Bioinspired Multifunctional Self-Sensing Actuated Gradient Hydrogel for Soft-Hard Robot Remote Interaction
Corresponding Author: Ye Tian
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 69
Abstract
The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sensing actuated gradient hydrogel that combines ultrafast actuation and high sensitivity for remote interaction with robotic hand. The gradient network structure, achieved through a wettability difference method involving the rapid precipitation of MoO2 nanosheets, introduces hydrophilic disparities between two sides within hydrogel. This distinctive approach bestows the hydrogel with ultrafast thermo-responsive actuation (21° s−1) and enhanced photothermal efficiency (increase by 3.7 °C s−1 under 808 nm near-infrared). Moreover, the local cross-linking of sodium alginate with Ca2+ endows the hydrogel with programmable deformability and information display capabilities. Additionally, the hydrogel exhibits high sensitivity (gauge factor 3.94 within a wide strain range of 600%), fast response times (140 ms) and good cycling stability. Leveraging these exceptional properties, we incorporate the hydrogel into various soft actuators, including soft gripper, artificial iris, and bioinspired jellyfish, as well as wearable electronics capable of precise human motion and physiological signal detection. Furthermore, through the synergistic combination of remarkable actuation and sensitivity, we realize a self-sensing touch bioinspired tongue. Notably, by employing quantitative analysis of actuation-sensing, we realize remote interaction between soft-hard robot via the Internet of Things. The multifunctional self-sensing actuated gradient hydrogel presented in this study provides a new insight for advanced somatosensory materials, self-feedback intelligent soft robots and human–machine interactions.
Highlights:
1 The bioinspired self-sensing actuated gradient hydrogel was developed by a wettability-based method via precipitation of MoO2 nanosheets.
2 Self-sensing actuated gradient hydrogel combined ultrafast thermo-responsive actuation (21° s–1), exceptional photothermal efficiency (3.7 °C s–1) and high sensing properties (GF = 3.94).
3 The first self-sensing remote interaction system based on gradient hydrogel actuators and robotic hands was constructed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Li, H. Yang, N. Zhu, G. Chen, Y. Miao et al., Biotissue-inspired anisotropic carbon fiber composite hydrogels for logic gates, integrated soft actuators, and sensors with ultra-high sensitivity. Adv. Funct. Mater. 33, 2370065 (2023). https://doi.org/10.1002/adfm.202370065
- Y. Qiu, C. Wang, X. Lu, H. Wu, X. Ma et al., A biomimetic Drosera capensis with adaptive decision-predation behavior based on multifunctional sensing and fast actuating capability. Adv. Funct. Mater. 32, 2270077 (2022). https://doi.org/10.1002/adfm.202270077
- X.Q. Wang, K.H. Chan, Y. Cheng, T. Ding, T. Li et al., Somatosensory, light-driven, thin-film robots capable of integrated perception and motility. Adv. Mater. 32, e2000351 (2020). https://doi.org/10.1002/adma.202000351
- M. Baumgartner, F. Hartmann, M. Drack, D. Preninger, D. Wirthl et al., Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102–1109 (2020). https://doi.org/10.1038/s41563-020-0699-3
- L. Yang, J. Miao, G. Li, H. Ren, T. Zhang et al., Soft tunable gelatin robot with insect-like claw for grasping, transportation, and delivery. ACS Appl. Polym. Mater. 4, 5431–5440 (2022). https://doi.org/10.1021/acsapm.2c00522
- H. Yan, Y. Wang, W. Shen, F. Li, G. Gao et al., Cable-driven continuum robot perception using skin-like hydrogel sensors. Adv. Funct. Mater. 32, 2203241 (2022). https://doi.org/10.1002/adfm.202203241
- X. Yan, T. Wang, H. Li, L. Zhang, H. Xin et al., Flexible aggregation-induced emission-active hydrogel for on-site monitoring of pesticide degradation. ACS Nano 16, 18421–18429 (2022). https://doi.org/10.1021/acsnano.2c06544
- H. Liu, Y. Wang, Z. Shi, D. Tan, X. Yang et al., Fast self-assembly of photonic crystal hydrogel for wearable strain and temperature sensor. Small Methods 6, e2200461 (2022). https://doi.org/10.1002/smtd.202200461
- L. Zhang, H. Yan, J. Zhou, Z. Zhao, J. Huang et al., High-performance organohydrogel artificial muscle with compartmentalized anisotropic actuation under microdomain confinement. Adv. Mater. 35, e2202193 (2023). https://doi.org/10.1002/adma.202202193
- Y. Cui, D. Li, C. Gong, C. Chang, Bioinspired shape memory hydrogel artificial muscles driven by solvents. ACS Nano 15, 13712–13720 (2021). https://doi.org/10.1021/acsnano.1c05019
- J.-J. Ye, L.-F. Li, R.-N. Hao, M. Gong, T. Wang et al., Phase-change composite filled natural nanotubes in hydrogel promote wound healing under photothermally triggered drug release. Bioact. Mater. 21, 284–298 (2022). https://doi.org/10.1016/j.bioactmat.2022.08.026
- X. Luo, L. Zhang, Y. Luo, Z. Cai, H. Zeng et al., Charge-driven self-assembled microspheres hydrogel scaffolds for combined drug delivery and photothermal therapy of diabetic wounds. Adv. Funct. Mater. 33, 2214036 (2023). https://doi.org/10.1002/adfm.202214036
- M. Ye, Y. Zhou, H. Zhao, X. Wang, Magnetic microrobots with folate targeting for drug delivery. Cyborg Bionic Syst. 4, 19 (2023). https://doi.org/10.34133/cbsystems.0019
- P.-P. He, X. Du, Y. Cheng, Q. Gao, C. Liu et al., Thermal-responsive MXene-DNA hydrogel for near-infrared light triggered localized photothermal-chemo synergistic cancer therapy. Small 18, e2200263 (2022). https://doi.org/10.1002/smll.202200263
- J. Wu, Y. Liu, S. Hua, F. Meng, Q. Ma et al., Dynamic cross-linking network construction of carboxymethyl starch enabling temperature and strain bimodal film sensors. ACS Appl. Mater. Interfaces 15, 17293–17300 (2023). https://doi.org/10.1021/acsami.3c01918
- Q. Yan, R. Ding, H. Zheng, P. Li, Z. Liu et al., Bio-inspired stimuli-responsive Ti3C2Tx/PNIPAM anisotropic hydrogels for high-performance actuators. Adv. Funct. Mater. 33, 2301982 (2023). https://doi.org/10.1002/adfm.202301982
- Y. Zhang, Z. Xu, Y. Yuan, C. Liu, M. Zhang et al., Flexible antiswelling photothermal-therapy MXene hydrogel-based epidermal sensor for intelligent human–machine interfacing. Adv. Funct. Mater. 33, 2300299 (2023). https://doi.org/10.1002/adfm.202300299
- G. Fusi, D. Del Giudice, O. Skarsetz, S. Di Stefano, A. Walther, Autonomous soft robots empowered by chemical reaction networks. Adv. Mater. 35, e2209870 (2023). https://doi.org/10.1002/adma.202209870
- H. Chen, J. Cheng, X. Cai, J. Han, X. Chen et al., pH-switchable antimicrobial supramolecular hydrogels for synergistically eliminating biofilm and promoting wound healing. ACS Appl. Mater. Interfaces 14, 18120–18132 (2022). https://doi.org/10.1021/acsami.2c00580
- Y. Liang, Q. Ding, H. Wang, Z. Wu, J. Li et al., Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano-Micro Lett. 14, 183 (2022). https://doi.org/10.1007/s40820-022-00934-1
- C. Jung, S.J. Kim, J. Jang, J.H. Ko, D. Kim et al., Disordered-nanop-based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays. Sci. Adv. 8, eabm8598 (2022). https://doi.org/10.1126/sciadv.abm8598
- J. Zhang, S. Shen, R. Lin, J. Huang, C. Pu et al., Highly stretchable and biocompatible wrinkled nanoclay-composite hydrogel with enhanced sensing capability for precise detection of myocardial infarction. Adv. Mater. 35, e2209497 (2023). https://doi.org/10.1002/adma.202209497
- H. Chen, X. Zhang, L. Shang, Z. Su, Programmable anisotropic hydrogels with localized photothermal/magnetic responsive properties. Adv. Sci. 9, e2202173 (2022). https://doi.org/10.1002/advs.202202173
- C.-Y. Lo, Y. Zhao, C. Kim, Y. Alsaid, R. Khodambashi et al., Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel. Mater. Today 50, 35–43 (2021). https://doi.org/10.1016/j.mattod.2021.05.008
- C. Qian, Y. Li, C. Chen, L. Han, Q. Han et al., A stretchable and conductive design based on multi-responsive hydrogel for self-sensing actuators. Chem. Eng. J. 454, 140263 (2023). https://doi.org/10.1016/j.cej.2022.140263
- P. Xue, C. Valenzuela, S. Ma, X. Zhang, J. Ma et al., Highly conductive MXene/PEDOT: PSS-integrated poly(N-isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators. Adv. Funct. Mater. 33, 2214867 (2023). https://doi.org/10.1002/adfm.202214867
- H. Li, Y. Liang, G. Gao, S. Wei, Y. Jian et al., Asymmetric bilayer CNTs-elastomer/hydrogel composite as soft actuators with sensing performance. Chem. Eng. J. 415, 128988 (2021). https://doi.org/10.1016/j.cej.2021.128988
- N. Chen, Y. Zhou, Y. Liu, Y. Mi, S. Zhao et al., Conductive photo-thermal responsive bifunctional hydrogel system with self-actuating and self-monitoring abilities. Nano Res. 15, 7703–7712 (2022). https://doi.org/10.1007/s12274-022-4394-3
- H. Liu, R. Liu, K. Chen, Y. Liu, Y. Zhao et al., Bioinspired gradient structured soft actuators: from fabrication to application. Chem. Eng. J. 461, 141966 (2023). https://doi.org/10.1016/j.cej.2023.141966
- H. Liu, X. Jia, R. Liu, K. Chen, Z. Wang et al., Multifunctional gradient hydrogel with ultrafast thermo-responsive actuation and ultrahigh conductivity. J. Mater. Chem. A 10, 21874–21883 (2022). https://doi.org/10.1039/d2ta05770k
- W. Fan, C. Shan, H. Guo, J. Sang, R. Wang et al., Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials. Sci. Adv. 5, aav7174 (2019). https://doi.org/10.1126/sciadv.aav7174
- H. Cui, N. Pan, W. Fan, C. Liu, Y. Li et al., Ultrafast fabrication of gradient nanoporous all-polysaccharide films as strong, superfast, and multiresponsive actuators. Adv. Funct. Mater. 29, 1807692 (2019). https://doi.org/10.1002/adfm.201807692
References
S. Li, H. Yang, N. Zhu, G. Chen, Y. Miao et al., Biotissue-inspired anisotropic carbon fiber composite hydrogels for logic gates, integrated soft actuators, and sensors with ultra-high sensitivity. Adv. Funct. Mater. 33, 2370065 (2023). https://doi.org/10.1002/adfm.202370065
Y. Qiu, C. Wang, X. Lu, H. Wu, X. Ma et al., A biomimetic Drosera capensis with adaptive decision-predation behavior based on multifunctional sensing and fast actuating capability. Adv. Funct. Mater. 32, 2270077 (2022). https://doi.org/10.1002/adfm.202270077
X.Q. Wang, K.H. Chan, Y. Cheng, T. Ding, T. Li et al., Somatosensory, light-driven, thin-film robots capable of integrated perception and motility. Adv. Mater. 32, e2000351 (2020). https://doi.org/10.1002/adma.202000351
M. Baumgartner, F. Hartmann, M. Drack, D. Preninger, D. Wirthl et al., Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102–1109 (2020). https://doi.org/10.1038/s41563-020-0699-3
L. Yang, J. Miao, G. Li, H. Ren, T. Zhang et al., Soft tunable gelatin robot with insect-like claw for grasping, transportation, and delivery. ACS Appl. Polym. Mater. 4, 5431–5440 (2022). https://doi.org/10.1021/acsapm.2c00522
H. Yan, Y. Wang, W. Shen, F. Li, G. Gao et al., Cable-driven continuum robot perception using skin-like hydrogel sensors. Adv. Funct. Mater. 32, 2203241 (2022). https://doi.org/10.1002/adfm.202203241
X. Yan, T. Wang, H. Li, L. Zhang, H. Xin et al., Flexible aggregation-induced emission-active hydrogel for on-site monitoring of pesticide degradation. ACS Nano 16, 18421–18429 (2022). https://doi.org/10.1021/acsnano.2c06544
H. Liu, Y. Wang, Z. Shi, D. Tan, X. Yang et al., Fast self-assembly of photonic crystal hydrogel for wearable strain and temperature sensor. Small Methods 6, e2200461 (2022). https://doi.org/10.1002/smtd.202200461
L. Zhang, H. Yan, J. Zhou, Z. Zhao, J. Huang et al., High-performance organohydrogel artificial muscle with compartmentalized anisotropic actuation under microdomain confinement. Adv. Mater. 35, e2202193 (2023). https://doi.org/10.1002/adma.202202193
Y. Cui, D. Li, C. Gong, C. Chang, Bioinspired shape memory hydrogel artificial muscles driven by solvents. ACS Nano 15, 13712–13720 (2021). https://doi.org/10.1021/acsnano.1c05019
J.-J. Ye, L.-F. Li, R.-N. Hao, M. Gong, T. Wang et al., Phase-change composite filled natural nanotubes in hydrogel promote wound healing under photothermally triggered drug release. Bioact. Mater. 21, 284–298 (2022). https://doi.org/10.1016/j.bioactmat.2022.08.026
X. Luo, L. Zhang, Y. Luo, Z. Cai, H. Zeng et al., Charge-driven self-assembled microspheres hydrogel scaffolds for combined drug delivery and photothermal therapy of diabetic wounds. Adv. Funct. Mater. 33, 2214036 (2023). https://doi.org/10.1002/adfm.202214036
M. Ye, Y. Zhou, H. Zhao, X. Wang, Magnetic microrobots with folate targeting for drug delivery. Cyborg Bionic Syst. 4, 19 (2023). https://doi.org/10.34133/cbsystems.0019
P.-P. He, X. Du, Y. Cheng, Q. Gao, C. Liu et al., Thermal-responsive MXene-DNA hydrogel for near-infrared light triggered localized photothermal-chemo synergistic cancer therapy. Small 18, e2200263 (2022). https://doi.org/10.1002/smll.202200263
J. Wu, Y. Liu, S. Hua, F. Meng, Q. Ma et al., Dynamic cross-linking network construction of carboxymethyl starch enabling temperature and strain bimodal film sensors. ACS Appl. Mater. Interfaces 15, 17293–17300 (2023). https://doi.org/10.1021/acsami.3c01918
Q. Yan, R. Ding, H. Zheng, P. Li, Z. Liu et al., Bio-inspired stimuli-responsive Ti3C2Tx/PNIPAM anisotropic hydrogels for high-performance actuators. Adv. Funct. Mater. 33, 2301982 (2023). https://doi.org/10.1002/adfm.202301982
Y. Zhang, Z. Xu, Y. Yuan, C. Liu, M. Zhang et al., Flexible antiswelling photothermal-therapy MXene hydrogel-based epidermal sensor for intelligent human–machine interfacing. Adv. Funct. Mater. 33, 2300299 (2023). https://doi.org/10.1002/adfm.202300299
G. Fusi, D. Del Giudice, O. Skarsetz, S. Di Stefano, A. Walther, Autonomous soft robots empowered by chemical reaction networks. Adv. Mater. 35, e2209870 (2023). https://doi.org/10.1002/adma.202209870
H. Chen, J. Cheng, X. Cai, J. Han, X. Chen et al., pH-switchable antimicrobial supramolecular hydrogels for synergistically eliminating biofilm and promoting wound healing. ACS Appl. Mater. Interfaces 14, 18120–18132 (2022). https://doi.org/10.1021/acsami.2c00580
Y. Liang, Q. Ding, H. Wang, Z. Wu, J. Li et al., Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano-Micro Lett. 14, 183 (2022). https://doi.org/10.1007/s40820-022-00934-1
C. Jung, S.J. Kim, J. Jang, J.H. Ko, D. Kim et al., Disordered-nanop-based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays. Sci. Adv. 8, eabm8598 (2022). https://doi.org/10.1126/sciadv.abm8598
J. Zhang, S. Shen, R. Lin, J. Huang, C. Pu et al., Highly stretchable and biocompatible wrinkled nanoclay-composite hydrogel with enhanced sensing capability for precise detection of myocardial infarction. Adv. Mater. 35, e2209497 (2023). https://doi.org/10.1002/adma.202209497
H. Chen, X. Zhang, L. Shang, Z. Su, Programmable anisotropic hydrogels with localized photothermal/magnetic responsive properties. Adv. Sci. 9, e2202173 (2022). https://doi.org/10.1002/advs.202202173
C.-Y. Lo, Y. Zhao, C. Kim, Y. Alsaid, R. Khodambashi et al., Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel. Mater. Today 50, 35–43 (2021). https://doi.org/10.1016/j.mattod.2021.05.008
C. Qian, Y. Li, C. Chen, L. Han, Q. Han et al., A stretchable and conductive design based on multi-responsive hydrogel for self-sensing actuators. Chem. Eng. J. 454, 140263 (2023). https://doi.org/10.1016/j.cej.2022.140263
P. Xue, C. Valenzuela, S. Ma, X. Zhang, J. Ma et al., Highly conductive MXene/PEDOT: PSS-integrated poly(N-isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators. Adv. Funct. Mater. 33, 2214867 (2023). https://doi.org/10.1002/adfm.202214867
H. Li, Y. Liang, G. Gao, S. Wei, Y. Jian et al., Asymmetric bilayer CNTs-elastomer/hydrogel composite as soft actuators with sensing performance. Chem. Eng. J. 415, 128988 (2021). https://doi.org/10.1016/j.cej.2021.128988
N. Chen, Y. Zhou, Y. Liu, Y. Mi, S. Zhao et al., Conductive photo-thermal responsive bifunctional hydrogel system with self-actuating and self-monitoring abilities. Nano Res. 15, 7703–7712 (2022). https://doi.org/10.1007/s12274-022-4394-3
H. Liu, R. Liu, K. Chen, Y. Liu, Y. Zhao et al., Bioinspired gradient structured soft actuators: from fabrication to application. Chem. Eng. J. 461, 141966 (2023). https://doi.org/10.1016/j.cej.2023.141966
H. Liu, X. Jia, R. Liu, K. Chen, Z. Wang et al., Multifunctional gradient hydrogel with ultrafast thermo-responsive actuation and ultrahigh conductivity. J. Mater. Chem. A 10, 21874–21883 (2022). https://doi.org/10.1039/d2ta05770k
W. Fan, C. Shan, H. Guo, J. Sang, R. Wang et al., Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials. Sci. Adv. 5, aav7174 (2019). https://doi.org/10.1126/sciadv.aav7174
H. Cui, N. Pan, W. Fan, C. Liu, Y. Li et al., Ultrafast fabrication of gradient nanoporous all-polysaccharide films as strong, superfast, and multiresponsive actuators. Adv. Funct. Mater. 29, 1807692 (2019). https://doi.org/10.1002/adfm.201807692