Dual-Ion Co-Regulation System Enabling High-Performance Electrochemical Artificial Yarn Muscles with Energy-Free Catch States
Corresponding Author: Qingwen Li
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 162
Abstract
Artificial yarn muscles show great potential in applications requiring low-energy consumption while maintaining high performance. However, conventional designs have been limited by weak ion-yarn muscle interactions and inefficient “rocking-chair” ion migration. To address these limitations, we present an electrochemical artificial yarn muscle design driven by a dual-ion co-regulation system. By utilizing two reaction channels, this system shortens ion migration pathways, leading to faster and more efficient actuation. During the charging/discharging process, PF−6 ions react with carbon nanotube yarn, while Li+ ions react with an Al foil. The intercalation reaction between PF−6 and collapsed carbon nanotubes allows the yarn muscle to achieve an energy-free high-tension catch state. The dual-ion coordinated yarn muscles exhibit superior contractile stroke, maximum contractile rate, and maximum power densities, exceeding those of “rocking-chair” type ion migration yarn muscles. The dual-ion co-regulation system enhances the ion migration rate during actuation, resulting in improved performance. Moreover, the yarn muscles can withstand high levels of isometric stress, displaying a stress of 61 times that of skeletal muscles and 8 times that of “rocking-chair” type yarn muscles at higher frequencies. This technology holds significant potential for various applications, including prosthetics and robotics.
Highlights:
1 The dual-ion co-regulation system shortens ion migration pathways, which endow the yarn muscle with high contractile stroke (34.7%) and contractile rate (9.4% s−1), more than twice that of the “rocking-chair” -type ion migration yarn muscles.
2 The yarn muscle shows high isometric stress of 18.4 MPa (61 times that of skeletal muscles) and 8 times the isometric stress of the “rocking-chair” -type yarn muscles at a higher frequency.
3 The intercalation reaction between PF−6 and collapsed carbon nanotubes allows the yarn muscle to achieve an energy-free high-tension catch state
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch, M. Sitti, Soft actuators for real-world applications. Nat. Rev. Mater. 7(3), 235–249 (2022). https://doi.org/10.1038/s41578-021-00389-7
- I. Apsite, S. Salehi, L. Ionov, Materials for smart soft actuator systems. Chem. Rev. 122(1), 1349–1415 (2022). https://doi.org/10.1021/acs.chemrev.1c00453
- F. Soto, E. Karshalev, F. Zhang, B. de Esteban Fernandez Avila, A. Nourhani et al., Smart materials for microrobots. Chem. Rev. 122(5), 5365–5403 (2022). https://doi.org/10.1021/acs.chemrev.0c00999
- S.M. Mirvakili, I.W. Hunter, Artificial muscles: mechanisms, applications, and challenges. Adv. Mater. 30(6), 1704407 (2018). https://doi.org/10.1002/adma.201704407
- X. Zhou, S. Fang, X. Leng, Z. Liu, R.H. Baughman, The power of fiber twist. Acc. Chem. Res. 54(11), 2624–2636 (2021). https://doi.org/10.1021/acs.accounts.1c00112
- J. Xiong, J. Chen, P.S. Lee, Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Adv. Mater. 33(19), 2002640 (2020). https://doi.org/10.1002/adma.202002640
- G.V. Stoychev, L. Ionov, Actuating fibers: design and applications. ACS Appl. Mater. Interfaces 8(37), 24281–24294 (2016). https://doi.org/10.1021/acsami.6b07374
- C.S. Haines, M.D. Lima, N. Li, G.M. Spinks, J. Foroughi et al., Artificial muscles from fishing line and sewing thread. Science 343(6173), 868–872 (2014). https://doi.org/10.1126/science.1246906
- C.S. Hainesa, N. Li, G.M. Spinksb, A.E. Alieva, J. Di et al., New twist on artificial muscles. Proc. Natl. Acad. Sci. USA 113(11), 11709–11716 (2016). https://doi.org/10.1073/pnas.1802492115
- J.A. Lee, N. Li, C.S. Haines, K.J. Kim, X. Lepro et al., Electrochemically powered, energy-conserving carbon nanotube artificial muscles. Adv. Mater. 29(31), 1700870 (2017). https://doi.org/10.1002/adma.201700870
- H. Kim, J.A. Lee, H.J. Sim, M.D. Lima, R.H. Baughman et al., Temperature-responsive tensile actuator based on multi-walled carbon nanotube yarn. Nano-Micro Lett. 8(3), 254–259 (2016). https://doi.org/10.1007/s40820-016-0084-6
- J. He, M. Ren, L. Dong, Y. Wang, X. Wei et al., High-temperature-tolerant artificial muscles using poly(p-phenylene benzobisoxazole) composite yarns. Adv. Fiber. Mater. 4(5), 1256–1266 (2022). https://doi.org/10.1007/s42765-022-00183-2
- S.M. Mirvakili, I.W. Hunter, Fast torsional artificial muscles from niti twisted yarns. ACS Appl. Mater. Interfaces 9(19), 16321–16326 (2017). https://doi.org/10.1021/acsami.7b02335
- T. Jia, Y. Wang, Y. Dou, Y. Li, M. Jung de Andrade et al., Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv. Funct. Mater. 29(18), 1808241 (2019). https://doi.org/10.1002/adfm.201808241
- J. Mu, M. Jung de Andrade, S. Fang, X. Wang, E. Gao et al., Sheath-run artificial muscles. Science 365(6449), 150–155 (2019). https://doi.org/10.1126/science.aaw2403
- H.T. Chu, X.H. Hu, Z. Wang, J.K. Mu, N. Li et al., Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science 371(6528), 494–498 (2021). https://doi.org/10.1126/science.abc4538
- Y.L. Wang, Y.R. Zhao, M. Ren, Y.R. Zhou, L.Z. Dong et al., Artificial muscle fascicles integrated with high-performance actuation properties and energy-storage function. Nano Energy 102, 107609 (2022). https://doi.org/10.1016/j.nanoen.2022.107609
- M. Ren, J. Qiao, Y. Wang, K. Wu, L. Dong et al., Strong and robust electrochemical artificial muscles by ionic-liquid-in-nanofiber-sheathed carbon nanotube yarns. Small 17(5), e2006181 (2021). https://doi.org/10.1002/smll.202006181
- L. Li, H. Wang, Unipolar-stroke electrochemical artificial muscles. Adv. Fiber. Mater. 3(3), 147–148 (2021). https://doi.org/10.1007/s42765-021-00071-1
- J. Foroughi, G.M. Spinks, G.G. Wallace, J. Oh, M.E. Kozlov et al., Torsional carbon nanotube artificial muscles. Science 334(6055), 494–497 (2011). https://doi.org/10.1126/science.1211220
- J. Qiao, J. Di, S. Zhou, K. Jin, S. Zeng et al., Large-stroke electrochemical carbon nanotube/graphene hybrid yarn muscles. Small 14(38), 1801883 (2018). https://doi.org/10.1002/smll.201801883
- S.H. Kim, C.S. Haines, N. Li, K.J. Kim, T.J. Mun et al., Harvesting electrical energy from carbon nanotube yarn twist. Science 357(6353), 773–778 (2017). https://doi.org/10.1126/science.aam8771
- O. Kim, H. Kim, U.H. Choi, M.J. Park, One-volt-driven superfast polymer actuators based on single-ion conductors. Nat. Commun. 7(1), 13576 (2016). https://doi.org/10.1038/ncomms13576
- J.D.W. Madden, N.A. Vandesteeg, P.A. Anquetil, P.G.A. Madden, A. Takshi et al., Artificial muscle technology: physical principles and naval prospects. IEEE J. Ocean. Eng. 29(3), 706–728 (2004). https://doi.org/10.1109/JOE.2004.833135
- M. Ren, P. Xu, Y. Zhou, Y. Wang, L. Dong et al., Stepwise artificial yarn muscles with energy-free catch states driven by aluminum-ion insertion. ACS Nano 16(10), 15850–15861 (2022). https://doi.org/10.1021/acsnano.2c05586
- Y.L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668), 276–278 (2004). https://doi.org/10.1126/science.1094982
- J.A. Savage, S.D. Beecher, L. Clerx, J.T. Gersony, J. Knoblauch et al., Maintenance of carbohydrate transport in tall trees. Nat. Plants 3(12), 965–972 (2017). https://doi.org/10.1038/s41477-017-0064-y
- W. Fan, J. Ding, J. Ding, Y. Zheng, W. Song et al., Identifying heteroatomic and defective sites in carbon with dual-ion adsorption capability for high energy and power zinc ion capacitor. Nano-Micro Lett. 13(1), 59 (2021). https://doi.org/10.1007/s40820-021-00588-5
- X. Zhou, Q. Liu, C. Jiang, B. Ji, X. Ji et al., Strategies towards low-cost dual-ion batteries with high performance. Angew. Chem. Int. Ed. 59(10), 3802–3832 (2020). https://doi.org/10.1002/anie.201814294
- S. Bellani, F. Wang, G. Longoni, L. Najafi, R. Oropesa-Nuñez et al., WS2–graphite dual-ion batteries. Nano Lett. 18(11), 7155–7164 (2018). https://doi.org/10.1021/acs.nanolett.8b03227
- B. Ji, F. Zhang, X. Song, Y. Tang, A novel potassium-ion-based dual-ion battery. Adv. Mater. 29(19), 1700519 (2017). https://doi.org/10.1002/adma.201700519
- X. Zhang, Y. Tang, F. Zhang, C.-S. Lee, A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016). https://doi.org/10.1002/aenm.201502588
- G. Drozdov, H. Xu, T. Frauenheim, T. Dumitrica, Densely-packed bundles of collapsed carbon nanotubes: Atomistic and mesoscopic distinct element method modeling. Carbon 152, 198–205 (2019). https://doi.org/10.1016/j.carbon.2019.05.036
- Z. Liu, J. Wang, H. Ding, S. Chen, X. Yu et al., Carbon nanoscrolls for aluminum battery. ACS Nano 12(8), 8456–8466 (2018). https://doi.org/10.1021/acsnano.8b03961
- N. Boaretto, M. Rana, R. Marcilla, J.J. Vilatela, Revealing the mechanism of electrochemical lithiation of carbon nanotube fibers. ACS Appl. Energy Mater. 3(9), 8695–8705 (2020). https://doi.org/10.1021/acsaem.0c01267
- M. Angell, C.J. Pan, Y.M. Rong, C.Z. Yuan, M.C. Lin et al., High coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte. Proc. Natl. Acad. Sci. 114(5), 834–839 (2017). https://doi.org/10.1073/pnas.1619795114
- T. Mirfakhrai, J.D.W. Madden, R.H. Baughman, Polymer artificial muscles. Mater. Today 10(4), 30–38 (2007). https://doi.org/10.1016/S1369-7021(07)70048-2
- R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci et al., Carbon nanotube actuators. Science 284(5418), 1340–1344 (1999). https://doi.org/10.1126/science.284.5418.1340
- P. Chen, Y. Xu, S. He, X. Sun, S. Pan et al., Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat. Nanotechnol. 10(12), 1077–1083 (2015). https://doi.org/10.1038/nnano.2015.198
- L. Dong, M. Ren, Y. Wang, G. Wang, S. Zhang et al., Artificial neuromuscular fibers by multilayered coaxial integration with dynamic adaption. Sci. Adv. 8(46), 7703 (2022). https://doi.org/10.1126/sciadv.abq7703
- T. Fukushima, K. Asaka, A. Kosaka, T. Aida, Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew. Chem. Int. Ed. 44(16), 2410–2413 (2005). https://doi.org/10.1002/anie.200462318
References
M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch, M. Sitti, Soft actuators for real-world applications. Nat. Rev. Mater. 7(3), 235–249 (2022). https://doi.org/10.1038/s41578-021-00389-7
I. Apsite, S. Salehi, L. Ionov, Materials for smart soft actuator systems. Chem. Rev. 122(1), 1349–1415 (2022). https://doi.org/10.1021/acs.chemrev.1c00453
F. Soto, E. Karshalev, F. Zhang, B. de Esteban Fernandez Avila, A. Nourhani et al., Smart materials for microrobots. Chem. Rev. 122(5), 5365–5403 (2022). https://doi.org/10.1021/acs.chemrev.0c00999
S.M. Mirvakili, I.W. Hunter, Artificial muscles: mechanisms, applications, and challenges. Adv. Mater. 30(6), 1704407 (2018). https://doi.org/10.1002/adma.201704407
X. Zhou, S. Fang, X. Leng, Z. Liu, R.H. Baughman, The power of fiber twist. Acc. Chem. Res. 54(11), 2624–2636 (2021). https://doi.org/10.1021/acs.accounts.1c00112
J. Xiong, J. Chen, P.S. Lee, Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Adv. Mater. 33(19), 2002640 (2020). https://doi.org/10.1002/adma.202002640
G.V. Stoychev, L. Ionov, Actuating fibers: design and applications. ACS Appl. Mater. Interfaces 8(37), 24281–24294 (2016). https://doi.org/10.1021/acsami.6b07374
C.S. Haines, M.D. Lima, N. Li, G.M. Spinks, J. Foroughi et al., Artificial muscles from fishing line and sewing thread. Science 343(6173), 868–872 (2014). https://doi.org/10.1126/science.1246906
C.S. Hainesa, N. Li, G.M. Spinksb, A.E. Alieva, J. Di et al., New twist on artificial muscles. Proc. Natl. Acad. Sci. USA 113(11), 11709–11716 (2016). https://doi.org/10.1073/pnas.1802492115
J.A. Lee, N. Li, C.S. Haines, K.J. Kim, X. Lepro et al., Electrochemically powered, energy-conserving carbon nanotube artificial muscles. Adv. Mater. 29(31), 1700870 (2017). https://doi.org/10.1002/adma.201700870
H. Kim, J.A. Lee, H.J. Sim, M.D. Lima, R.H. Baughman et al., Temperature-responsive tensile actuator based on multi-walled carbon nanotube yarn. Nano-Micro Lett. 8(3), 254–259 (2016). https://doi.org/10.1007/s40820-016-0084-6
J. He, M. Ren, L. Dong, Y. Wang, X. Wei et al., High-temperature-tolerant artificial muscles using poly(p-phenylene benzobisoxazole) composite yarns. Adv. Fiber. Mater. 4(5), 1256–1266 (2022). https://doi.org/10.1007/s42765-022-00183-2
S.M. Mirvakili, I.W. Hunter, Fast torsional artificial muscles from niti twisted yarns. ACS Appl. Mater. Interfaces 9(19), 16321–16326 (2017). https://doi.org/10.1021/acsami.7b02335
T. Jia, Y. Wang, Y. Dou, Y. Li, M. Jung de Andrade et al., Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv. Funct. Mater. 29(18), 1808241 (2019). https://doi.org/10.1002/adfm.201808241
J. Mu, M. Jung de Andrade, S. Fang, X. Wang, E. Gao et al., Sheath-run artificial muscles. Science 365(6449), 150–155 (2019). https://doi.org/10.1126/science.aaw2403
H.T. Chu, X.H. Hu, Z. Wang, J.K. Mu, N. Li et al., Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science 371(6528), 494–498 (2021). https://doi.org/10.1126/science.abc4538
Y.L. Wang, Y.R. Zhao, M. Ren, Y.R. Zhou, L.Z. Dong et al., Artificial muscle fascicles integrated with high-performance actuation properties and energy-storage function. Nano Energy 102, 107609 (2022). https://doi.org/10.1016/j.nanoen.2022.107609
M. Ren, J. Qiao, Y. Wang, K. Wu, L. Dong et al., Strong and robust electrochemical artificial muscles by ionic-liquid-in-nanofiber-sheathed carbon nanotube yarns. Small 17(5), e2006181 (2021). https://doi.org/10.1002/smll.202006181
L. Li, H. Wang, Unipolar-stroke electrochemical artificial muscles. Adv. Fiber. Mater. 3(3), 147–148 (2021). https://doi.org/10.1007/s42765-021-00071-1
J. Foroughi, G.M. Spinks, G.G. Wallace, J. Oh, M.E. Kozlov et al., Torsional carbon nanotube artificial muscles. Science 334(6055), 494–497 (2011). https://doi.org/10.1126/science.1211220
J. Qiao, J. Di, S. Zhou, K. Jin, S. Zeng et al., Large-stroke electrochemical carbon nanotube/graphene hybrid yarn muscles. Small 14(38), 1801883 (2018). https://doi.org/10.1002/smll.201801883
S.H. Kim, C.S. Haines, N. Li, K.J. Kim, T.J. Mun et al., Harvesting electrical energy from carbon nanotube yarn twist. Science 357(6353), 773–778 (2017). https://doi.org/10.1126/science.aam8771
O. Kim, H. Kim, U.H. Choi, M.J. Park, One-volt-driven superfast polymer actuators based on single-ion conductors. Nat. Commun. 7(1), 13576 (2016). https://doi.org/10.1038/ncomms13576
J.D.W. Madden, N.A. Vandesteeg, P.A. Anquetil, P.G.A. Madden, A. Takshi et al., Artificial muscle technology: physical principles and naval prospects. IEEE J. Ocean. Eng. 29(3), 706–728 (2004). https://doi.org/10.1109/JOE.2004.833135
M. Ren, P. Xu, Y. Zhou, Y. Wang, L. Dong et al., Stepwise artificial yarn muscles with energy-free catch states driven by aluminum-ion insertion. ACS Nano 16(10), 15850–15861 (2022). https://doi.org/10.1021/acsnano.2c05586
Y.L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668), 276–278 (2004). https://doi.org/10.1126/science.1094982
J.A. Savage, S.D. Beecher, L. Clerx, J.T. Gersony, J. Knoblauch et al., Maintenance of carbohydrate transport in tall trees. Nat. Plants 3(12), 965–972 (2017). https://doi.org/10.1038/s41477-017-0064-y
W. Fan, J. Ding, J. Ding, Y. Zheng, W. Song et al., Identifying heteroatomic and defective sites in carbon with dual-ion adsorption capability for high energy and power zinc ion capacitor. Nano-Micro Lett. 13(1), 59 (2021). https://doi.org/10.1007/s40820-021-00588-5
X. Zhou, Q. Liu, C. Jiang, B. Ji, X. Ji et al., Strategies towards low-cost dual-ion batteries with high performance. Angew. Chem. Int. Ed. 59(10), 3802–3832 (2020). https://doi.org/10.1002/anie.201814294
S. Bellani, F. Wang, G. Longoni, L. Najafi, R. Oropesa-Nuñez et al., WS2–graphite dual-ion batteries. Nano Lett. 18(11), 7155–7164 (2018). https://doi.org/10.1021/acs.nanolett.8b03227
B. Ji, F. Zhang, X. Song, Y. Tang, A novel potassium-ion-based dual-ion battery. Adv. Mater. 29(19), 1700519 (2017). https://doi.org/10.1002/adma.201700519
X. Zhang, Y. Tang, F. Zhang, C.-S. Lee, A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016). https://doi.org/10.1002/aenm.201502588
G. Drozdov, H. Xu, T. Frauenheim, T. Dumitrica, Densely-packed bundles of collapsed carbon nanotubes: Atomistic and mesoscopic distinct element method modeling. Carbon 152, 198–205 (2019). https://doi.org/10.1016/j.carbon.2019.05.036
Z. Liu, J. Wang, H. Ding, S. Chen, X. Yu et al., Carbon nanoscrolls for aluminum battery. ACS Nano 12(8), 8456–8466 (2018). https://doi.org/10.1021/acsnano.8b03961
N. Boaretto, M. Rana, R. Marcilla, J.J. Vilatela, Revealing the mechanism of electrochemical lithiation of carbon nanotube fibers. ACS Appl. Energy Mater. 3(9), 8695–8705 (2020). https://doi.org/10.1021/acsaem.0c01267
M. Angell, C.J. Pan, Y.M. Rong, C.Z. Yuan, M.C. Lin et al., High coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte. Proc. Natl. Acad. Sci. 114(5), 834–839 (2017). https://doi.org/10.1073/pnas.1619795114
T. Mirfakhrai, J.D.W. Madden, R.H. Baughman, Polymer artificial muscles. Mater. Today 10(4), 30–38 (2007). https://doi.org/10.1016/S1369-7021(07)70048-2
R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci et al., Carbon nanotube actuators. Science 284(5418), 1340–1344 (1999). https://doi.org/10.1126/science.284.5418.1340
P. Chen, Y. Xu, S. He, X. Sun, S. Pan et al., Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat. Nanotechnol. 10(12), 1077–1083 (2015). https://doi.org/10.1038/nnano.2015.198
L. Dong, M. Ren, Y. Wang, G. Wang, S. Zhang et al., Artificial neuromuscular fibers by multilayered coaxial integration with dynamic adaption. Sci. Adv. 8(46), 7703 (2022). https://doi.org/10.1126/sciadv.abq7703
T. Fukushima, K. Asaka, A. Kosaka, T. Aida, Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew. Chem. Int. Ed. 44(16), 2410–2413 (2005). https://doi.org/10.1002/anie.200462318