Skin-Inspired Ultra-Tough Supramolecular Multifunctional Hydrogel Electronic Skin for Human–Machine Interaction
Corresponding Author: Ye Tian
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 102
Abstract
Multifunctional supramolecular ultra-tough bionic e-skin with unique durability for human–machine interaction in complex scenarios still remains challenging. Herein, we develop a skin-inspired ultra-tough e-skin with tunable mechanical properties by a physical cross-linking salting-freezing-thawing method. The gelling agent (β-Glycerophosphate sodium: Gp) induces the aggregation and binding of PVA molecular chains and thereby toughens them (stress up to 5.79 MPa, toughness up to 13.96 MJ m−3). Notably, due to molecular self-assembly, hydrogels can be fully recycled and reprocessed by direct heating (100 °C for a few seconds), and the tensile strength can still be maintained at about 100% after six recoveries. The hydrogel integrates transparency (> 60%), super toughness (up to 13.96 MJ m−3, bearing 1500 times of its own tensile weight), good antibacterial properties (E. coli and S. aureus), UV protection (Filtration: 80%–90%), high electrical conductivity (4.72 S m−1), anti-swelling and recyclability. The hydrogel can not only monitor daily physiological activities, but also be used for complex activities underwater and message encryption/decryption. We also used it to create a complete finger joint rehabilitation system with an interactive interface that dynamically presents the user’s health status. Our multifunctional electronic skin will have a profound impact on the future of new rehabilitation medical, human–machine interaction, VR/AR and the metaverse fields.
Highlights:
1 The skin-inspired multifunctional ultra-tough electronic skin with tunable mechanical properties was developed by a physically cross-linking salting-freezing-thawing method.
2 The hydrogel integrates transparency (>60%), super toughness (up to 13.96 MJ m−3), good antibacterial properties (E. coli and S. aureus), UV protection (Filtration: 80%–90%), high electrical conductivity (4.72 S m−1), anti-swelling and recyclability.
3 As a human–machine interface, it can be used for complex underwater activities, information encryption/decryption and finger joint rehabilitation training.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Tang, J. Shang, X. Jiang, Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci. Adv. 7(3), eabe3778 (2021). https://doi.org/10.1126/sciadv.abe3778
- Y. Chen, E. Chen, Z. Wang, Y. Ling, R. Fisher et al., Flexible, durable, and washable triboelectric yarn and embroidery for self-powered sensing and human-machine interaction. Nano Energy 104, 107929 (2022). https://doi.org/10.1016/j.nanoen.2022.107929
- W. Lin, D. Zhang, W.W. Lee, X. Li, Y. Hong et al., Super-resolution wearable electrotactile rendering system. Sci. Adv. 8(36), eabp8738 (2022). https://doi.org/10.1126/sciadv.abp8738
- H.-W. Huang, J. Chen, P.R. Chai, C. Ehmke, P. Rupp et al., Mobile robotic platform for contactless vital sign monitoring. Cyborg. Bionic Syst. 2022, 9780497 (2022). https://doi.org/10.34133/2022/9780497
- D. Kim, T. Yokota, T. Suzuki, S. Lee, T. Woo et al., Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. Proc. Natl. Acad. Sci. 117(35), 21138–21146 (2020). https://doi.org/10.1073/pnas.2007395117
- H. Yu, J. Kim, H. Kim, N. Barange, X. Jiang et al., Direct acoustic imaging using a piezoelectric organic light-emitting diode. ACS Appl. Mater. Interfaces 12(32), 36409–36416 (2020). https://doi.org/10.1021/acsami.0c05615
- Y. Yan, Z. Hu, Z. Yang, W. Yuan, C. Song et al., Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Rob. 6(51), eabc8801 (2021). https://doi.org/10.1126/scirobotics.abc8801
- I. You, D.G. Mackanic, N. Matsuhisa, J. Kang, J. Kwon et al., Artificial multimodal receptors based on ion relaxation dynamics. Science 370(6519), 961–965 (2020). https://doi.org/10.1126/science.aba5132
- M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara et al., An ultra-lightweight design for imperceptible plastic electronics. Nature 499(7459), 458–463 (2013). https://doi.org/10.1038/nature12314
- O.A. Araromi, M.A. Graule, K.L. Dorsey, S. Castellanos, J.R. Foster et al., Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 587(7833), 219–224 (2020). https://doi.org/10.1038/s41586-020-2892-6
- A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori et al., Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12(9), 907–913 (2017). https://doi.org/10.1038/nnano.2017.125
- Y. Wang, S. Lee, T. Yokota, H. Wang, Z. Jiang et al., A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci. Adv. 6(33), eabb7043 (2020). https://doi.org/10.1126/sciadv.abb7043
- S. Chun, J.-S. Kim, Y. Yoo, Y. Choi, S.J. Jung et al., An artificial neural tactile sensing system. Nat. Electron. 4(6), 429–438 (2021). https://doi.org/10.1038/s41928-021-00585-x
- K.K. Kim, I. Ha, M. Kim, J. Choi, P. Won et al., A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 11(1), 2149 (2020). https://doi.org/10.1038/s41467-020-16040-y
- A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti et al., A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4(1), 54–63 (2021). https://doi.org/10.1038/s41928-020-00510-8
- Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3(9), 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
- Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
- L. Song, Z. Zhang, X. Xun, L. Xu, F. Gao et al., Fully organic self-powered electronic skin with multifunctional and highly robust sensing capability. Cyborg. Bionic Syst. 2021, 9801832 (2021). https://doi.org/10.34133/2021/9801832
- Q. Yang, T. Wei, R.T. Yin, M. Wu, Y. Xu et al., Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20(11), 1559–1570 (2021). https://doi.org/10.1038/s41563-021-01051-x
- H. Xia, Y. Zhang, H. Xin, D. Yan, G. Li et al., Metal-phenolic network-based polydopamine@cu within a polyvinyl alcohol hydrogel film for improved infected wound healing through antibacterial and pro-angiogenesis activity. Mater. Des. 221, 110904 (2022). https://doi.org/10.1016/j.matdes.2022.110904
- H. Li, J. Li, T. Li, C. Wu, W. Zhang, Macroporous polyvinyl alcohol-tannic acid hydrogel with high strength and toughness for cartilage replacement. J. Mater. Sci. 57(17), 8262–8275 (2022). https://doi.org/10.1007/s10853-022-07209-5
- F.-X. Wang, Z.-Y. Wu, Q.-H. Lin, T. Chen, S.-L. Kuang et al., Novel force measurement system for soft tissue balance in total knee arthroplasty based on flexible pressure sensor arrays. Adv. Intell. Syst. 4(4), 2100156 (2022). https://doi.org/10.1002/aisy.202100156
- Y. Ma, Z. Li, J. Han, L. Li, M. Wang et al., Vertical graphene canal mesh for strain sensing with a supereminent resolution. ACS Appl. Mater. Interfaces 14(28), 32387–32394 (2022). https://doi.org/10.1021/acsami.2c07658
- S. Lin, J. Liu, X. Liu, X. Zhao, Muscle-like fatigue-resistant hydrogels by mechanical training. Proc. Natl. Acad. Sci. 116(21), 10244–10249 (2019). https://doi.org/10.1073/pnas.1903019116
- Z. Qiao, M. Cao, K. Michels, L. Hoffman, H.-F. Ji, Design and fabrication of highly stretchable and tough hydrogels. Polym. Rev. 60(3), 420–441 (2020). https://doi.org/10.1080/15583724.2019.1691590
- D. Kong, Z.M. El-Bahy, H. Algadi, T. Li, S.M. El-Bahy et al., Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv. Compos. Hybrid Mater. 5(3), 1976–1987 (2022). https://doi.org/10.1007/s42114-022-00531-1
- A. Yumin, D. Liguo, Y. Yi, J. Yongna, Mechanical properties of an interpenetrating network poly(vinyl alcohol)/alginate hydrogel with hierarchical fibrous structures. RSC Adv. 12(19), 11632–11639 (2022). https://doi.org/10.1039/D1RA07368K
- H. Yang, M. Ji, M. Yang, M. Shi, Y. Pan et al., Fabricating hydrogels to mimic biological tissues of complex shapes and high fatigue resistance. Matter 4(6), 1935–1946 (2021). https://doi.org/10.1016/j.matt.2021.03.011
- Y. Gong, Y. Hu, Y. Cheng, Z. Liu, Y. Gu et al., An electrically conductive polyvinyl alcohol/poly (acrylic acid-co-acrylamide)/polydopamine-decorated carbon nanotubes composite hydrogel with appropriate mechanical properties for human movement monitoring. J. Mater. Sci. 57(27), 12947–12959 (2022). https://doi.org/10.1007/s10853-022-07435-x
- G. Nian, J. Kim, X. Bao, Z. Suo, Making highly elastic and tough hydrogels from doughs. Adv. Mater. 34(50), 2206577 (2022). https://doi.org/10.1002/adma.202206577
- Z. Yu, J. Liu, H. He, S. Ma, J. Yao, Flame-retardant pnipaam/sodium alginate/polyvinyl alcohol hydrogels used for fire-fighting application: Preparation and characteristic evaluations. Carbohydr. Polym. 255(2), 117485 (2021). https://doi.org/10.1016/j.carbpol.2020.117485
- S. Xue, Y. Wu, G. Liu, M. Guo, Y. Liu et al., Hierarchically reversible crosslinking polymeric hydrogels with highly efficient self-healing, robust mechanical properties, and double-driven shape memory behavior. J. Mater. Chem. A 9(9), 5730–5739 (2021). https://doi.org/10.1039/D0TA10850B
- G. Zhang, J. Kim, S. Hassan, Z. Suo, Self-assembled nanocomposites of high water content and load-bearing capacity. Proc. Natl. Acad. Sci. 119(32), e2203962119 (2022). https://doi.org/10.1073/pnas.2203962119
- P. Chakraborty, E. Gazit, Amino acid based self-assembled nanostructures: complex structures from remarkably simple building blocks. ChemNanoMat 4(8), 730–740 (2018). https://doi.org/10.1002/cnma.201800147
- H. Xue, J. Fei, A. Wu, X. Xu, J. Li, Gas-induced phase transition of dipeptide supramolecular assembly. CCS Chem. 3(11), 8–16 (2021). https://doi.org/10.31635/ccschem.021.202000601
- J.-F. Chen, Q. Lin, H. Yao, Y.-M. Zhang, T.-B. Wei, Pillar[5]arene-based multifunctional supramolecular hydrogel: multistimuli responsiveness, self-healing, fluorescence sensing, and conductivity. Mater. Chem. Front. 2(5), 999–1003 (2018). https://doi.org/10.1039/C8QM00065D
- M. Ikeda, T. Tanida, T. Yoshii, K. Kurotani, S. Onogi et al., Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel-enzyme hybrids. Nat. Chem. 6(6), 511–518 (2014). https://doi.org/10.1038/nchem.1937
- T. Yoshii, M. Ikeda, I. Hamachi, Two-photon-responsive supramolecular hydrogel for controlling materials motion in micrometer space. Angew. Chem. Int. Ed. 53(28), 7264–7267 (2014). https://doi.org/10.1002/anie.201404158
- J. Li, Self-assembled supramolecular hydrogels based on polymer-cyclodextrin inclusion complexes for drug delivery. NPG Asia Mater. 2(3), 112–118 (2010). https://doi.org/10.1038/asiamat.2010.84
- X. Zhang, N. Sheng, L. Wang, Y. Tan, C. Liu et al., Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater. Horiz. 6(2), 326–333 (2019). https://doi.org/10.1039/C8MH01188E
- G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si et al., Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 28(32), 1802576 (2018). https://doi.org/10.1002/adfm.201802576
- D. Yang, Y. Wang, Z. Li, Y. Xu, F. Cheng et al., Color-tunable luminescent hydrogels with tough mechanical strength and self-healing ability. J. Mater. Chem. C 6(5), 1153–1159 (2018). https://doi.org/10.1039/C7TC05593E
- L. Fan, J. Xie, Y. Zheng, D. Wei, D. Yao et al., Antibacterial, self-adhesive, recyclable, and tough conductive composite hydrogels for ultrasensitive strain sensing. ACS Appl. Mater. Interfaces 12(19), 22225–22236 (2020). https://doi.org/10.1021/acsami.0c06091
- S. Pan, M. Xia, H. Li, X. Jiang, P. He et al., Transparent, high-strength, stretchable, sensitive and anti-freezing poly(vinyl alcohol) ionic hydrogel strain sensors for human motion monitoring. J. Mater. Chem. C 8(8), 2827–2837 (2020). https://doi.org/10.1039/C9TC06338B
- J. Wang, X. Zhang, S. Zhang, J. Kang, Z. Guo et al., Semi-convertible hydrogel enabled photoresponsive lubrication. Matter 4(2), 675–687 (2021). https://doi.org/10.1016/j.matt.2020.11.018
- H. Chen, J. Huang, J. Liu, J. Gu, J. Zhu et al., High toughness multifunctional organic hydrogels for flexible strain and temperature sensor. J. Mater. Chem. A 9(40), 23243–23255 (2021). https://doi.org/10.1039/D1TA07127K
- Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang et al., Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 29(1), 1806220 (2019). https://doi.org/10.1002/adfm.201806220
- X. Dong, X. Guo, Q. Liu, Y. Zhao, H. Qi et al., Strong and tough conductive organo-hydrogels via freeze-casting assisted solution substitution. Adv. Funct. Mater. 32(31), 2203610 (2022). https://doi.org/10.1002/adfm.202203610
- X. Jiang, N. Xiang, H. Zhang, Y. Sun, Z. Lin et al., Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity. Carbohydr. Polym. 186, 377–383 (2018). https://doi.org/10.1016/j.carbpol.2018.01.061
- Y. Wang, Q. Chang, R. Zhan, K. Xu, Y. Wang et al., Tough but self-healing and 3D printable hydrogels for e-skin, e-noses and laser controlled actuators. J. Mater. Chem. A 7(43), 24814–24829 (2019). https://doi.org/10.1039/C9TA04248B
- M. Li, Y. Zhang, L. Lian, K. Liu, M. Lu et al., Flexible accelerated-wound-healing antibacterial MXene-based epidermic sensor for intelligent wearable human-machine interaction. Adv. Funct. Mater. 32(47), 2208141 (2022). https://doi.org/10.1002/adfm.202208141
- R. Fu, Y. Guan, C. Xiao, L. Fan, Z. Wang et al., Tough and highly efficient underwater self-repairing hydrogels for soft electronics. Small Methods 6(5), 2101513 (2022). https://doi.org/10.1002/smtd.202101513
- E. Thormann, On understanding of the hofmeister effect: How addition of salt alters the stability of temperature responsive polymers in aqueous solutions. RSC Adv. 2(22), 8297–8305 (2012). https://doi.org/10.1039/C2RA20164J
- Y. Zhang, S. Furyk, D.E. Bergbreiter, P.S. Cremer, Specific ion effects on the water solubility of macromolecules: pnipam and the hofmeister series. J. Am. Chem. Soc. 127(41), 14505–14510 (2005). https://doi.org/10.1021/ja0546424
- R.A. Saari, R. Maeno, R. Tsuyuguchi, W. Marujiwat, P. Phulkerd et al., Impact of lithium halides on rheological properties of aqueous solution of poly(vinyl alcohol). J. Polym. Res. 27(8), 218 (2020). https://doi.org/10.1007/s10965-020-02198-y
- K. Kazimierska-Drobny, M. Kaczmarek, Effect of NaCl and KCl solutions on deformation of PVA hydrogel-chemo-mechanical coupling. Polimery 65(1), 44–50 (2020). https://doi.org/10.14314/polimery.2020.1.6
- J. Cho, M.-C. Heuzey, A. Bégin, P.J. Carreau, Physical gelation of chitosan in the presence of β-glycerophosphate: the effect of temperature. Biomacromol 6(6), 3267–3275 (2005). https://doi.org/10.1021/bm050313s
- M. Rinaudo, G. Pavlov, J. Desbrières, Influence of acetic acid concentration on the solubilization of chitosan. Polymer 40(25), 7029–7032 (1999). https://doi.org/10.1016/S0032-3861(99)00056-7
- L. Liu, X. Tang, Y. Wang, S. Guo, Smart gelation of chitosan solution in the presence of NaHCO3 for injectable drug delivery system. Int. J. Pharm. 414(1), 6–15 (2011). https://doi.org/10.1016/j.ijpharm.2011.04.052
- L. Fang, Z. Cai, Z. Ding, T. Chen, J. Zhang et al., Skin-inspired surface-microstructured tough hydrogel electrolytes for stretchable supercapacitors. ACS Appl. Mater. Interfaces 11(24), 21895–21903 (2019). https://doi.org/10.1021/acsami.9b03410
- T. Long, Y. Li, X. Fang, J. Sun, Salt-mediated polyampholyte hydrogels with high mechanical strength, excellent self-healing property, and satisfactory electrical conductivity. Adv. Funct. Mater. 28(44), 1804416 (2018). https://doi.org/10.1002/adfm.201804416
- G. Chen, J. Huang, J. Gu, S. Peng, X. Xiang et al., Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor. J. Mater. Chem. A 8(14), 6776–6784 (2020). https://doi.org/10.1039/D0TA00002G
- X. Qu, S. Wang, Y. Zhao, H. Huang, Q. Wang et al., Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor. Chem. Eng. J. 425, 131523 (2021). https://doi.org/10.1016/j.cej.2021.131523
- J. Luo, C. Sun, B. Chang, Y. Jing, K. Li et al., MXene-enabled self-adaptive hydrogel interface for active electroencephalogram interactions. ACS Nano 16(11), 19373–19384 (2022). https://doi.org/10.1021/acsnano.2c08961
- F. Mo, Y. Huang, Q. Li, Z. Wang, R. Jiang et al., A highly stable and durable capacitive strain sensor based on dynamically super-tough hydro/organo-gels. Adv. Funct. Mater. 31(28), 2010830 (2021). https://doi.org/10.1002/adfm.202010830
- Ra. Li, T. Fan, G. Chen, H. Xie, B. Su et al., Highly transparent, self-healing conductive elastomers enabled by synergistic hydrogen bonding interactions. Chem. Eng. J. 393, 124685 (2020). https://doi.org/10.1016/j.cej.2020.124685
- H. Tang, Y. Li, B. Chen, X. Chen, Y. Han et al., In situ forming epidermal bioelectronics for daily monitoring and comprehensive exercise. ACS Nano 16(11), 17931–17947 (2022). https://doi.org/10.1021/acsnano.2c03414
- J. Jian, Y. Xie, S. Gao, Y. Sun, C. Lai et al., A skin-inspired biomimetic strategy to fabricate cellulose enhanced antibacterial hydrogels as strain sensors. Carbohydr. Polym. 294, 119760 (2022). https://doi.org/10.1016/j.carbpol.2022.119760
- H. Huang, L. Han, X. Fu, Y. Wang, Z. Yang et al., Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin. Adv. Electron. Mater. 6(7), 2000239 (2020). https://doi.org/10.1002/aelm.202000239
- Y. Ye, Y. Zhang, Y. Chen, X. Han, F. Jiang, Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30(35), 2003430 (2020). https://doi.org/10.1002/adfm.202003430
- W.J. Yang, R. Zhang, X. Guo, R. Ma, Z. Liu et al., Supramolecular polyelectrolyte hydrogel based on conjoined double-networks for multifunctional applications. J. Mater. Chem. A 10(44), 23649–23665 (2022). https://doi.org/10.1039/D2TA05530A
References
L. Tang, J. Shang, X. Jiang, Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci. Adv. 7(3), eabe3778 (2021). https://doi.org/10.1126/sciadv.abe3778
Y. Chen, E. Chen, Z. Wang, Y. Ling, R. Fisher et al., Flexible, durable, and washable triboelectric yarn and embroidery for self-powered sensing and human-machine interaction. Nano Energy 104, 107929 (2022). https://doi.org/10.1016/j.nanoen.2022.107929
W. Lin, D. Zhang, W.W. Lee, X. Li, Y. Hong et al., Super-resolution wearable electrotactile rendering system. Sci. Adv. 8(36), eabp8738 (2022). https://doi.org/10.1126/sciadv.abp8738
H.-W. Huang, J. Chen, P.R. Chai, C. Ehmke, P. Rupp et al., Mobile robotic platform for contactless vital sign monitoring. Cyborg. Bionic Syst. 2022, 9780497 (2022). https://doi.org/10.34133/2022/9780497
D. Kim, T. Yokota, T. Suzuki, S. Lee, T. Woo et al., Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. Proc. Natl. Acad. Sci. 117(35), 21138–21146 (2020). https://doi.org/10.1073/pnas.2007395117
H. Yu, J. Kim, H. Kim, N. Barange, X. Jiang et al., Direct acoustic imaging using a piezoelectric organic light-emitting diode. ACS Appl. Mater. Interfaces 12(32), 36409–36416 (2020). https://doi.org/10.1021/acsami.0c05615
Y. Yan, Z. Hu, Z. Yang, W. Yuan, C. Song et al., Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Rob. 6(51), eabc8801 (2021). https://doi.org/10.1126/scirobotics.abc8801
I. You, D.G. Mackanic, N. Matsuhisa, J. Kang, J. Kwon et al., Artificial multimodal receptors based on ion relaxation dynamics. Science 370(6519), 961–965 (2020). https://doi.org/10.1126/science.aba5132
M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara et al., An ultra-lightweight design for imperceptible plastic electronics. Nature 499(7459), 458–463 (2013). https://doi.org/10.1038/nature12314
O.A. Araromi, M.A. Graule, K.L. Dorsey, S. Castellanos, J.R. Foster et al., Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 587(7833), 219–224 (2020). https://doi.org/10.1038/s41586-020-2892-6
A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori et al., Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12(9), 907–913 (2017). https://doi.org/10.1038/nnano.2017.125
Y. Wang, S. Lee, T. Yokota, H. Wang, Z. Jiang et al., A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci. Adv. 6(33), eabb7043 (2020). https://doi.org/10.1126/sciadv.abb7043
S. Chun, J.-S. Kim, Y. Yoo, Y. Choi, S.J. Jung et al., An artificial neural tactile sensing system. Nat. Electron. 4(6), 429–438 (2021). https://doi.org/10.1038/s41928-021-00585-x
K.K. Kim, I. Ha, M. Kim, J. Choi, P. Won et al., A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 11(1), 2149 (2020). https://doi.org/10.1038/s41467-020-16040-y
A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti et al., A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4(1), 54–63 (2021). https://doi.org/10.1038/s41928-020-00510-8
Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3(9), 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
L. Song, Z. Zhang, X. Xun, L. Xu, F. Gao et al., Fully organic self-powered electronic skin with multifunctional and highly robust sensing capability. Cyborg. Bionic Syst. 2021, 9801832 (2021). https://doi.org/10.34133/2021/9801832
Q. Yang, T. Wei, R.T. Yin, M. Wu, Y. Xu et al., Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20(11), 1559–1570 (2021). https://doi.org/10.1038/s41563-021-01051-x
H. Xia, Y. Zhang, H. Xin, D. Yan, G. Li et al., Metal-phenolic network-based polydopamine@cu within a polyvinyl alcohol hydrogel film for improved infected wound healing through antibacterial and pro-angiogenesis activity. Mater. Des. 221, 110904 (2022). https://doi.org/10.1016/j.matdes.2022.110904
H. Li, J. Li, T. Li, C. Wu, W. Zhang, Macroporous polyvinyl alcohol-tannic acid hydrogel with high strength and toughness for cartilage replacement. J. Mater. Sci. 57(17), 8262–8275 (2022). https://doi.org/10.1007/s10853-022-07209-5
F.-X. Wang, Z.-Y. Wu, Q.-H. Lin, T. Chen, S.-L. Kuang et al., Novel force measurement system for soft tissue balance in total knee arthroplasty based on flexible pressure sensor arrays. Adv. Intell. Syst. 4(4), 2100156 (2022). https://doi.org/10.1002/aisy.202100156
Y. Ma, Z. Li, J. Han, L. Li, M. Wang et al., Vertical graphene canal mesh for strain sensing with a supereminent resolution. ACS Appl. Mater. Interfaces 14(28), 32387–32394 (2022). https://doi.org/10.1021/acsami.2c07658
S. Lin, J. Liu, X. Liu, X. Zhao, Muscle-like fatigue-resistant hydrogels by mechanical training. Proc. Natl. Acad. Sci. 116(21), 10244–10249 (2019). https://doi.org/10.1073/pnas.1903019116
Z. Qiao, M. Cao, K. Michels, L. Hoffman, H.-F. Ji, Design and fabrication of highly stretchable and tough hydrogels. Polym. Rev. 60(3), 420–441 (2020). https://doi.org/10.1080/15583724.2019.1691590
D. Kong, Z.M. El-Bahy, H. Algadi, T. Li, S.M. El-Bahy et al., Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv. Compos. Hybrid Mater. 5(3), 1976–1987 (2022). https://doi.org/10.1007/s42114-022-00531-1
A. Yumin, D. Liguo, Y. Yi, J. Yongna, Mechanical properties of an interpenetrating network poly(vinyl alcohol)/alginate hydrogel with hierarchical fibrous structures. RSC Adv. 12(19), 11632–11639 (2022). https://doi.org/10.1039/D1RA07368K
H. Yang, M. Ji, M. Yang, M. Shi, Y. Pan et al., Fabricating hydrogels to mimic biological tissues of complex shapes and high fatigue resistance. Matter 4(6), 1935–1946 (2021). https://doi.org/10.1016/j.matt.2021.03.011
Y. Gong, Y. Hu, Y. Cheng, Z. Liu, Y. Gu et al., An electrically conductive polyvinyl alcohol/poly (acrylic acid-co-acrylamide)/polydopamine-decorated carbon nanotubes composite hydrogel with appropriate mechanical properties for human movement monitoring. J. Mater. Sci. 57(27), 12947–12959 (2022). https://doi.org/10.1007/s10853-022-07435-x
G. Nian, J. Kim, X. Bao, Z. Suo, Making highly elastic and tough hydrogels from doughs. Adv. Mater. 34(50), 2206577 (2022). https://doi.org/10.1002/adma.202206577
Z. Yu, J. Liu, H. He, S. Ma, J. Yao, Flame-retardant pnipaam/sodium alginate/polyvinyl alcohol hydrogels used for fire-fighting application: Preparation and characteristic evaluations. Carbohydr. Polym. 255(2), 117485 (2021). https://doi.org/10.1016/j.carbpol.2020.117485
S. Xue, Y. Wu, G. Liu, M. Guo, Y. Liu et al., Hierarchically reversible crosslinking polymeric hydrogels with highly efficient self-healing, robust mechanical properties, and double-driven shape memory behavior. J. Mater. Chem. A 9(9), 5730–5739 (2021). https://doi.org/10.1039/D0TA10850B
G. Zhang, J. Kim, S. Hassan, Z. Suo, Self-assembled nanocomposites of high water content and load-bearing capacity. Proc. Natl. Acad. Sci. 119(32), e2203962119 (2022). https://doi.org/10.1073/pnas.2203962119
P. Chakraborty, E. Gazit, Amino acid based self-assembled nanostructures: complex structures from remarkably simple building blocks. ChemNanoMat 4(8), 730–740 (2018). https://doi.org/10.1002/cnma.201800147
H. Xue, J. Fei, A. Wu, X. Xu, J. Li, Gas-induced phase transition of dipeptide supramolecular assembly. CCS Chem. 3(11), 8–16 (2021). https://doi.org/10.31635/ccschem.021.202000601
J.-F. Chen, Q. Lin, H. Yao, Y.-M. Zhang, T.-B. Wei, Pillar[5]arene-based multifunctional supramolecular hydrogel: multistimuli responsiveness, self-healing, fluorescence sensing, and conductivity. Mater. Chem. Front. 2(5), 999–1003 (2018). https://doi.org/10.1039/C8QM00065D
M. Ikeda, T. Tanida, T. Yoshii, K. Kurotani, S. Onogi et al., Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel-enzyme hybrids. Nat. Chem. 6(6), 511–518 (2014). https://doi.org/10.1038/nchem.1937
T. Yoshii, M. Ikeda, I. Hamachi, Two-photon-responsive supramolecular hydrogel for controlling materials motion in micrometer space. Angew. Chem. Int. Ed. 53(28), 7264–7267 (2014). https://doi.org/10.1002/anie.201404158
J. Li, Self-assembled supramolecular hydrogels based on polymer-cyclodextrin inclusion complexes for drug delivery. NPG Asia Mater. 2(3), 112–118 (2010). https://doi.org/10.1038/asiamat.2010.84
X. Zhang, N. Sheng, L. Wang, Y. Tan, C. Liu et al., Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater. Horiz. 6(2), 326–333 (2019). https://doi.org/10.1039/C8MH01188E
G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si et al., Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 28(32), 1802576 (2018). https://doi.org/10.1002/adfm.201802576
D. Yang, Y. Wang, Z. Li, Y. Xu, F. Cheng et al., Color-tunable luminescent hydrogels with tough mechanical strength and self-healing ability. J. Mater. Chem. C 6(5), 1153–1159 (2018). https://doi.org/10.1039/C7TC05593E
L. Fan, J. Xie, Y. Zheng, D. Wei, D. Yao et al., Antibacterial, self-adhesive, recyclable, and tough conductive composite hydrogels for ultrasensitive strain sensing. ACS Appl. Mater. Interfaces 12(19), 22225–22236 (2020). https://doi.org/10.1021/acsami.0c06091
S. Pan, M. Xia, H. Li, X. Jiang, P. He et al., Transparent, high-strength, stretchable, sensitive and anti-freezing poly(vinyl alcohol) ionic hydrogel strain sensors for human motion monitoring. J. Mater. Chem. C 8(8), 2827–2837 (2020). https://doi.org/10.1039/C9TC06338B
J. Wang, X. Zhang, S. Zhang, J. Kang, Z. Guo et al., Semi-convertible hydrogel enabled photoresponsive lubrication. Matter 4(2), 675–687 (2021). https://doi.org/10.1016/j.matt.2020.11.018
H. Chen, J. Huang, J. Liu, J. Gu, J. Zhu et al., High toughness multifunctional organic hydrogels for flexible strain and temperature sensor. J. Mater. Chem. A 9(40), 23243–23255 (2021). https://doi.org/10.1039/D1TA07127K
Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang et al., Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 29(1), 1806220 (2019). https://doi.org/10.1002/adfm.201806220
X. Dong, X. Guo, Q. Liu, Y. Zhao, H. Qi et al., Strong and tough conductive organo-hydrogels via freeze-casting assisted solution substitution. Adv. Funct. Mater. 32(31), 2203610 (2022). https://doi.org/10.1002/adfm.202203610
X. Jiang, N. Xiang, H. Zhang, Y. Sun, Z. Lin et al., Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity. Carbohydr. Polym. 186, 377–383 (2018). https://doi.org/10.1016/j.carbpol.2018.01.061
Y. Wang, Q. Chang, R. Zhan, K. Xu, Y. Wang et al., Tough but self-healing and 3D printable hydrogels for e-skin, e-noses and laser controlled actuators. J. Mater. Chem. A 7(43), 24814–24829 (2019). https://doi.org/10.1039/C9TA04248B
M. Li, Y. Zhang, L. Lian, K. Liu, M. Lu et al., Flexible accelerated-wound-healing antibacterial MXene-based epidermic sensor for intelligent wearable human-machine interaction. Adv. Funct. Mater. 32(47), 2208141 (2022). https://doi.org/10.1002/adfm.202208141
R. Fu, Y. Guan, C. Xiao, L. Fan, Z. Wang et al., Tough and highly efficient underwater self-repairing hydrogels for soft electronics. Small Methods 6(5), 2101513 (2022). https://doi.org/10.1002/smtd.202101513
E. Thormann, On understanding of the hofmeister effect: How addition of salt alters the stability of temperature responsive polymers in aqueous solutions. RSC Adv. 2(22), 8297–8305 (2012). https://doi.org/10.1039/C2RA20164J
Y. Zhang, S. Furyk, D.E. Bergbreiter, P.S. Cremer, Specific ion effects on the water solubility of macromolecules: pnipam and the hofmeister series. J. Am. Chem. Soc. 127(41), 14505–14510 (2005). https://doi.org/10.1021/ja0546424
R.A. Saari, R. Maeno, R. Tsuyuguchi, W. Marujiwat, P. Phulkerd et al., Impact of lithium halides on rheological properties of aqueous solution of poly(vinyl alcohol). J. Polym. Res. 27(8), 218 (2020). https://doi.org/10.1007/s10965-020-02198-y
K. Kazimierska-Drobny, M. Kaczmarek, Effect of NaCl and KCl solutions on deformation of PVA hydrogel-chemo-mechanical coupling. Polimery 65(1), 44–50 (2020). https://doi.org/10.14314/polimery.2020.1.6
J. Cho, M.-C. Heuzey, A. Bégin, P.J. Carreau, Physical gelation of chitosan in the presence of β-glycerophosphate: the effect of temperature. Biomacromol 6(6), 3267–3275 (2005). https://doi.org/10.1021/bm050313s
M. Rinaudo, G. Pavlov, J. Desbrières, Influence of acetic acid concentration on the solubilization of chitosan. Polymer 40(25), 7029–7032 (1999). https://doi.org/10.1016/S0032-3861(99)00056-7
L. Liu, X. Tang, Y. Wang, S. Guo, Smart gelation of chitosan solution in the presence of NaHCO3 for injectable drug delivery system. Int. J. Pharm. 414(1), 6–15 (2011). https://doi.org/10.1016/j.ijpharm.2011.04.052
L. Fang, Z. Cai, Z. Ding, T. Chen, J. Zhang et al., Skin-inspired surface-microstructured tough hydrogel electrolytes for stretchable supercapacitors. ACS Appl. Mater. Interfaces 11(24), 21895–21903 (2019). https://doi.org/10.1021/acsami.9b03410
T. Long, Y. Li, X. Fang, J. Sun, Salt-mediated polyampholyte hydrogels with high mechanical strength, excellent self-healing property, and satisfactory electrical conductivity. Adv. Funct. Mater. 28(44), 1804416 (2018). https://doi.org/10.1002/adfm.201804416
G. Chen, J. Huang, J. Gu, S. Peng, X. Xiang et al., Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor. J. Mater. Chem. A 8(14), 6776–6784 (2020). https://doi.org/10.1039/D0TA00002G
X. Qu, S. Wang, Y. Zhao, H. Huang, Q. Wang et al., Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor. Chem. Eng. J. 425, 131523 (2021). https://doi.org/10.1016/j.cej.2021.131523
J. Luo, C. Sun, B. Chang, Y. Jing, K. Li et al., MXene-enabled self-adaptive hydrogel interface for active electroencephalogram interactions. ACS Nano 16(11), 19373–19384 (2022). https://doi.org/10.1021/acsnano.2c08961
F. Mo, Y. Huang, Q. Li, Z. Wang, R. Jiang et al., A highly stable and durable capacitive strain sensor based on dynamically super-tough hydro/organo-gels. Adv. Funct. Mater. 31(28), 2010830 (2021). https://doi.org/10.1002/adfm.202010830
Ra. Li, T. Fan, G. Chen, H. Xie, B. Su et al., Highly transparent, self-healing conductive elastomers enabled by synergistic hydrogen bonding interactions. Chem. Eng. J. 393, 124685 (2020). https://doi.org/10.1016/j.cej.2020.124685
H. Tang, Y. Li, B. Chen, X. Chen, Y. Han et al., In situ forming epidermal bioelectronics for daily monitoring and comprehensive exercise. ACS Nano 16(11), 17931–17947 (2022). https://doi.org/10.1021/acsnano.2c03414
J. Jian, Y. Xie, S. Gao, Y. Sun, C. Lai et al., A skin-inspired biomimetic strategy to fabricate cellulose enhanced antibacterial hydrogels as strain sensors. Carbohydr. Polym. 294, 119760 (2022). https://doi.org/10.1016/j.carbpol.2022.119760
H. Huang, L. Han, X. Fu, Y. Wang, Z. Yang et al., Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin. Adv. Electron. Mater. 6(7), 2000239 (2020). https://doi.org/10.1002/aelm.202000239
Y. Ye, Y. Zhang, Y. Chen, X. Han, F. Jiang, Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30(35), 2003430 (2020). https://doi.org/10.1002/adfm.202003430
W.J. Yang, R. Zhang, X. Guo, R. Ma, Z. Liu et al., Supramolecular polyelectrolyte hydrogel based on conjoined double-networks for multifunctional applications. J. Mater. Chem. A 10(44), 23649–23665 (2022). https://doi.org/10.1039/D2TA05530A