/10.1021/nn501732z
- A.R. Mule, B. Dudem, H. Patnam, S.A. Graham, J.S. Yu, Wearable single-electrode-mode triboelectric nanogenerator via conductive polymer-coated textiles for self-power electronics. ACS Sustain. Chem. Eng. 7(19), 16450–16458 (2019). https://doi.org/10.1021/acssuschemeng.9b03629
- T. He, Q. Shi, H. Wang, F. Wen, T. Chen et al., Beyond energy harvesting - multi-functional triboelectric nanosensors on a textile. Nano Energy 57, 338–352 (2019). https://doi.org/10.1016/j.nanoen.2018.12.032
- L. Wang, W. Liu, Z. Yan, F. Wang, X. Wang, Stretchable and shape-adaptable triboelectric nanogenerator based on biocompatible liquid electrolyte for biomechanical energy harvesting and wearable human-machine interaction. Adv. Funct. Mater. 31(7), 2007221 (2020). https://doi.org/10.1002/adfm.202007221
- W. Tang, T. Jiang, F.R. Fan, A.F. Yu, C. Zhang et al., Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 25(24), 3718–3725 (2015). https://doi.org/10.1002/adfm.201501331
- Y. Yang, N. Sun, Z. Wen, P. Cheng, H. Zheng et al., Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 12(2), 2027–2034 (2018). https://doi.org/10.1021/acsnano.8b00147
- J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang et al., High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 27, 230–237 (2016). https://doi.org/10.1016/j.nanoen.2016.07.008
- A. Mirabedini, J. Foroughi, G.G. Wallace, Developments in conducting polymer fibres: from established spinning methods toward advanced applications. RSC Adv. 6(50), 44687–44716 (2016). https://doi.org/10.1039/c6ra05626a
- J. Eom, J.S. Heo, M. Kim, J.H. Lee, S.K. Park et al., Highly sensitive textile-based strain sensors using poly(3,4-ethylenedioxythiophene):polystyrene sulfonate/silver nanowire-coated nylon threads with poly-l-lysine surface modification. RSC Adv. 7(84), 53373–53378 (2017). https://doi.org/10.1039/c7ra10722f
- L. Liu, J. Pan, P. Chen, J. Zhang, X. Yu et al., A triboelectric textile templated by a three-dimensionally penetrated fabric. J. Mater. Chem. A 4(16), 6077–6083 (2016). https://doi.org/10.1039/c6ta01166g
- X. Peng, K. Dong, C.Y. Ye, Y. Jiang, S.Y. Zhai et al., A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6(26), aba9624 (2020). https://doi.org/10.1126/sciadv.aba9624
- R. Ccorahua, J. Huaroto, C. Luyo, M. Quintana, E.A. Vela, Enhanced-performance bio-triboelectric nanogenerator based on starch polymer electrolyte obtained by a cleanroom-free processing method. Nano Energy 59, 610–618 (2019). https://doi.org/10.1016/j.nanoen.2019.03.018
- A. Rajabi-Abhari, J.N. Kim, J. Lee, R. Tabassian, M. Mahato et al., Diatom bio-silica and cellulose nanofibril for bio-triboelectric nanogenerators and self-powered breath monitoring masks. ACS Appl. Mater. Interfaces 13(1), 219–232 (2021). https://doi.org/10.1021/acsami.0c18227
- G. Khandelwal, T. Minocha, S.K. Yadav, A. Chandrasekhar, N.P. Maria et al., All edible materials derived biocompatible and biodegradable triboelectric nanogenerator. Nano Energy 65, 104016 (2019). https://doi.org/10.1016/j.nanoen.2019.104016
- R. Wang, S. Gao, Z. Yang, Y. Li, W. Chen et al., Engineered and laser-processed chitosan biopolymers for sustainable and biodegradable triboelectric power generation. Adv. Mater. 30(11), 1706267 (2018). https://doi.org/10.1002/adma.201706267
- Y. Chi, K. Xia, Z. Zhu, J. Fu, H. Zhang et al., Rice paper-based biodegradable triboelectric nanogenerator. Microelectron. Eng. 216, 111059 (2019). https://doi.org/10.1016/j.mee.2019.111059
- H.J. Kim, J.H. Kim, K.W. Jun, J.H. Kim, W.C. Seung et al., Silk nanofiber-networked bio-triboelectric generator: silk bio-TEG. Adv. Energy Mater. 6(8), 1502329 (2016). https://doi.org/10.1002/aenm.201502329
- J. Zhang, S. Hu, Z. Shi, Y. Wang, Y. Lei et al., Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy 89, 106354 (2021). https://doi.org/10.1016/j.nanoen.2021.106354
- C.M. Jiang, Q. Zhang, C.X. He, C. Zhang, X.H. Feng et al., Plant-protein-enabled biodegradable triboelectric nanogenerator for sustainable agriculture. Fund. Res. (2021). https://doi.org/10.1016/j.fmre.2021.09.010
- R. Pan, W. Xuan, J. Chen, S. Dong, H. Jin et al., Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy 45, 193–202 (2018). https://doi.org/10.1016/j.nanoen.2017.12.048
- H.P.S.A. Khalil, A.H. Bhat, A.F.I. Yusra, Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 87, 963–979 (2012). https://doi.org/10.1016/j.carbpol.2011.08.078
- D. Zhao, J. Huang, Y. Zhong, K. Li, L. Zhang et al., High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv. Funct. Mater. 26(34), 6279–6287 (2016). https://doi.org/10.1002/adfm.201601645
- H.J. Kim, E.C. Yim, J.H. Kim, S.J. Kim, J.Y. Park et al., Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 33, 130–137 (2017). https://doi.org/10.1016/j.nanoen.2017.01.035
- R. Zheng, Z. Shi, G. Yang, Bacterial cellulose synthesis at solid-gas-liquid interface. Acta Polym. Sin. 51, 942–948 (2020). https://doi.org/10.11777/j.issn1000-3304.2020.20110
- A. Pandit, R. Kumar, A review on production, characterization and application of bacterial cellulose and its biocomposites. J. Polym. Environ. 29, 2738–2755 (2021). https://doi.org/10.1007/s10924-021-02079-5
- M. Falvo, G. Clary, R. Taylor, V. Chi, F. Brooks et al., Bending and buckling of carbon nanotubes under large strain. Nature 389, 582–584 (1997). https://doi.org/10.1038/39282
- S. Ruoff, C. Lorents, Mechnical and thermalpropertied of carbon nanotubes. Carbon 33, 925–930 (1995). https://doi.org/10.1016/0008-6223(95)00021-5
- R. George, K.T. Kashyap, R. Rahul, S. Yamdagni, Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr. Mater. 53(10), 1159–1163 (2005). https://doi.org/10.1016/j.scriptamat.2005.07.022
- S. Hu, Z. Shi, W. Zhao, L. Wang, G. Yang, Multifunctional piezoelectric elastomer composites for smart biomedical or wearable electronics. Compos. Part B Eng. 160, 595–604 (2019). https://doi.org/10.1016/j.compositesb.2018.12.077
- L. Wang, S. Hu, M.W. Ullah, X. Li, Z. Shi et al., Enhanced cell proliferation by electrical stimulation based on electroactive regenerated bacterial cellulose hydrogels. Carbohydr. Polym. 249, 116829 (2020). https://doi.org/10.1016/j.carbpol.2020.116829
- F. Tian, Y. Zhang, L. Liu, Y. Zhang, Q. Shi et al., Spongy p-toluenesulfonic acid-doped polypyrrole with extraordinary rate performance as durable anodes of sodium-ion batteries at different temperatures. Langmuir 36, 15075–15081 (2020). https://doi.org/10.1021/ACSLangmuir0c02625
- S.M.S. Rana, M.T. Rahman, M. Salauddin, P. Maharjan, T. Bhatta et al., A human-machine interactive hybridized biomechanical nanogenerator as a self-sustainable power source for multifunctional smart electronics applications. Nano Energy 76, 105025 (2020). https://doi.org/10.1016/j.nanoen.2020.105025
- M.T. Rahman, S.M.S. Rana, M. Salauddin, P. Maharjan, T. Bhatta et al., Biomechanical energy-driven hybridized generator as a universal portable power source for smart/wearable electronics. Adv. Energy Mater. 10(12), 1903663 (2020). https://doi.org/10.1002/aenm.201903663
- Q.F. Guan, Z.M. Han, Y. Zhu, W.L. Xu, H.B. Yang et al., Bio-inspired lotus-fiber-like spiral hydrogel bacterial cellulose fibers. Nano Lett. 21(2), 952–958 (2021). https://doi.org/10.1021/ACSnanolett.0c03707
- L. Wang, L. Mao, F. Qi, X. Li, M. Zhao et al., Synergistically enhanced wound healing by the stretched bacterial cellulose/gelatin films and electrical stimulation. Chem. Eng. J. 424(1), 130563 (2021). https://doi.org/10.1016/j.cej.2021.130563
- M. Salari, M.S. Khiabani, R.R. Mokarram, B. Ghanbarzadeh, H.S. Kafil, Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. Int. J. Biol. Macromol. 122, 280–288 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.136
- L. Mao, S. Hu, Y. Gao, L. Wang, W. Zhao et al., Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation. Adv. Healthc. Mater. 9(19), e2000872 (2020). https://doi.org/10.1002/adhm.202000872
- S. Wang, F. Jiang, X. Xu, Y. Kuang, K. Fu et al., Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv. Mater. 29(35), 1702498 (2017). https://doi.org/10.1002/adma.201702498
- H.J. Sim, C. Choi, D.Y. Lee, H. Kim, J.H. Yun et al., Biomolecule based fiber supercapacitor for implantable device. Nano Energy 47, 385–392 (2018). https://doi.org/10.1016/j.nanoen.2018.03.011
- Z. Zhao, C. Yan, Z. Liu, X. Fu, L.M. Peng et al., Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater. 28(46), 10267–10274 (2016). https://doi.org/10.1002/adma.201603679
- L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao et al., Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014). https://doi.org/10.1038/ncomms4754
- Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu et al., All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25(16), 2326–2331 (2013). https://doi.org/10.1002/adma.201300132
- S.M.S. Rana, M.T. Rahman, S. Sharma, M. Salauddin, S.H. Yoon et al., Cation functionalized nylon composite nanofibrous mat as a highly positive friction layer for robust, high output triboelectric nanogenerators and self-powered sensors. Nano Energy 88, 106300 (2021). https://doi.org/10.1016/j.nanoen.2021.106300
- S.M.S. Rana, M.T. Rahman, M. Salauddin, S. Sharma, P. Maharjan et al., Electrospun PVDF-TrFE/MXene nanofiber mat-based triboelectric nanogenerator for smart home appliances. ACS Appl. Mater. Interfaces 13(4), 4955–4967 (2021). https://doi.org/10.1021/acsami.0c17512
- M. Salauddin, S.M.S. Rana, M. Sharifuzzaman, M.T. Rahman, C. Park et al., A novel MXene/ecoflex nanocomposite-coated fabric as a highly negative and stable friction layer for high-output triboelectric nanogenerators. Adv. Energy Mater. 11(1), 2002832 (2020). https://doi.org/10.1002/aenm.202002832
- S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576–3583 (2013). https://doi.org/10.1039/c3ee42571a
- Z.L. Wang, On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 68, 104272 (2020). https://doi.org/10.1016/j.nanoen.2019.104272
- Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20, 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
- A. Yu, X. Pu, R. Wen, M. Liu, T. Zhou et al., Core-shell-yarn-based triboelectric nanogenerator textiles as power cloths. ACS Nano 11(12), 12764–12771 (2017). https://doi.org/10.1021/acsnano.7b07534
- Z. Li, M. Zhu, Q. Qiu, J. Yu, B. Ding, Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 53, 726–733 (2018). https://doi.org/10.1016/j.nanoen.2018.09.039
References
F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
Y. Xi, J. Wang, Y. Zi, X. Li, C. Han et al., High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy 38, 101–108 (2017). https://doi.org/10.1016/j.nanoen.2017.04.053
X. Wei, Z. Zhao, C. Zhang, W. Yuan, Z. Wu et al., All-weather droplet-based triboelectric nanogenerator for wave energy harvesting. ACS Nano 15(8), 13200–13208 (2021). https://doi.org/10.1021/acsnano.1c02790
L.Y. Xu, L. Xu, J. Luo, Y. Yan, B.E. Jia et al., Hybrid all-in-one power source based on high-performance spherical triboelectric nanogenerators for harvesting environmental energy. Adv. Energy Mater. 10(36), 2001669 (2020). https://doi.org/10.1002/aenm.202001669
Y.C. Lai, J. Deng, S.L. Zhang, S. Niu, H. Guo et al., Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv. Funct. Mater. 27(1), 1604462 (2017). https://doi.org/10.1002/adfm.201604462
C. Wu, T.W. Kim, F. Li, T. Guo, Wearable electricity generators fabricated utilizing transparent electronic textiles based on polyester/Ag nanowires/graphene core-shell nanocomposites. ACS Nano 10(7), 6449–6457 (2016). https://doi.org/10.1021/acsnano.5b08137
T. Zhou, C. Zhang, C.B. Han, F.R. Fan, W. Tang et al., Woven structured triboelectric nanogenerator for wearable devices. ACS Appl. Mater. Interfaces 6(16), 14695–14701 (2014). https://doi.org/10.1021/am504110u
L. Zhang, Y. Yu, G.P. Eyer, G. Suo, L.A. Kozik et al., All-textile triboelectric generator compatible with traditional textile process. Adv. Mater. Technol. 1(9), 1600147 (2016). https://doi.org/10.1002/admt.201600147
H.J. Sim, C. Choi, S.H. Kim, K.M. Kim, C.J. Lee et al., Stretchable triboelectric fiber for self-powered kinematic sensing textile. Sci. Rep. 6, 35153 (2016). https://doi.org/10.1038/srep35153
R. Cheng, K. Dong, L. Liu, C. Ning, P. Chen et al., Flame-retardant textile-based triboelectric nanogenerators for fire protection applications. ACS Nano 14(11), 15853–15863 (2020). https://doi.org/10.1021/acsnano.0c07148
K. Dong, J. Deng, Y. Zi, Y.C. Wang, C. Xu et al., 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 29(38), 1702648 (2017). https://doi.org/10.1002/adma.201702648
J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida et al., Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat. Commun. 9, 4280 (2018). https://doi.org/10.1038/s41467-018-06759-0
H. Li, S.Y. Zhou, X.Y. Du, J.N. Wang, R. Cao et al., A compound yarn based wearable triboelectric nanogenerator for self-powered wearable electronics. Adv. Mater. Technol. 3(6), 1800065 (2018). https://doi.org/10.1002/admt.201800065
X. Pu, L. Li, M. Liu, C. Jiang, C. Du et al., Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016). https://doi.org/10.1002/adma.201504403
M. Salauddin, S.M.S. Rana, M.T. Rahman, M. Sharifuzzaman, P. Maharjan et al., Fabric-assisted mxene/silicone nanocomposite-based triboelectric nanogenerators for self-powered sensors and wearable electronics. Adv. Funct. Mater. 32(5), 2107143 (2021). https://doi.org/10.1002/adfm.202107143
Y. Shin, J. Lee, Y. Park, S.H. Hwang, H. Chae et al., Sewing machine stitching of polyvinylidene fluoride fibers: programmable textile patterns for wearable triboelectric sensors. J. Mater. Chem. A 6, 22879–22888 (2018). https://doi.org/10.1039/c8ta08485h
Z. Zhou, S. Padgett, Z. Cai, G. Conta, Y. Wu et al., Single-layered ultra-soft washable smart textiles for all-around ball is to cardiograph, respiration, and posture monitoring during sleep. Biosens. Bioelectron. 155, 112064 (2020). https://doi.org/10.1016/j.bios.2020.112064
J. Wang, X.H. Li, Y.L. Zi, S.H. Wang, Z.L. Li et al., A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27, 4830–4836 (2015). https://doi.org/10.1002/adma.201501934
S. Dong, F. Xu, Y. Sheng, Z. Guo, X. Pu et al., Seamlessly knitted stretchable comfortable textile triboelectric nanogenerators for E-textile power sources. Nano Energy 78, 105327 (2020). https://doi.org/10.1016/j.nanoen.2020.105327
R. Cao, X. Pu, X. Du, W. Yang, J. Wang et al., Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human-machine interaction. ACS Nano 12(6), 5190–5196 (2018). https://doi.org/10.1021/acsnano.8b02477
M. Zhu, Y. Huang, W.S. Ng, J. Liu, Z. Wang et al., 3D spacer fabric based multifunctional triboelectric nanogenerator with great feasibility for mechanized large-scale production. Nano Energy 27, 439–446 (2016). https://doi.org/10.1016/j.nanoen.2016.07.016
S. Junk, J. Lee, T. Hyeon, M. Lee, D.H. Kim, Fabric-based integrated energy devices for wearable activity monitors. Adv. Mater. 26(36), 6329–6334 (2014). https://doi.org/10.1002/adma.201402439
W. Zhong, Y. Zhang, Q. Zhong, Y. Hu, Z. Wang et al., Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8(6), 6273–6280 (2014). https://doi.org/10.1021/nn501732z
A.R. Mule, B. Dudem, H. Patnam, S.A. Graham, J.S. Yu, Wearable single-electrode-mode triboelectric nanogenerator via conductive polymer-coated textiles for self-power electronics. ACS Sustain. Chem. Eng. 7(19), 16450–16458 (2019). https://doi.org/10.1021/acssuschemeng.9b03629
T. He, Q. Shi, H. Wang, F. Wen, T. Chen et al., Beyond energy harvesting - multi-functional triboelectric nanosensors on a textile. Nano Energy 57, 338–352 (2019). https://doi.org/10.1016/j.nanoen.2018.12.032
L. Wang, W. Liu, Z. Yan, F. Wang, X. Wang, Stretchable and shape-adaptable triboelectric nanogenerator based on biocompatible liquid electrolyte for biomechanical energy harvesting and wearable human-machine interaction. Adv. Funct. Mater. 31(7), 2007221 (2020). https://doi.org/10.1002/adfm.202007221
W. Tang, T. Jiang, F.R. Fan, A.F. Yu, C. Zhang et al., Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 25(24), 3718–3725 (2015). https://doi.org/10.1002/adfm.201501331
Y. Yang, N. Sun, Z. Wen, P. Cheng, H. Zheng et al., Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 12(2), 2027–2034 (2018). https://doi.org/10.1021/acsnano.8b00147
J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang et al., High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 27, 230–237 (2016). https://doi.org/10.1016/j.nanoen.2016.07.008
A. Mirabedini, J. Foroughi, G.G. Wallace, Developments in conducting polymer fibres: from established spinning methods toward advanced applications. RSC Adv. 6(50), 44687–44716 (2016). https://doi.org/10.1039/c6ra05626a
J. Eom, J.S. Heo, M. Kim, J.H. Lee, S.K. Park et al., Highly sensitive textile-based strain sensors using poly(3,4-ethylenedioxythiophene):polystyrene sulfonate/silver nanowire-coated nylon threads with poly-l-lysine surface modification. RSC Adv. 7(84), 53373–53378 (2017). https://doi.org/10.1039/c7ra10722f
L. Liu, J. Pan, P. Chen, J. Zhang, X. Yu et al., A triboelectric textile templated by a three-dimensionally penetrated fabric. J. Mater. Chem. A 4(16), 6077–6083 (2016). https://doi.org/10.1039/c6ta01166g
X. Peng, K. Dong, C.Y. Ye, Y. Jiang, S.Y. Zhai et al., A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6(26), aba9624 (2020). https://doi.org/10.1126/sciadv.aba9624
R. Ccorahua, J. Huaroto, C. Luyo, M. Quintana, E.A. Vela, Enhanced-performance bio-triboelectric nanogenerator based on starch polymer electrolyte obtained by a cleanroom-free processing method. Nano Energy 59, 610–618 (2019). https://doi.org/10.1016/j.nanoen.2019.03.018
A. Rajabi-Abhari, J.N. Kim, J. Lee, R. Tabassian, M. Mahato et al., Diatom bio-silica and cellulose nanofibril for bio-triboelectric nanogenerators and self-powered breath monitoring masks. ACS Appl. Mater. Interfaces 13(1), 219–232 (2021). https://doi.org/10.1021/acsami.0c18227
G. Khandelwal, T. Minocha, S.K. Yadav, A. Chandrasekhar, N.P. Maria et al., All edible materials derived biocompatible and biodegradable triboelectric nanogenerator. Nano Energy 65, 104016 (2019). https://doi.org/10.1016/j.nanoen.2019.104016
R. Wang, S. Gao, Z. Yang, Y. Li, W. Chen et al., Engineered and laser-processed chitosan biopolymers for sustainable and biodegradable triboelectric power generation. Adv. Mater. 30(11), 1706267 (2018). https://doi.org/10.1002/adma.201706267
Y. Chi, K. Xia, Z. Zhu, J. Fu, H. Zhang et al., Rice paper-based biodegradable triboelectric nanogenerator. Microelectron. Eng. 216, 111059 (2019). https://doi.org/10.1016/j.mee.2019.111059
H.J. Kim, J.H. Kim, K.W. Jun, J.H. Kim, W.C. Seung et al., Silk nanofiber-networked bio-triboelectric generator: silk bio-TEG. Adv. Energy Mater. 6(8), 1502329 (2016). https://doi.org/10.1002/aenm.201502329
J. Zhang, S. Hu, Z. Shi, Y. Wang, Y. Lei et al., Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy 89, 106354 (2021). https://doi.org/10.1016/j.nanoen.2021.106354
C.M. Jiang, Q. Zhang, C.X. He, C. Zhang, X.H. Feng et al., Plant-protein-enabled biodegradable triboelectric nanogenerator for sustainable agriculture. Fund. Res. (2021). https://doi.org/10.1016/j.fmre.2021.09.010
R. Pan, W. Xuan, J. Chen, S. Dong, H. Jin et al., Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy 45, 193–202 (2018). https://doi.org/10.1016/j.nanoen.2017.12.048
H.P.S.A. Khalil, A.H. Bhat, A.F.I. Yusra, Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 87, 963–979 (2012). https://doi.org/10.1016/j.carbpol.2011.08.078
D. Zhao, J. Huang, Y. Zhong, K. Li, L. Zhang et al., High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv. Funct. Mater. 26(34), 6279–6287 (2016). https://doi.org/10.1002/adfm.201601645
H.J. Kim, E.C. Yim, J.H. Kim, S.J. Kim, J.Y. Park et al., Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 33, 130–137 (2017). https://doi.org/10.1016/j.nanoen.2017.01.035
R. Zheng, Z. Shi, G. Yang, Bacterial cellulose synthesis at solid-gas-liquid interface. Acta Polym. Sin. 51, 942–948 (2020). https://doi.org/10.11777/j.issn1000-3304.2020.20110
A. Pandit, R. Kumar, A review on production, characterization and application of bacterial cellulose and its biocomposites. J. Polym. Environ. 29, 2738–2755 (2021). https://doi.org/10.1007/s10924-021-02079-5
M. Falvo, G. Clary, R. Taylor, V. Chi, F. Brooks et al., Bending and buckling of carbon nanotubes under large strain. Nature 389, 582–584 (1997). https://doi.org/10.1038/39282
S. Ruoff, C. Lorents, Mechnical and thermalpropertied of carbon nanotubes. Carbon 33, 925–930 (1995). https://doi.org/10.1016/0008-6223(95)00021-5
R. George, K.T. Kashyap, R. Rahul, S. Yamdagni, Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr. Mater. 53(10), 1159–1163 (2005). https://doi.org/10.1016/j.scriptamat.2005.07.022
S. Hu, Z. Shi, W. Zhao, L. Wang, G. Yang, Multifunctional piezoelectric elastomer composites for smart biomedical or wearable electronics. Compos. Part B Eng. 160, 595–604 (2019). https://doi.org/10.1016/j.compositesb.2018.12.077
L. Wang, S. Hu, M.W. Ullah, X. Li, Z. Shi et al., Enhanced cell proliferation by electrical stimulation based on electroactive regenerated bacterial cellulose hydrogels. Carbohydr. Polym. 249, 116829 (2020). https://doi.org/10.1016/j.carbpol.2020.116829
F. Tian, Y. Zhang, L. Liu, Y. Zhang, Q. Shi et al., Spongy p-toluenesulfonic acid-doped polypyrrole with extraordinary rate performance as durable anodes of sodium-ion batteries at different temperatures. Langmuir 36, 15075–15081 (2020). https://doi.org/10.1021/ACSLangmuir0c02625
S.M.S. Rana, M.T. Rahman, M. Salauddin, P. Maharjan, T. Bhatta et al., A human-machine interactive hybridized biomechanical nanogenerator as a self-sustainable power source for multifunctional smart electronics applications. Nano Energy 76, 105025 (2020). https://doi.org/10.1016/j.nanoen.2020.105025
M.T. Rahman, S.M.S. Rana, M. Salauddin, P. Maharjan, T. Bhatta et al., Biomechanical energy-driven hybridized generator as a universal portable power source for smart/wearable electronics. Adv. Energy Mater. 10(12), 1903663 (2020). https://doi.org/10.1002/aenm.201903663
Q.F. Guan, Z.M. Han, Y. Zhu, W.L. Xu, H.B. Yang et al., Bio-inspired lotus-fiber-like spiral hydrogel bacterial cellulose fibers. Nano Lett. 21(2), 952–958 (2021). https://doi.org/10.1021/ACSnanolett.0c03707
L. Wang, L. Mao, F. Qi, X. Li, M. Zhao et al., Synergistically enhanced wound healing by the stretched bacterial cellulose/gelatin films and electrical stimulation. Chem. Eng. J. 424(1), 130563 (2021). https://doi.org/10.1016/j.cej.2021.130563
M. Salari, M.S. Khiabani, R.R. Mokarram, B. Ghanbarzadeh, H.S. Kafil, Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. Int. J. Biol. Macromol. 122, 280–288 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.136
L. Mao, S. Hu, Y. Gao, L. Wang, W. Zhao et al., Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation. Adv. Healthc. Mater. 9(19), e2000872 (2020). https://doi.org/10.1002/adhm.202000872
S. Wang, F. Jiang, X. Xu, Y. Kuang, K. Fu et al., Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv. Mater. 29(35), 1702498 (2017). https://doi.org/10.1002/adma.201702498
H.J. Sim, C. Choi, D.Y. Lee, H. Kim, J.H. Yun et al., Biomolecule based fiber supercapacitor for implantable device. Nano Energy 47, 385–392 (2018). https://doi.org/10.1016/j.nanoen.2018.03.011
Z. Zhao, C. Yan, Z. Liu, X. Fu, L.M. Peng et al., Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater. 28(46), 10267–10274 (2016). https://doi.org/10.1002/adma.201603679
L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao et al., Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014). https://doi.org/10.1038/ncomms4754
Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu et al., All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25(16), 2326–2331 (2013). https://doi.org/10.1002/adma.201300132
S.M.S. Rana, M.T. Rahman, S. Sharma, M. Salauddin, S.H. Yoon et al., Cation functionalized nylon composite nanofibrous mat as a highly positive friction layer for robust, high output triboelectric nanogenerators and self-powered sensors. Nano Energy 88, 106300 (2021). https://doi.org/10.1016/j.nanoen.2021.106300
S.M.S. Rana, M.T. Rahman, M. Salauddin, S. Sharma, P. Maharjan et al., Electrospun PVDF-TrFE/MXene nanofiber mat-based triboelectric nanogenerator for smart home appliances. ACS Appl. Mater. Interfaces 13(4), 4955–4967 (2021). https://doi.org/10.1021/acsami.0c17512
M. Salauddin, S.M.S. Rana, M. Sharifuzzaman, M.T. Rahman, C. Park et al., A novel MXene/ecoflex nanocomposite-coated fabric as a highly negative and stable friction layer for high-output triboelectric nanogenerators. Adv. Energy Mater. 11(1), 2002832 (2020). https://doi.org/10.1002/aenm.202002832
S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576–3583 (2013). https://doi.org/10.1039/c3ee42571a
Z.L. Wang, On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 68, 104272 (2020). https://doi.org/10.1016/j.nanoen.2019.104272
Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20, 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
A. Yu, X. Pu, R. Wen, M. Liu, T. Zhou et al., Core-shell-yarn-based triboelectric nanogenerator textiles as power cloths. ACS Nano 11(12), 12764–12771 (2017). https://doi.org/10.1021/acsnano.7b07534
Z. Li, M. Zhu, Q. Qiu, J. Yu, B. Ding, Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 53, 726–733 (2018). https://doi.org/10.1016/j.nanoen.2018.09.039