Recent Advances of Persistent Luminescence Nanoparticles in Bioapplications
Corresponding Author: Lianbing Zhang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 70
Abstract
Persistent luminescence phosphors are a novel group of promising luminescent materials with afterglow properties after the stoppage of excitation. In the past decade, persistent luminescence nanoparticles (PLNPs) with intriguing optical properties have attracted a wide range of attention in various areas. Especially in recent years, the development and applications in biomedical fields have been widely explored. Owing to the efficient elimination of the autofluorescence interferences from biotissues and the ultra-long near-infrared afterglow emission, many researches have focused on the manipulation of PLNPs in biosensing, cell tracking, bioimaging and cancer therapy. These achievements stimulated the growing interest in designing new types of PLNPs with desired superior characteristics and multiple functions. In this review, we summarize the works on synthesis methods, bioapplications, biomembrane modification and biosafety of PLNPs and highlight the recent advances in biosensing, imaging and imaging-guided therapy. We further discuss the new types of PLNPs as a newly emerged class of functional biomaterials for multiple applications. Finally, the remaining problems and challenges are discussed with suggestions and prospects for potential future directions in the biomedical applications.
Highlights:
1 Comprehensive summary on properties, persistent luminescence mechanism and synthesis of persistent luminescence nanoparticles.
2 Unique properties and advantages of persistent luminescence nanoparticles for chem/biosensing, bioimaging and imaging-guided therapy.
3 New organic and polymeric persistent luminescence nanoparticles with long afterglow lifetime for in vivo optical imaging.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liu, J. Kuang, B. Lei, C. Shi, Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors. J. Mater. Chem. 15(37), 4025–4031 (2005). https://doi.org/10.1039/B507774E
- Z. Pan, Y.-Y. Lu, F. Liu, Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 11(1), 58–63 (2011). https://doi.org/10.1038/nmat3173
- T. Maldiney, A. Bessière, J. Seguin, E. Teston, S.K. Sharma et al., The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13(4), 418–426 (2014). https://doi.org/10.1038/nmat3908
- J. Xu, J. Ueda, S. Tanabe, Toward tunable and bright deep-red persistent luminescence of Cr3+ in garnets. J. Am. Ceram. Soc. 100(9), 4033–4044 (2017). https://doi.org/10.1111/jace.14942
- T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+. J. Electrochem. Soc. 143(8), 2670–2673 (1996). https://doi.org/10.1149/1.1837067
- F. Chi, X. Wei, B. Jiang, Y. Chen, C. Duan, M. Yin, Luminescence properties and the thermal quenching mechanism of Mn2+ doped Zn2GeO4 long persistent phosphors. Dalton Trans. 47(4), 1303–1311 (2018). https://doi.org/10.1039/c7dt03906a
- O.Q. De Clercq, D. Poelman, Local, temperature-dependent trapping and detrapping in the LiGa5O8: Cr infrared emitting persistent phosphor. ECS J. Solid State Sci. Technol. 7(1), 3171–3175 (2018). https://doi.org/10.1149/2.0211801jss
- T. Lyu, P. Dorenbos, Charge carrier trapping processes in lanthanide doped LaPO4, GdPO4, YPO4, and LuPO4. J. Mater. Chem. C 6(2), 369–379 (2018). https://doi.org/10.1039/c7tc05221a
- I. Sahu, D.P. Bisen, K.V.R. Murthy, R.K. Tamrakar, Studies on the luminescence properties of cerium co-doping on Ca2MgSi2O7:Eu2+ phosphor by solid-state reaction method. Luminescence 32(7), 1263–1276 (2017). https://doi.org/10.1002/bio.3320
- F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, Z. Pan, Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Sci. Rep. 3(1), 1554 (2013). https://doi.org/10.1038/srep01554
- M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. Kouadri-Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, F. Fayon, Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4. Chem. Mater. 25(9), 1600–1606 (2013). https://doi.org/10.1021/cm304101n
- M. Sun, Z.-J. Li, C.-L. Liu, H.-X. Fu, J.-S. Shen, H.-W. Zhang, Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation. J. Lumin. 145, 838–842 (2014). https://doi.org/10.1016/j.jlumin.2013.08.070
- S.K. Sharma, D. Gourier, B. Viana, T. Maldiney, E. Teston, D. Scherman, C. Richard, Persistent luminescence of AB2O4:Cr3+ (A = Zn, Mg, B = Ga, Al) spinels: new biomarkers for in vivo imaging. Opt. Mater. 36(11), 1901–1906 (2014). https://doi.org/10.1016/j.optmat.2014.06.020
- T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard et al., In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles. Opt. Mater. Express 2(3), 261–268 (2012). https://doi.org/10.1364/OME.2.000261
- C. Rosticher, B. Viana, T. Maldiney, C. Richard, C. Chanéac, Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in vivo optical imaging. J. Lumin. 170, 460–466 (2016). https://doi.org/10.1016/j.jlumin.2015.07.024
- M. Pellerin, E. Glais, T. Lecuyer, J. Xu, J. Seguin, S. Tanabe, C. Chanéac, B. Viana, C. Richard, LaAlO3:Cr3+, Sm3+: nano-perovskite with persistent luminescence for in vivo optical imaging. J. Lumin. 202, 83–88 (2018). https://doi.org/10.1016/j.jlumin.2018.05.024
- C. Shi, Y. Zhu, G. Zhu, X. Shen, M. Ge, Phototunable full-color emission of dynamic luminescent materials. J. Mater. Chem. C 6(35), 9552–9560 (2018). https://doi.org/10.1039/c8tc02955e
- H. Lin, G. Bai, T. Yu, M.K. Tsang, Q. Zhang, J. Hao, Site occupancy and near-infrared luminescence in Ca3Ga2Ge3O12:Cr3+ persistent phosphor. Adv. Opt. Mater. 5(18), 1700227 (2017). https://doi.org/10.1002/adom.201700227
- F. Xue, Y. Hu, L. Fan, G. Ju, Y. Lv, Y. Li, Cr3+-activated Li5Zn8Al5Ge9O36: a near-infrared long-afterglow phosphor. J. Am. Ceram. Soc. 100(7), 3070–3079 (2017). https://doi.org/10.1111/jace.14874
- I. Norrbo, J.M. Carvalho, P. Laukkanen, J. Mäkelä, F. Mamedov et al., Lanthanide and heavy metal free long white persistent luminescence from Ti doped Li-hackmanite: a versatile, low-cost material. Adv. Funct. Mater. 27(17), 1606547 (2017). https://doi.org/10.1002/adfm.201606547
- T. Tu, G. Jiang, Enhanced persistent luminescence of Li2ZnGeO4 host by rare-earth ions (Pr3+, Nd3+ and Gd3+) doping. J. Mater. Sci. Mater. El. 29(4), 3146–3152 (2017). https://doi.org/10.1007/s10854-017-8247-x
- P. Ge, K. Sun, Y. Cheng, Design and synthesis of up-converted persistent luminescence Zn3Ga2SnO8:Cr3+, Yb3+, Er3+ phosphor. Optik 188, 200–204 (2019). https://doi.org/10.1016/j.ijleo.2019.05.011
- F. Liu, Y. Liang, Z. Pan, Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8:Cr3+, Yb3+, Er3+ phosphor. Phys. Rev. Lett. 113(17), 177401 (2014). https://doi.org/10.1103/PhysRevLett.113.177401
- Z. Li, L. Huang, Y. Zhang, Y. Zhao, H. Yang, G. Han, Near-infrared light activated persistent luminescence nanoparticles via upconversion. Nano Res. 10(5), 1840–1846 (2017). https://doi.org/10.1007/s12274-017-1548-9
- Z. Xue, X. Li, Y. Li, M. Jiang, G. Ren, H. Liu, S. Zeng, J. Hao, A 980 nm laser-activated upconverted persistent probe for NIR-to-NIR rechargeable in vivo bioimaging. Nanoscale 9(21), 7276–7283 (2017). https://doi.org/10.1039/C6NR09716B
- Y. Zhuang, Y. Lv, L. Wang, W. Chen, T.L. Zhou, T. Takeda, N. Hirosaki, R.J. Xie, Trap depth engineering of SrSi2O2N2:Ln2+, Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) persistent luminescence materials for information storage applications. ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018). https://doi.org/10.1021/acsami.7b17271
- Y. Zhuang, L. Wang, Y. Lv, T.-L. Zhou, R.-J. Xie, Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials. Adv. Funct. Mater. 28(8), 1705769 (2018). https://doi.org/10.1002/adfm.201705769
- X. Liu, Q. Ji, Q. Hu, C. Li, M. Chen, J. Sun, Y. Wang, Q. Sun, B. Geng, Dual-mode long-lived luminescence of Mn2+-doped nanoparticles for multilevel anticounterfeiting. ACS Appl. Mater. Interfaces 11(33), 30146–30153 (2019). https://doi.org/10.1021/acsami.9b09612
- T. Lecuyer, E. Teston, G. Ramirez-Garcia, T. Maldiney, B. Viana, J. Seguin, N. Mignet, D. Scherman, C. Richard, Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics 6(13), 2488–2524 (2016). https://doi.org/10.7150/thno.16589
- J. Liu, T. Lécuyer, J. Séguin, N. Mignet, D. Scherman, B. Viana, C. Richard, Imaging and therapeutic applications of persistent luminescence nanomaterials. Adv. Drug Deliv. Rev. 138, 193–210 (2019). https://doi.org/10.1016/j.addr.2018.10.015
- K.Y. Zhang, Q. Yu, H. Wei, S. Liu, Q. Zhao, W. Huang, Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 118(4), 1770–1839 (2018). https://doi.org/10.1021/acs.chemrev.7b00425
- D. Jia, L.A. Lewis, X.-J. Wang, Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission. Electrochem. Solid-St. 13(4), J32–J34 (2010). https://doi.org/10.1149/1.3294520
- A. Abdukayum, J.-T. Chen, Q. Zhao, X.-P. Yan, Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 135(38), 14125–14133 (2013). https://doi.org/10.1021/ja404243v
- Y.J. Li, X.P. Yan, Synthesis of functionalized triple-doped zinc gallogermanate nanoparticles with superlong near-infrared persistent luminescence for long-term orally administrated bioimaging. Nanoscale 8(32), 14965–14970 (2016). https://doi.org/10.1039/c6nr04950h
- S.-Q. Wu, C.-W. Chi, C.-X. Yang, X.-P. Yan, Penetrating peptide-bioconjugated persistent nanophosphors for long-term tracking of adipose-derived stem cells with superior signal-to-noise ratio. Anal. Chem. 88(7), 4114–4121 (2016). https://doi.org/10.1021/acs.analchem.6b00449
- A. Verma, A. Verma, Synthesis, characterization, mechano-luminescence, thermoluminescence, and antibacterial properties of SrMgAl10O17:Eu phosphor. J. Alloys Compd. 802, 394–408 (2019). https://doi.org/10.1016/j.jallcom.2019.06.209
- Z. Li, Q. Wang, Y. Wang, Q. Ma, J. Wang, Z. Li, Y. Li, X. Lv, W. Wei, L. Chen, Q. Yuan, Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pH-guided recognition. Nano Res. 11(12), 6167–6176 (2018). https://doi.org/10.1007/s12274-018-2133-6
- A. Tuerdi, A. Abdukayum, Dual-functional persistent luminescent nanoparticles with enhanced persistent luminescence and photocatalytic activity. RSC Adv. 9(31), 17653–17657 (2019). https://doi.org/10.1039/c9ra02235j
- J. Xu, D. Murata, J. Ueda, S. Tanabe, Near-infrared long persistent luminescence of Er3+ in garnet for the third bio-imaging window. J. Mater. Chem. C 4(47), 11096–11103 (2016). https://doi.org/10.1039/c6tc04027f
- J. Nie, Y. Li, S. Liu, Q. Chen, Q. Xu, J. Qiu, Tunable long persistent luminescence in the second near-infrared window via crystal field control. Sci. Rep. 7(1), 12392 (2017). https://doi.org/10.1038/s41598-017-12591-1
- R. Kabe, C. Adachi, Organic long persistent luminescence. Nature 550(7676), 384–387 (2017). https://doi.org/10.1038/nature24010
- Q. Miao, C. Xie, X. Zhen, Y. Lyu, H. Duan, X. Liu, J.V. Jokerst, K. Pu, Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35(11), 1102–1110 (2017). https://doi.org/10.1038/nbt.3987
- T. Maldiney, B.T. Doan, D. Alloyeau, M. Bessodes, D. Scherman, C. Richard, Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging. Adv. Funct. Mater. 25(2), 331–338 (2015). https://doi.org/10.1002/adfm.201401612
- J. Wang, Q. Ma, X.-X. Hu, H. Liu, W. Zheng, X. Chen, Q. Yuan, W. Tan, Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano 11, 8010–8017 (2017). https://doi.org/10.1021/acsnano.7b02643
- J. Wang, Q. Ma, Y. Wang, H. Shen, Q. Yuan, Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale 9(19), 6204–6218 (2017). https://doi.org/10.1039/c7nr01488k
- S.K. Sun, H.F. Wang, X.P. Yan, Engineering persistent luminescence nanoparticles for biological applications: from biosensing/bioimaging to theranostics. Acc. Chem. Res. 51(5), 1131–1143 (2018). https://doi.org/10.1021/acs.accounts.7b00619
- L. Liang, N. Chen, Y. Jia, Q. Ma, J. Wang, Q. Yuan, W. Tan, Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Res. 12(6), 1279–1292 (2019). https://doi.org/10.1007/s12274-019-2343-6
- D. Jia, R.S. Meltzer, W.M. Yen, W. Jia, X. Wang, Green phosphorescence of CaAl2O4:Tb3+, Ce3+ through persistence energy transfer. Appl. Phys. Lett. 80(9), 1535–1537 (2002). https://doi.org/10.1063/1.1456955
- S. Ye, J. Zhang, X. Zhang, S. Lu, X. Ren, X.-J. Wang, Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer. J. Appl. Phys. 101(6), 063545 (2007). https://doi.org/10.1063/1.2714498
- E. Teston, S. Richard, T. Maldiney, N. Lièvre, G. Wang, L. Motte, C. Richard, Y. Lalatonne, Non-aqueous sol–gel synthesis of ultra small persistent luminescence nanoparticles for near-infrared in vivo imaging. Chem. Eur. J. 21(20), 7350–7354 (2015). https://doi.org/10.1002/chem.201406599
- D. Jia, X.J. Wang, W. Jia, W.M. Yen, Persistent energy transfer in CaAl2O4:Tb3+, Ce3+. J. Appl. Phys. 93(1), 148–152 (2003). https://doi.org/10.1063/1.1525860
- R. Zhong, J. Zhang, X. Zhang, S. Lu, X.-J. Wang, Red phosphorescence in Sr4Al14O25: Cr3+, Eu2+, Dy3+ through persistent energy transfer. Appl. Phys. Lett. 88(20), 201916 (2006). https://doi.org/10.1063/1.2205167
- Z.-J. Li, Y.-J. Zhang, H.-W. Zhang, H.-X. Fu, Long-lasting phosphorescence functionalization of mesoporous silica nanospheres by CaTiO3:Pr3+ for drug delivery. Micropor. Mesopor. Mat. 176, 48–54 (2013). https://doi.org/10.1016/j.micromeso.2013.02.050
- Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, G. Han, Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc. 137(16), 5304–5307 (2015). https://doi.org/10.1021/jacs.5b00872
- H. Liu, X. Hu, J. Wang, M. Liu, W. Wei, Q. Yuan, Direct low-temperature synthesis of ultralong persistent luminescence nanobelts based on a biphasic solution-chemical reaction. Chinese Chem. Lett. 29(11), 1641–1644 (2018). https://doi.org/10.1016/j.cclet.2018.02.005
- E. Bonturim, L.G. Merízio, R. dos Reis, H.F. Brito, L.C.V. Rodrigues, M.C.F.C. Felinto, Persistent luminescence of inorganic nanophosphors prepared by wet-chemical synthesis. J. Alloys Compd. 732, 705–715 (2018). https://doi.org/10.1016/j.jallcom.2017.10.219
- P. Liu, Y. Liu, C. Cui, L. Wang, J. Qiao, P. Huang, Q. Shi, Y. Tian, H. Jiang, J. Jiang, Enhanced luminescence and afterglow by heat-treatment in reducing atmosphere to synthesize the Gd3Al2Ga3O12: Ce3+ persistent phosphor for ac-leds. J. Alloys Compd. 731, 389–396 (2018). https://doi.org/10.1016/j.jallcom.2017.10.037
- A.S. Maia, R. Stefani, C.A. Kodaira, M. Felinto, E. Teotonio, H.F. Brito, Luminescent nanoparticles of MgAl2O4:Eu, Dy prepared by citrate sol–gel method. Opt. Mater. 31(2), 440–444 (2008). https://doi.org/10.1016/j.optmat.2008.06.017
- T. Maldiney, B. Viana, A. Bessière, D. Gourier, M. Bessodes, D. Scherman, C. Richard, In vivo imaging with persistent luminescence silicate-based nanoparticles. Opt. Mater. 35(10), 1852–1858 (2013). https://doi.org/10.1016/j.optmat.2013.03.028
- F. Ye, S. Dong, Z. Tian, S. Yao, Z. Zhou, S. Wang, Fabrication of the PLA/Sr2MgSi2O7:Eu2+, Dy3+ long-persistent luminescence composite fibers by electrospinning. Opt. Mater. 36(2), 463–466 (2013). https://doi.org/10.1016/j.optmat.2013.10.019
- Z. Li, H. Zhang, M. Sun, J. Shen, H. Fu, A facile and effective method to prepare long-persistent phosphorescent nanospheres and its potential application for in vivo imaging. J. Mater. Chem. 22(47), 24713–24720 (2012). https://doi.org/10.1039/C2JM35650C
- Z. Li, J. Shi, H. Zhang, M. Sun, Highly controllable synthesis of near-infrared persistent luminescence SiO2/CaMgSi2O6 composite nanospheres for imaging in vivo. Opt. Express 22(9), 10509 (2014). https://doi.org/10.1364/OE.22.010509
- J. Shi, M. Sun, X. Sun, H. Zhang, Near-infrared persistent luminescence hollow mesoporous nanospheres for drug delivery and in vivo renewable imaging. J. Mater. Chem. B 4(48), 7845–7851 (2016). https://doi.org/10.1039/C6TB02674E
- J. Shi, X. Sun, J. Li, H. Man, J. Shen, Y. Yu, H. Zhang, Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials 37, 260–270 (2015). https://doi.org/10.1016/j.biomaterials.2014.10.033
- B.B. Srivastava, A. Kuang, Y. Mao, Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route. Chem. Commun. 51(34), 7372–7375 (2015). https://doi.org/10.1039/c5cc00377f
- J.-L. Li, J.-P. Shi, C.-C. Wang, P.-H. Li, Z.-F. Yu, H.-W. Zhang, Five-nanometer ZnSn2O4:Cr, Eu ultra-small nanoparticles as new near infrared-emitting persistent luminescent nanoprobes for cellular and deep tissue imaging at 800 nm. Nanoscale 9(25), 8631–8638 (2017). https://doi.org/10.1039/c7nr02468a
- R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang et al., Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence. Nano Res. 10(6), 2070–2082 (2016). https://doi.org/10.1007/s12274-016-1396-z
- J. Yang, Y. Liu, D. Yan, H. Zhu, C. Liu, C. Xu, L. Ma, X. Wang, A vacuum-annealing strategy for improving near-infrared super long persistent luminescence in Cr3+ doped zinc gallogermanate nanoparticles for bio-imaging. Dalton T. 45(4), 1364–1372 (2016). https://doi.org/10.1039/c5dt03875h
- T. Maldiney, M.U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes et al., In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles. Bioconjug. Chem. 23(3), 472–478 (2012). https://doi.org/10.1021/bc200510z
- J. Wang, J. Li, J. Yu, H. Zhang, B. Zhang, Large hollow cavity luminous nanoparticles with near-infrared persistent luminescence and tunable sizes for tumor afterglow imaging and chemo-/photodynamic therapies. ACS Nano 12(5), 4246–4258 (2018). https://doi.org/10.1021/acsnano.7b07606
- J. Wang, Q. Ma, X.X. Hu, H. Liu, W. Zheng, X. Chen, Q. Yuan, W. Tan, Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano 11(8), 8010–8017 (2017). https://doi.org/10.1021/acsnano.7b02643
- H.F. Wang, X. Chen, F. Feng, X. Ji, Y. Zhang, Edta etching: a simple way for regulating the traps, size and aqueous-dispersibility of Cr3+-doped zinc gallate. Chem. Sci. 9(48), 8923–8929 (2018). https://doi.org/10.1039/c8sc04173c
- Y.J. Li, C.X. Yang, X.P. Yan, Biomimetic persistent luminescent nanoplatform for autofluorescence-free metastasis tracking and chemophotodynamic therapy. Anal. Chem. 90(6), 4188–4195 (2018). https://doi.org/10.1021/acs.analchem.8b00311
- J.M. Liu, D.D. Zhang, G.Z. Fang, S. Wang, Erythrocyte membrane bioinspired near-infrared persistent luminescence nanocarriers for in vivo long-circulating bioimaging and drug delivery. Biomaterials 165, 39–47 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.042
- Z.H. Wang, J.M. Liu, C.Y. Li, D. Wang, H. Lv, S.W. Lv, N. Zhao, H. Ma, S. Wang, Bacterial biofilm bioinspired persistent luminescence nanoparticles with gut-oriented drug delivery for colorectal cancer imaging and chemotherapy. ACS Appl. Mater. Interfaces 11(40), 36409–36419 (2019). https://doi.org/10.1021/acsami.9b12853
- X. Zhao, L.-J. Chen, K.-C. Zhao, Y.-S. Liu, J.-L. Liu, X.-P. Yan, Autofluorescence-free chemo/biosensing in complex matrixes based on persistent luminescence nanoparticles. TrAC Trend. Anal. Chem. 118, 65–72 (2019). https://doi.org/10.1016/j.trac.2019.05.025
- B.Y. Wu, H.F. Wang, J.T. Chen, X.P. Yan, Fluorescence resonance energy transfer inhibition assay for alpha-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J. Am. Chem. Soc. 133(4), 686–688 (2011). https://doi.org/10.1021/ja108788p
- N. Li, Y. Li, Y. Han, W. Pan, T. Zhang, B. Tang, A highly selective and instantaneous nanoprobe for detection and imaging of ascorbic acid in living cells and in vivo. Anal. Chem. 86(8), 3924–3930 (2014). https://doi.org/10.1021/ac5000587
- N. Li, W. Diao, Y. Han, W. Pan, T. Zhang, B. Tang, MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo. Chem. Eur. J. 20(50), 16488–16491 (2014). https://doi.org/10.1002/chem.201404625
- L. Zhang, J. Lei, J. Liu, F. Ma, H. Ju, Persistent luminescence nanoprobe for biosensing and lifetime imaging of cell apoptosis via time-resolved fluorescence resonance energy transfer. Biomaterials 67, 323–334 (2015). https://doi.org/10.1016/j.biomaterials.2015.07.037
- B.Y. Wu, X.P. Yan, Bioconjugated persistent luminescence nanoparticles for foster resonance energy transfer immunoassay of prostate specific antigen in serum and cell extracts without in situ excitation. Chem. Commun. 51(18), 3903–3906 (2015). https://doi.org/10.1039/c5cc00286a
- Y. Wang, Z. Li, Q. Lin, Y. Wei, J. Wang, Y. Li, R. Yang, Q. Yuan, Highly sensitive detection of bladder cancer-related miRNA in urine using time-gated luminescent biochip. ACS Sensors 4(8), 2124–2130 (2019). https://doi.org/10.1021/acssensors.9b00927
- J. Tang, Y. Su, D. Deng, L. Zhang, N. Yang, Y. Lv, A persistent luminescence microsphere-based probe for convenient imaging analysis of dopamine. Analyst 141(18), 5366–5373 (2016). https://doi.org/10.1039/c6an00882h
- Y. Liu, J.M. Liu, D. Zhang, K. Ge, P. Wang, H. Liu, G. Fang, S. Wang, Persistent luminescence nanophosphor involved near-infrared optical bioimaging for investigation of foodborne probiotics biodistribution in vivo: a proof-of-concept study. J. Agr. Food Chem. 65(37), 8229–8240 (2017). https://doi.org/10.1021/acs.jafc.7b02870
- J. Yang, Y. Liu, Y. Zhao, Z. Gong, M. Zhang et al., Ratiometric afterglow nanothermometer for simultaneous in situ bioimaging and local tissue temperature sensing. Chem. Mater. 29(19), 8119–8131 (2017). https://doi.org/10.1021/acs.chemmater.7b01958
- Z. Zhou, W. Zheng, J. Kong, Y. Liu, P. Huang, S. Zhou, Z. Chen, J. Shi, X. Chen, Rechargeable and led-activated ZnGa2O4:Cr3+ near-infrared persistent luminescence nanoprobes for background-free biodetection. Nanoscale 9(20), 6846–6853 (2017). https://doi.org/10.1039/c7nr01209h
- A.S. Paterson, B. Raja, G. Garvey, A. Kolhatkar, A.E. Hagstrom, K. Kourentzi, T.R. Lee, R.C. Willson, Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays. Anal. Chem. 86(19), 9481–9488 (2014). https://doi.org/10.1021/ac5012624
- Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, Nanoprobes with near-infrared persistent luminescence for in vivo imaging. PNAS 104(22), 9266–9271 (2007). https://doi.org/10.1073/pnas.0702427104
- X. Sun, J. Shi, S. Zheng, J. Li, S. Wang, H. Zhang, Visualization of inflammation in a mouse model based on near-infrared persistent luminescence nanoparticles. J. Lumin. 204, 520–527 (2018). https://doi.org/10.1016/j.jlumin.2018.08.058
- D.D. Zhang, J.M. Liu, S.M. Sun, C. Liu, G.Z. Fang, S. Wang, Construction of persistent luminescence-plastic antibody hybrid nanoprobe for in vivo recognition and clearance of pesticide using background-free nanobioimaging. J. Agr. Food Chem. 67(24), 6874–6883 (2019). https://doi.org/10.1021/acs.jafc.9b02712
- Y.-J. Chuang, Z. Zhen, F. Zhang, F. Liu, J.P. Mishra et al., Photostimulable near-infrared persistent luminescent nanoprobes for ultrasensitive and longitudinal deep-tissue bio-imaging. Theranostics 4(11), 1112–1122 (2014). https://doi.org/10.7150/thno.9710
- B. Can-Uc, J.B. Montes-Frausto, K. Juarez-Moreno, J. Licea-Rodriguez, I. Rocha-Mendoza, G.A. Hirata, Light sheet microscopy and SrAl2O4 nanoparticles codoped with Eu2+/Dy3+ ions for cancer cell tagging. J. Biophotonics 11(6), e201700301 (2018). https://doi.org/10.1002/jbio.201700301
- E. Teston, T. Maldiney, I. Marangon, J. Volatron, Y. Lalatonne et al., Nanohybrids with magnetic and persistent luminescence properties for cell labeling, tracking, in vivo real-time imaging, and magnetic vectorization. Small 14(16), e1800020 (2018). https://doi.org/10.1002/smll.201800020
- L.J. Chen, X. Zhao, X.P. Yan, Cell-penetrating peptide-functionalized persistent luminescence nanoparticles for tracking J774A.1 macrophages homing to inflamed tissues. ACS Appl. Mater. Interfaces 11(22), 19894–19901 (2019). https://doi.org/10.1021/acsami.9b05870
- J.M. Liu, N. Zhao, Z.H. Wang, S.W. Lv, C.Y. Li, S. Wang, In-taken labeling and in vivo tracing foodborne probiotics via DNA-encapsulated persistent luminescence nanoprobe assisted autofluorescence-free bioimaging. J. Agr. Food Chem. 67(1), 514–519 (2019). https://doi.org/10.1021/acs.jafc.8b05937
- H. Liu, F. Ren, X. Zhou, C. Ma, T. Wang, H. Zhang, Q Sun., Z. Li, Ultra-sensitive detection and inhibition of the metastasis of breast cancer cells to adjacent lymph nodes and distant organs by using long-persistent luminescence nanoparticles. Anal. Chem. 91(23), 15064–15072 (2019). https://doi.org/10.1021/acs.analchem.9b03739
- H. Zhao, C. Liu, Z. Gu, L. Dong, F. Li, C. Yao, D. Yang, Persistent luminescent nanoparticles containing hydrogels for targeted, sustained, and autofluorescence-free tumor metastasis imaging. Nano Lett. 20(1), 252–260 (2020). https://doi.org/10.1021/acs.nanolett.9b03755
- H.-X. Zhao, C.-X. Yang, X.-P. Yan, Fabrication and bioconjugation of BIII and CrIII co-doped ZnGa2O4 persistent luminescent nanoparticles for dual-targeted cancer bioimaging. Nanoscale 8(45), 18987–18994 (2016). https://doi.org/10.1039/C6NR06259H
- A. Abdukayum, C.-X. Yang, Q. Zhao, J.-T. Chen, L.-X. Dong, X.-P. Yan, Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imagingin vivo. Anal. Chem. 86(9), 4096–4101 (2014). https://doi.org/10.1021/ac500644x
- Z. Gong, J. Yang, H. Zhu, D. Yan, C. Liu, C. Xu, Y. Liu, The synergistically improved afterglow and magnetic resonance imaging induced by Gd3+ doping in ZGGO:Cr3+ nanoparticles. Mater. Res. Bull. 113, 122–132 (2019). https://doi.org/10.1016/j.materresbull.2019.01.031
- J. Shi, H. Fu, X. Sun, J. Shen, H. Zhang, Magnetic, long persistent luminescent and mesoporous nanoparticles as trackable transport drug carriers. J. Mater. Chem. B 3(4), 635–641 (2014). https://doi.org/10.1039/C4TB01721H
- E. Teston, Y. Lalatonne, D. Elgrabli, G. Autret, L. Motte et al., Design, properties, and in vivo behavior of super-paramagnetic persistent luminescence nanohybrids. Small 11(22), 2696–2704 (2015). https://doi.org/10.1002/smll.201403071
- Y. Wang, C.-X. Yang, X.-P. Yan, Hydrothermal and biomineralization synthesis of a dual-modal nanoprobe for targeted near-infrared persistent luminescence and magnetic resonance imaging. Nanoscale 9(26), 9049–9055 (2017). https://doi.org/10.1039/C7NR02038D
- Y.-C. Lu, C.-X. Yang, X.-P. Yan, Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging. Nanoscale 7(42), 17929–17937 (2015). https://doi.org/10.1039/C5NR05623C
- L.-J. Chen, S.-K. Sun, Y. Wang, C.-X. Yang, S.-Q. Wu, X.-P. Yan, Activatable multifunctional persistent luminescence nanoparticle/copper sulfide nanoprobe for in vivo luminescence imaging-guided photothermal therapy. ACS Appl. Mater. Interfaces 8(48), 32667–32674 (2016). https://doi.org/10.1021/acsami.6b10702
- J.-M. Liu, Y.-Y. Liu, D.-D. Zhang, G. Fang, S. Wang Synthesis of plasmon-enhanced near-infrared persistent luminescence GdAlO3:Mn4+, Ge4+@Au core-shell nanoprobes for in vivo tri-modality bioimaging. ACS Appl. Mater. Interfaces 8(44), 29939–29949 (2016). https://doi.org/10.1021/acsami.6b09580
- T. Ai, W. Shang, H. Yan, C. Zeng, K. Wang, Y. Gao, T. Guan, C. Fang, J. Tian, Near infrared-emitting persistent luminescent nanoparticles for hepatocellular carcinoma imaging and luminescence-guided surgery. Biomaterials 167, 216–225 (2018). https://doi.org/10.1016/j.biomaterials.2018.01.031
- X. Qiu, X. Zhu, M. Xu, Y W. uan, W. Feng, F. Li, Hybrid nanoclusters for near-infrared to near-infrared upconverted persistent luminescence bioimaging. ACS Appl. Mater. Interfaces 9(38), 32583–32590 (2017). https://doi.org/10.1021/acsami.7b10618
- S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, R. Valtonen, X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+, R3+ persistent luminescence materials. Opt. Mater. 31(12), 1877–1879 (2009). https://doi.org/10.1016/j.optmat.2008.12.020
- S.K. Sharma, A. Bessière, N. Basavaraju, K.R. Priolkar, L. Binet, B. Viana, D. Gourier, Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in vivo imaging. J. Lumin. 155, 251–256 (2014). https://doi.org/10.1016/j.jlumin.2014.06.056
- L. Ma, X. Zou, B. Bui, W. Chen, K. Song, T. Solberg, X-ray excited ZnS:Cu, Co afterglow nanoparticles for photodynamic activation. Appl. Phys. Lett. 105(1), 13702 (2014). https://doi.org/10.1063/1.4890105
- K. Santacruz-Gomez, R. Meléndrez, M.I. Gil-Tolano, J.A. Jimenez, M.T. Makale et al., Thermally stimulated luminescence and persistent luminescence of β-irradiated YAG:Pr3+ nanophosphors produced by combustion synthesis. Radiat. Meas. 94, 35–40 (2016). https://doi.org/10.1016/j.radmeas.2016.09.001
- X. Li, Z. Xue, M. Jiang, Y. Li, S. Zeng, H. Liu, Soft X-ray activated NaYF4:Gd/Tb scintillating nanorods for in vivo dual-modal X-ray/X-ray-induced optical bioimaging. Nanoscale 10(1), 342–350 (2017). https://doi.org/10.1039/c7nr02926h
- Z. Xue, X. Li, Y. Li, M. Jiang, H. Liu, S. Zeng, J. Hao, X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging. ACS Appl. Mater. Interfaces 9(27), 22132–22142 (2017). https://doi.org/10.1021/acsami.7b03802
- L. Song, X.-H. Lin, X.-R. Song, S. Chen, X.-F. Chen, J. Li, H.-H. Yang, Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging. Nanoscale 9(8), 2718–2722 (2017). https://doi.org/10.1039/C6NR09553D
- E. Rodríguez, G. López-Peña, E. Montes, G. Lifante, J. Solé, D. Jaque, L. Diaz-Torres, P. Salas, Persistent luminescence nanothermometers. Appl. Phys. Lett. 111(8), 81901 (2017). https://doi.org/10.1063/1.4990873
- J. Xu, D. Murata, Y. Katayama, J. Ueda, S. Tanabe, Cr3+/Er3+ co-doped LaAlO3 perovskite phosphor: a near-infrared persistent luminescence probe covering the first and third biological windows. J. Mater. Chem. B 5(31), 6385–6393 (2017). https://doi.org/10.1039/C7TB01332A
- J. Shi, X. Sun, S. Zheng, J. Li, X. Fu, H. Zhang, A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy. Biomaterials 152, 15–23 (2018). https://doi.org/10.1016/j.biomaterials.2017.10.032
- S. Kamimura, X.U. Chao-Nan, H. Yamada, G. Marriott, K. Hyodo, T. Ohno, Near-infrared luminescence from double-perovskite Sr3Sn2O7:Nd3+: a new class of probe for in vivo imaging in the second optical window of biological tissue. J. Ceram. Soc. Jpn. 125(7), 591–595 (2017). https://doi.org/10.2109/jcersj2.17051
- L. Zhou, T. Qiu, F. Lv, L. Liu, J. Ying, S. Wang, Self-assembled nanomedicines for anticancer and antibacterial applications. Adv. Healthc. Mater. 7(20), e1800670 (2018). https://doi.org/10.1002/adhm.201800670
- T. Maldiney, B. Ballet, M. Bessodes, D. Scherman, C. Richard Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery. Nanoscale 6(22), 13970–13976 (2014). https://doi.org/10.1039/C4NR03843F
- L.-J. Chen, C.-X. Yang, X.-P. Yan, Liposome-coated persistent luminescence nanoparticles as luminescence trackable drug carrier for chemotherapy. Anal. Chem. 89(13), 6936–6939 (2017). https://doi.org/10.1021/acs.analchem.7b01397
- H.J. Zhang, X. Zhao, L.J. Chen, C.X. Yang, X.P. Yan, pH-driven targeting nanoprobe with dual-responsive drug release for persistent luminescence imaging and chemotherapy of tumor. Anal. Chem. 92(1), 1179–1188 (2020). https://doi.org/10.1021/acs.analchem.9b04318
- Y. Feng, R. Liu, L. Zhang, Z. Li, Y. Su, Y. Lv Raspberry-like mesoporous Zn1.07Ga2.34Si0.98O6.56:Cr0.01 nanocarriers for enhanced near-infrared afterglow imaging and combined cancer chemotherapy. ACS Appl. Mater. Interfaces 11(48), 44978–44988 (2019). https://doi.org/10.1021/acsami.9b18124
- Y. Lv, D. Ding, Y. Zhuang, Y. Feng, J. Shi, H. Zhang, T.L. Zhou, H. Chen, R.J. Xie, Chromium-doped zinc gallogermanate@zeolitic imidazolate framework-8: a multifunctional nanoplatform for rechargeable in vivo persistent luminescence imaging and pH-responsive drug release. ACS Appl. Mater. Interfaces 11(2), 1907–1916 (2019). https://doi.org/10.1021/acsami.8b19172
- H. Zhao, G. Shu, J. Zhu, Y. Fu, Z. Gu, D. Yang, Persistent luminescent metal–organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery. Biomaterials 217, 119332 (2019). https://doi.org/10.1016/j.biomaterials.2019.119332
- W. Jiang, L. Huang, F. Mo, Y. Zhong, L. Xu, F. Fu, Persistent luminescent multifunctional drug delivery nano-platform based on nanomaterial ZnGa2O4:Cr3+, Sn4+ for imaging-guided cancer chemotherapy. J. Mater. Chem. B 7(18), 3019–3026 (2019). https://doi.org/10.1039/c9tb00109c
- G. Liu, S. Zhang, Y. Shi, X. Huang, Y. Tang, P. Chen, W. Si, W. Huang, X. Dong, “Wax-sealed” theranostic nanoplatform for enhanced afterglow imaging-guided photothermally triggered photodynamic therapy. Adv. Funct. Mater. 28(42), 1804317 (2018). https://doi.org/10.1002/adfm.201804317
- L. Hu, P. Wang, M. Zhao, L. Liu, L. Zhou et al., Near-infrared rechargeable “optical battery” implant for irradiation-free photodynamic therapy. Biomaterials 163, 154–162 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.029
- S.K. Sun, J.C. Wu, H. Wang, L. Zhou, C. Zhang, R. Cheng, D. Kan, X. Zhang, C. Yu, Turning solid into gel for high-efficient persistent luminescence-sensitized photodynamic therapy. Biomaterials 218, 119328 (2019). https://doi.org/10.1016/j.biomaterials.2019.119328
- R. Abdurahman, C.-X. Yang, X.-P. Yan, Conjugation of a photosensitizer to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy. Chem. Commun. 52(90), 13303–13306 (2016). https://doi.org/10.1039/C6CC07616E
- J. Wang, Y. Li, R. Mao, Y. Wang, X. Yan, J. Liu, Persistent luminescent nanoparticles as energy mediators for enhanced photodynamic therapy with fractionated irradiation. J. Mater. Chem. B 5(29), 5793–5805 (2017). https://doi.org/10.1039/C7TB00950J
- T. Ozdemir, Y.C. Lu, S. Kolemen, E. Tanriverdi-Ecik, E.U. Akkaya, Generation of singlet oxygen by persistent luminescent nanoparticle–photosensitizer conjugates: a proof of principle for photodynamic therapy without light. Chem. Photo. Chem. 1(5), 183–187 (2017). https://doi.org/10.1002/cptc.201600049
- W. Fan, N. Lu, C. Xu, Y. Liu, J. Lin et al., Enhanced afterglow performance of persistent luminescence implants for efficient repeatable photodynamic therapy. ACS Nano 11, 5864–5872 (2017). https://doi.org/10.1021/acsnano.7b01505
- B. Zheng, H.-B. Chen, P.-Q. Zhao, H.-Z. Pan, X.-L. Wu, X.-Q. Gong, H.-J. Wang, J. Chang, Persistent luminescent nanocarrier as an accurate tracker in vivo for near infrared-remote selectively triggered photothermal therapy. ACS Appl. Mater. Interfaces 8(33), 21603–21611 (2016). https://doi.org/10.1021/acsami.6b07642
- P. Zhao, W. Ji, S. Zhou, L. Qiu, L. Li, Z. Qian, X. Liu, H. Zhang, X. Cao, Upconverting and persistent luminescent nanocarriers for accurately imaging-guided photothermal therapy. Mat. Sci. Eng. C 79, 191–198 (2017). https://doi.org/10.1016/j.msec.2017.05.046
- H. Chen, B. Zheng, C. Liang, L. Zhao, Y. Zhang et al., Near-infrared persistent luminescence phosphors ZnGa2O4:Cr3+ as an accurately tracker to photothermal therapy in vivo for visual treatment. Mat. Sci. Eng. C 79, 372–381 (2017). https://doi.org/10.1016/j.msec.2017.05.053
- S.Q. Wu, C.X. Yang, X.P. Yan, A dual-functional persistently luminescent nanocomposite enables engineering of mesenchymal stem cells for homing and gene therapy of glioblastoma. Adv. Funct. Mater. 27(11), 1604992 (2017). https://doi.org/10.1002/adfm.201604992
- L. Qin, P. Yan, C. Xie, J. Huang, Z. Ren, X. Li, S. Best, X. Cai, G. Han, Gold nanorod-assembled ZnGa2O4:Cr nanofibers for led-amplified gene silencing in cancer cells. Nanoscale 10(28), 13432–13442 (2018). https://doi.org/10.1039/c8nr03802c
- Y. Zhang, F. Wang, E. Ju, Z. Liu, Z. Chen, J. Ren, X. Qu, Metal-organic-framework-based vaccine platforms for enhanced systemic immune and memory response. Adv. Funct. Mater. 26(35), 6454–6461 (2016). https://doi.org/10.1002/adfm.201600650
- M.H. Spitzer, Y. Carmi, N.E. Reticker-Flynn, S.S. Kwek, D. Madhireddy et al., Systemic immunity is required for effective cancer immunotherapy. Cell 168(3), 487–490 (2017). https://doi.org/10.1016/j.cell.2016.12.022
- T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, D. Scherman, Effect of core diameter, surface coating, and peg chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano 5(2), 854–862 (2011). https://doi.org/10.1021/nn101937h
- T. Maldiney, G. Byk, N. Wattier, J. Seguin, R. Khandadash, M. Bessodes, C. Richard, D. Scherman, Synthesis and functionalization of persistent luminescence nanoparticles with small molecules and evaluation of their targeting ability. Int. J. Pharmaceut. 423(1), 102–107 (2012). https://doi.org/10.1016/j.ijpharm.2011.06.048
- T. Maldiney, M. Rémond, M. Bessodes, D. Scherman, C. Richard, Controlling aminosilane layer thickness to extend the plasma half-life of stealth persistent luminescence nanoparticles in vivo. J. Mater. Chem. B 3(19), 4009–4016 (2015). https://doi.org/10.1039/C5TB00146C
- G. Ramírez-García, S. Gutiérrez-Granados, M.A. Gallegos-Corona, L. Palma-Tirado, F. d’Orlyé et al., Long-term toxicological effects of persistent luminescence nanoparticles after intravenous injection in mice. Int. J. Pharmaceut. 532(2), 686–695 (2017). https://doi.org/10.1016/j.ijpharm.2017.07.015
- Y. Jiang, Y. Li, C. Richard, D. Scherman, Y. Liu, Hemocompatibility investigation and improvement of near-infrared persistent luminescent nanoparticle ZnGa2O4:Cr3+ by surface pegylation. J. Mater. Chem. B 7(24), 3796–3803 (2019). https://doi.org/10.1039/c9tb00378a
- L. Wang, J. Zhang, B. Qu, Q. Wu, R. Zhou et al., Mechanistic insights into tunable luminescence and persistent luminescence of the full-color-emitting bcno phosphors. Carbon 122, 176–184 (2017). https://doi.org/10.1016/j.carbon.2017.06.054
- X. Yang, D. Yan, Strongly enhanced long-lived persistent room temperature phosphorescence based on the formation of metal–organic hybrids. Adv. Opt. Mater. 4(6), 897–905 (2016). https://doi.org/10.1002/adom.201500666
- X. Yang, D. Yan, Long-afterglow metal–organic frameworks: reversible guest-induced phosphorescence tunability. Chem. Sci. 7(7), 4519–4526 (2016). https://doi.org/10.1039/C6SC00563B
- J. Liu, Y. Zhuang, L. Wang, T. Zhou, N. Hirosaki, R.J. Xie, Achieving multicolor long-lived luminescence in dye-encapsulated metal–organic frameworks and its application to anticounterfeiting stamps. ACS Appl. Mater. Interfaces 10(2), 1802–1809 (2018). https://doi.org/10.1021/acsami.7b13486
- Z. Wang, C.Y. Zhu, S.Y. Yin, Z.W. Wei, J.H. Zhang, Y.N. Fan, J.J. Jiang, M. Pan, C.Y. Su, A metal–organic supramolecular box as a universal reservoir of UV, WL, and NIR light for long-persistent luminescence. Angew. Chem. Int. Ed. 58(11), 3481–3485 (2019). https://doi.org/10.1002/anie.201812708
- Z. Cheng, H. Shi, H. Ma, L. Bian, Q. Wu et al., Ultralong phosphorescence from organic ionic crystals under ambient conditions. Angew. Chem. Int. Ed. 57(3), 678–682 (2018). https://doi.org/10.1002/anie.201710017
- J. Han, W. Feng, D.Y. Muleta, C.N. Bridgmohan, Y. Dang et al., Small-molecule-doped organic crystals with long-persistent luminescence. Adv. Funct. Mater. 29(30), 1902503 (2019). https://doi.org/10.1002/adfm.201902503
- B. Zhou, D. Yan, Simultaneous long-persistent blue luminescence and high quantum yield within 2D organic-metal halide perovskite micro/nanosheets. Angew. Chem. Int. Ed. 58(42), 15128–15135 (2019). https://doi.org/10.1002/anie.201909760
- P. Xue, P. Wang, P. Chen, B. Yao, P. Gong, J. Sun, Z. Zhang, R. Lu, Bright persistent luminescence from pure organic molecules through a moderate intermolecular heavy atom effect. Chem. Sci. 8(9), 6060–6065 (2015). https://doi.org/10.1039/C5SC03739E
- M. Palner, K. Pu, S. Shao, J. Rao, Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew. Chem. Int. Ed. 127(39), 11639–11642 (2015). https://doi.org/10.1002/ange.201502736
- X. Zhen, Y. Tao, Z. An, P. Chen, C. Xu, R. Chen, W. Huang, K. Pu, Ultralong phosphorescence of water-soluble organic nanoparticles for in vivo afterglow imaging. Adv. Mater. 29(33), 1606665 (2017). https://doi.org/10.1002/adma.201606665
- J. Li, J. Rao, K. Pu, Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 155, 217–235 (2018). https://doi.org/10.1016/j.biomaterials.2017.11.025
- Y. Lyu, X. Zhen, Y. Miao, K. Pu, Reaction-based semiconducting polymer nanoprobes for photoacoustic imaging of protein sulfenic acids. ACS Nano 11(1), 358–367 (2017). https://doi.org/10.1021/acsnano.6b05949
- Y. Lyu, D. Cui, H. Sun, Y. Miao, H. Duan, K. Pu, Dendronized semiconducting polymer as photothermal nanocarrier for remote activation of gene expression. Angew. Chem. Int. Ed. 56(31), 9155–9159 (2017). https://doi.org/10.1002/anie.201705543
- C. Xie, X. Zhen, Q. Miao, Y. Lyu, K. Pu, Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv. Mater. 30(21), e1801331 (2018). https://doi.org/10.1002/adma.201801331
- J. Li, Z. Hai, H. Xiao, X. Yi, G. Liang, Intracellular self-assembly of Ru(bpy)2+3 nanoparticles enables persistent phosphorescence imaging of tumors. Chem. Commun. 54(28), 3460–3463 (2018). https://doi.org/10.1039/C8CC01759J
- S. He, C. Xie, Y. Jiang, K. Pu, An organic afterglow protheranostic nanoassembly. Adv. Mater. 31(32), e1902672 (2019). https://doi.org/10.1002/adma.201902672
- X. Ni, X. Zhang, X. Duan, H.L. Zheng, X.S. Xue, D. Ding, Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett. 19(1), 318–330 (2019). https://doi.org/10.1021/acs.nanolett.8b03936
- T. Lecuyer, M.A. Durand, J. Volatron, M. Desmau, R. Lai-Kuen, Y. Corvis et al., Degradation of ZnGa2O4:Cr3+ luminescent nanoparticles in lysosomal-like medium. Nanoscale (2020). https://doi.org/10.1039/c9nr06867h
- J. Wang, Q. Ma, W. Zheng, H. Liu, C. Yin, F. Wang, X. Chen, Q. Yuan, W. Tan, One-dimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano 11(8), 8185–8191 (2017). https://doi.org/10.1021/acsnano.7b03128
- R.H. Wang, C.L. Zhu, L.L. Wang, L.Z. Xu, W.L. Wang, C. Yang, Y. Zhang, Dual-modal aptasensor for the detection of isocarbophos in vegetables. Talanta 205, 120094 (2019). https://doi.org/10.1016/j.talanta.2019.06.094
- F. Feng, X. Chen, G. Li, S. Liang, Z. Hong, H.F. Wang, Afterglow resonance energy transfer inhibition for fibroblast activation protein-alpha assay. ACS Sensors 3(9), 1846–1854 (2018). https://doi.org/10.1021/acssensors.8b00680
- J. Li, C. Yang, W.L. Wang, X.P. Yan, Functionalized gold and persistent luminescence nanoparticle-based ratiometric absorption and TR-FRET nanoplatform for high-throughput sequential detection of l-cysteine and insulin. Nanoscale 10(31), 14931–14937 (2018). https://doi.org/10.1039/c8nr04414g
- Y. Liu, Y. Wang, K. Jiang, S. Sun, S. Qian, Q. Wu, H. Lin, A persistent luminescence-based label-free probe for the ultrasensitive detection of hemoglobin in human serum. Talanta 206, 120206 (2020). https://doi.org/10.1016/j.talanta.2019.120206
- X. Zhang, N.-Y. Xu, Q. Ruan, D.-Q. Lu, Y.-H. Yang, R. Hu, A label-free and sensitive photoluminescence sensing platform based on long persistent luminescence nanoparticles for the determination of antibiotics and 2,4,6-trinitrophenol. RSC Adv. 8(11), 5714–5720 (2018). https://doi.org/10.1039/c7ra12222e
- K. Ge, J. Liu, P. Wang, G. Fang, D. Zhang, S. Wang, Near-infrared-emitting persistent luminescent nanoparticles modified with gold nanorods as multifunctional probes for detection of arsenic(III). Microchim. Acta 186(3), 197 (2019). https://doi.org/10.1007/s00604-019-3294-z
References
Y. Liu, J. Kuang, B. Lei, C. Shi, Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors. J. Mater. Chem. 15(37), 4025–4031 (2005). https://doi.org/10.1039/B507774E
Z. Pan, Y.-Y. Lu, F. Liu, Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 11(1), 58–63 (2011). https://doi.org/10.1038/nmat3173
T. Maldiney, A. Bessière, J. Seguin, E. Teston, S.K. Sharma et al., The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13(4), 418–426 (2014). https://doi.org/10.1038/nmat3908
J. Xu, J. Ueda, S. Tanabe, Toward tunable and bright deep-red persistent luminescence of Cr3+ in garnets. J. Am. Ceram. Soc. 100(9), 4033–4044 (2017). https://doi.org/10.1111/jace.14942
T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+. J. Electrochem. Soc. 143(8), 2670–2673 (1996). https://doi.org/10.1149/1.1837067
F. Chi, X. Wei, B. Jiang, Y. Chen, C. Duan, M. Yin, Luminescence properties and the thermal quenching mechanism of Mn2+ doped Zn2GeO4 long persistent phosphors. Dalton Trans. 47(4), 1303–1311 (2018). https://doi.org/10.1039/c7dt03906a
O.Q. De Clercq, D. Poelman, Local, temperature-dependent trapping and detrapping in the LiGa5O8: Cr infrared emitting persistent phosphor. ECS J. Solid State Sci. Technol. 7(1), 3171–3175 (2018). https://doi.org/10.1149/2.0211801jss
T. Lyu, P. Dorenbos, Charge carrier trapping processes in lanthanide doped LaPO4, GdPO4, YPO4, and LuPO4. J. Mater. Chem. C 6(2), 369–379 (2018). https://doi.org/10.1039/c7tc05221a
I. Sahu, D.P. Bisen, K.V.R. Murthy, R.K. Tamrakar, Studies on the luminescence properties of cerium co-doping on Ca2MgSi2O7:Eu2+ phosphor by solid-state reaction method. Luminescence 32(7), 1263–1276 (2017). https://doi.org/10.1002/bio.3320
F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, Z. Pan, Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Sci. Rep. 3(1), 1554 (2013). https://doi.org/10.1038/srep01554
M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. Kouadri-Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, F. Fayon, Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4. Chem. Mater. 25(9), 1600–1606 (2013). https://doi.org/10.1021/cm304101n
M. Sun, Z.-J. Li, C.-L. Liu, H.-X. Fu, J.-S. Shen, H.-W. Zhang, Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation. J. Lumin. 145, 838–842 (2014). https://doi.org/10.1016/j.jlumin.2013.08.070
S.K. Sharma, D. Gourier, B. Viana, T. Maldiney, E. Teston, D. Scherman, C. Richard, Persistent luminescence of AB2O4:Cr3+ (A = Zn, Mg, B = Ga, Al) spinels: new biomarkers for in vivo imaging. Opt. Mater. 36(11), 1901–1906 (2014). https://doi.org/10.1016/j.optmat.2014.06.020
T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard et al., In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles. Opt. Mater. Express 2(3), 261–268 (2012). https://doi.org/10.1364/OME.2.000261
C. Rosticher, B. Viana, T. Maldiney, C. Richard, C. Chanéac, Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in vivo optical imaging. J. Lumin. 170, 460–466 (2016). https://doi.org/10.1016/j.jlumin.2015.07.024
M. Pellerin, E. Glais, T. Lecuyer, J. Xu, J. Seguin, S. Tanabe, C. Chanéac, B. Viana, C. Richard, LaAlO3:Cr3+, Sm3+: nano-perovskite with persistent luminescence for in vivo optical imaging. J. Lumin. 202, 83–88 (2018). https://doi.org/10.1016/j.jlumin.2018.05.024
C. Shi, Y. Zhu, G. Zhu, X. Shen, M. Ge, Phototunable full-color emission of dynamic luminescent materials. J. Mater. Chem. C 6(35), 9552–9560 (2018). https://doi.org/10.1039/c8tc02955e
H. Lin, G. Bai, T. Yu, M.K. Tsang, Q. Zhang, J. Hao, Site occupancy and near-infrared luminescence in Ca3Ga2Ge3O12:Cr3+ persistent phosphor. Adv. Opt. Mater. 5(18), 1700227 (2017). https://doi.org/10.1002/adom.201700227
F. Xue, Y. Hu, L. Fan, G. Ju, Y. Lv, Y. Li, Cr3+-activated Li5Zn8Al5Ge9O36: a near-infrared long-afterglow phosphor. J. Am. Ceram. Soc. 100(7), 3070–3079 (2017). https://doi.org/10.1111/jace.14874
I. Norrbo, J.M. Carvalho, P. Laukkanen, J. Mäkelä, F. Mamedov et al., Lanthanide and heavy metal free long white persistent luminescence from Ti doped Li-hackmanite: a versatile, low-cost material. Adv. Funct. Mater. 27(17), 1606547 (2017). https://doi.org/10.1002/adfm.201606547
T. Tu, G. Jiang, Enhanced persistent luminescence of Li2ZnGeO4 host by rare-earth ions (Pr3+, Nd3+ and Gd3+) doping. J. Mater. Sci. Mater. El. 29(4), 3146–3152 (2017). https://doi.org/10.1007/s10854-017-8247-x
P. Ge, K. Sun, Y. Cheng, Design and synthesis of up-converted persistent luminescence Zn3Ga2SnO8:Cr3+, Yb3+, Er3+ phosphor. Optik 188, 200–204 (2019). https://doi.org/10.1016/j.ijleo.2019.05.011
F. Liu, Y. Liang, Z. Pan, Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8:Cr3+, Yb3+, Er3+ phosphor. Phys. Rev. Lett. 113(17), 177401 (2014). https://doi.org/10.1103/PhysRevLett.113.177401
Z. Li, L. Huang, Y. Zhang, Y. Zhao, H. Yang, G. Han, Near-infrared light activated persistent luminescence nanoparticles via upconversion. Nano Res. 10(5), 1840–1846 (2017). https://doi.org/10.1007/s12274-017-1548-9
Z. Xue, X. Li, Y. Li, M. Jiang, G. Ren, H. Liu, S. Zeng, J. Hao, A 980 nm laser-activated upconverted persistent probe for NIR-to-NIR rechargeable in vivo bioimaging. Nanoscale 9(21), 7276–7283 (2017). https://doi.org/10.1039/C6NR09716B
Y. Zhuang, Y. Lv, L. Wang, W. Chen, T.L. Zhou, T. Takeda, N. Hirosaki, R.J. Xie, Trap depth engineering of SrSi2O2N2:Ln2+, Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) persistent luminescence materials for information storage applications. ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018). https://doi.org/10.1021/acsami.7b17271
Y. Zhuang, L. Wang, Y. Lv, T.-L. Zhou, R.-J. Xie, Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials. Adv. Funct. Mater. 28(8), 1705769 (2018). https://doi.org/10.1002/adfm.201705769
X. Liu, Q. Ji, Q. Hu, C. Li, M. Chen, J. Sun, Y. Wang, Q. Sun, B. Geng, Dual-mode long-lived luminescence of Mn2+-doped nanoparticles for multilevel anticounterfeiting. ACS Appl. Mater. Interfaces 11(33), 30146–30153 (2019). https://doi.org/10.1021/acsami.9b09612
T. Lecuyer, E. Teston, G. Ramirez-Garcia, T. Maldiney, B. Viana, J. Seguin, N. Mignet, D. Scherman, C. Richard, Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics 6(13), 2488–2524 (2016). https://doi.org/10.7150/thno.16589
J. Liu, T. Lécuyer, J. Séguin, N. Mignet, D. Scherman, B. Viana, C. Richard, Imaging and therapeutic applications of persistent luminescence nanomaterials. Adv. Drug Deliv. Rev. 138, 193–210 (2019). https://doi.org/10.1016/j.addr.2018.10.015
K.Y. Zhang, Q. Yu, H. Wei, S. Liu, Q. Zhao, W. Huang, Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 118(4), 1770–1839 (2018). https://doi.org/10.1021/acs.chemrev.7b00425
D. Jia, L.A. Lewis, X.-J. Wang, Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission. Electrochem. Solid-St. 13(4), J32–J34 (2010). https://doi.org/10.1149/1.3294520
A. Abdukayum, J.-T. Chen, Q. Zhao, X.-P. Yan, Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 135(38), 14125–14133 (2013). https://doi.org/10.1021/ja404243v
Y.J. Li, X.P. Yan, Synthesis of functionalized triple-doped zinc gallogermanate nanoparticles with superlong near-infrared persistent luminescence for long-term orally administrated bioimaging. Nanoscale 8(32), 14965–14970 (2016). https://doi.org/10.1039/c6nr04950h
S.-Q. Wu, C.-W. Chi, C.-X. Yang, X.-P. Yan, Penetrating peptide-bioconjugated persistent nanophosphors for long-term tracking of adipose-derived stem cells with superior signal-to-noise ratio. Anal. Chem. 88(7), 4114–4121 (2016). https://doi.org/10.1021/acs.analchem.6b00449
A. Verma, A. Verma, Synthesis, characterization, mechano-luminescence, thermoluminescence, and antibacterial properties of SrMgAl10O17:Eu phosphor. J. Alloys Compd. 802, 394–408 (2019). https://doi.org/10.1016/j.jallcom.2019.06.209
Z. Li, Q. Wang, Y. Wang, Q. Ma, J. Wang, Z. Li, Y. Li, X. Lv, W. Wei, L. Chen, Q. Yuan, Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pH-guided recognition. Nano Res. 11(12), 6167–6176 (2018). https://doi.org/10.1007/s12274-018-2133-6
A. Tuerdi, A. Abdukayum, Dual-functional persistent luminescent nanoparticles with enhanced persistent luminescence and photocatalytic activity. RSC Adv. 9(31), 17653–17657 (2019). https://doi.org/10.1039/c9ra02235j
J. Xu, D. Murata, J. Ueda, S. Tanabe, Near-infrared long persistent luminescence of Er3+ in garnet for the third bio-imaging window. J. Mater. Chem. C 4(47), 11096–11103 (2016). https://doi.org/10.1039/c6tc04027f
J. Nie, Y. Li, S. Liu, Q. Chen, Q. Xu, J. Qiu, Tunable long persistent luminescence in the second near-infrared window via crystal field control. Sci. Rep. 7(1), 12392 (2017). https://doi.org/10.1038/s41598-017-12591-1
R. Kabe, C. Adachi, Organic long persistent luminescence. Nature 550(7676), 384–387 (2017). https://doi.org/10.1038/nature24010
Q. Miao, C. Xie, X. Zhen, Y. Lyu, H. Duan, X. Liu, J.V. Jokerst, K. Pu, Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35(11), 1102–1110 (2017). https://doi.org/10.1038/nbt.3987
T. Maldiney, B.T. Doan, D. Alloyeau, M. Bessodes, D. Scherman, C. Richard, Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging. Adv. Funct. Mater. 25(2), 331–338 (2015). https://doi.org/10.1002/adfm.201401612
J. Wang, Q. Ma, X.-X. Hu, H. Liu, W. Zheng, X. Chen, Q. Yuan, W. Tan, Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano 11, 8010–8017 (2017). https://doi.org/10.1021/acsnano.7b02643
J. Wang, Q. Ma, Y. Wang, H. Shen, Q. Yuan, Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale 9(19), 6204–6218 (2017). https://doi.org/10.1039/c7nr01488k
S.K. Sun, H.F. Wang, X.P. Yan, Engineering persistent luminescence nanoparticles for biological applications: from biosensing/bioimaging to theranostics. Acc. Chem. Res. 51(5), 1131–1143 (2018). https://doi.org/10.1021/acs.accounts.7b00619
L. Liang, N. Chen, Y. Jia, Q. Ma, J. Wang, Q. Yuan, W. Tan, Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Res. 12(6), 1279–1292 (2019). https://doi.org/10.1007/s12274-019-2343-6
D. Jia, R.S. Meltzer, W.M. Yen, W. Jia, X. Wang, Green phosphorescence of CaAl2O4:Tb3+, Ce3+ through persistence energy transfer. Appl. Phys. Lett. 80(9), 1535–1537 (2002). https://doi.org/10.1063/1.1456955
S. Ye, J. Zhang, X. Zhang, S. Lu, X. Ren, X.-J. Wang, Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer. J. Appl. Phys. 101(6), 063545 (2007). https://doi.org/10.1063/1.2714498
E. Teston, S. Richard, T. Maldiney, N. Lièvre, G. Wang, L. Motte, C. Richard, Y. Lalatonne, Non-aqueous sol–gel synthesis of ultra small persistent luminescence nanoparticles for near-infrared in vivo imaging. Chem. Eur. J. 21(20), 7350–7354 (2015). https://doi.org/10.1002/chem.201406599
D. Jia, X.J. Wang, W. Jia, W.M. Yen, Persistent energy transfer in CaAl2O4:Tb3+, Ce3+. J. Appl. Phys. 93(1), 148–152 (2003). https://doi.org/10.1063/1.1525860
R. Zhong, J. Zhang, X. Zhang, S. Lu, X.-J. Wang, Red phosphorescence in Sr4Al14O25: Cr3+, Eu2+, Dy3+ through persistent energy transfer. Appl. Phys. Lett. 88(20), 201916 (2006). https://doi.org/10.1063/1.2205167
Z.-J. Li, Y.-J. Zhang, H.-W. Zhang, H.-X. Fu, Long-lasting phosphorescence functionalization of mesoporous silica nanospheres by CaTiO3:Pr3+ for drug delivery. Micropor. Mesopor. Mat. 176, 48–54 (2013). https://doi.org/10.1016/j.micromeso.2013.02.050
Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, G. Han, Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc. 137(16), 5304–5307 (2015). https://doi.org/10.1021/jacs.5b00872
H. Liu, X. Hu, J. Wang, M. Liu, W. Wei, Q. Yuan, Direct low-temperature synthesis of ultralong persistent luminescence nanobelts based on a biphasic solution-chemical reaction. Chinese Chem. Lett. 29(11), 1641–1644 (2018). https://doi.org/10.1016/j.cclet.2018.02.005
E. Bonturim, L.G. Merízio, R. dos Reis, H.F. Brito, L.C.V. Rodrigues, M.C.F.C. Felinto, Persistent luminescence of inorganic nanophosphors prepared by wet-chemical synthesis. J. Alloys Compd. 732, 705–715 (2018). https://doi.org/10.1016/j.jallcom.2017.10.219
P. Liu, Y. Liu, C. Cui, L. Wang, J. Qiao, P. Huang, Q. Shi, Y. Tian, H. Jiang, J. Jiang, Enhanced luminescence and afterglow by heat-treatment in reducing atmosphere to synthesize the Gd3Al2Ga3O12: Ce3+ persistent phosphor for ac-leds. J. Alloys Compd. 731, 389–396 (2018). https://doi.org/10.1016/j.jallcom.2017.10.037
A.S. Maia, R. Stefani, C.A. Kodaira, M. Felinto, E. Teotonio, H.F. Brito, Luminescent nanoparticles of MgAl2O4:Eu, Dy prepared by citrate sol–gel method. Opt. Mater. 31(2), 440–444 (2008). https://doi.org/10.1016/j.optmat.2008.06.017
T. Maldiney, B. Viana, A. Bessière, D. Gourier, M. Bessodes, D. Scherman, C. Richard, In vivo imaging with persistent luminescence silicate-based nanoparticles. Opt. Mater. 35(10), 1852–1858 (2013). https://doi.org/10.1016/j.optmat.2013.03.028
F. Ye, S. Dong, Z. Tian, S. Yao, Z. Zhou, S. Wang, Fabrication of the PLA/Sr2MgSi2O7:Eu2+, Dy3+ long-persistent luminescence composite fibers by electrospinning. Opt. Mater. 36(2), 463–466 (2013). https://doi.org/10.1016/j.optmat.2013.10.019
Z. Li, H. Zhang, M. Sun, J. Shen, H. Fu, A facile and effective method to prepare long-persistent phosphorescent nanospheres and its potential application for in vivo imaging. J. Mater. Chem. 22(47), 24713–24720 (2012). https://doi.org/10.1039/C2JM35650C
Z. Li, J. Shi, H. Zhang, M. Sun, Highly controllable synthesis of near-infrared persistent luminescence SiO2/CaMgSi2O6 composite nanospheres for imaging in vivo. Opt. Express 22(9), 10509 (2014). https://doi.org/10.1364/OE.22.010509
J. Shi, M. Sun, X. Sun, H. Zhang, Near-infrared persistent luminescence hollow mesoporous nanospheres for drug delivery and in vivo renewable imaging. J. Mater. Chem. B 4(48), 7845–7851 (2016). https://doi.org/10.1039/C6TB02674E
J. Shi, X. Sun, J. Li, H. Man, J. Shen, Y. Yu, H. Zhang, Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials 37, 260–270 (2015). https://doi.org/10.1016/j.biomaterials.2014.10.033
B.B. Srivastava, A. Kuang, Y. Mao, Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route. Chem. Commun. 51(34), 7372–7375 (2015). https://doi.org/10.1039/c5cc00377f
J.-L. Li, J.-P. Shi, C.-C. Wang, P.-H. Li, Z.-F. Yu, H.-W. Zhang, Five-nanometer ZnSn2O4:Cr, Eu ultra-small nanoparticles as new near infrared-emitting persistent luminescent nanoprobes for cellular and deep tissue imaging at 800 nm. Nanoscale 9(25), 8631–8638 (2017). https://doi.org/10.1039/c7nr02468a
R. Zou, J. Huang, J. Shi, L. Huang, X. Zhang et al., Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence. Nano Res. 10(6), 2070–2082 (2016). https://doi.org/10.1007/s12274-016-1396-z
J. Yang, Y. Liu, D. Yan, H. Zhu, C. Liu, C. Xu, L. Ma, X. Wang, A vacuum-annealing strategy for improving near-infrared super long persistent luminescence in Cr3+ doped zinc gallogermanate nanoparticles for bio-imaging. Dalton T. 45(4), 1364–1372 (2016). https://doi.org/10.1039/c5dt03875h
T. Maldiney, M.U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes et al., In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles. Bioconjug. Chem. 23(3), 472–478 (2012). https://doi.org/10.1021/bc200510z
J. Wang, J. Li, J. Yu, H. Zhang, B. Zhang, Large hollow cavity luminous nanoparticles with near-infrared persistent luminescence and tunable sizes for tumor afterglow imaging and chemo-/photodynamic therapies. ACS Nano 12(5), 4246–4258 (2018). https://doi.org/10.1021/acsnano.7b07606
J. Wang, Q. Ma, X.X. Hu, H. Liu, W. Zheng, X. Chen, Q. Yuan, W. Tan, Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano 11(8), 8010–8017 (2017). https://doi.org/10.1021/acsnano.7b02643
H.F. Wang, X. Chen, F. Feng, X. Ji, Y. Zhang, Edta etching: a simple way for regulating the traps, size and aqueous-dispersibility of Cr3+-doped zinc gallate. Chem. Sci. 9(48), 8923–8929 (2018). https://doi.org/10.1039/c8sc04173c
Y.J. Li, C.X. Yang, X.P. Yan, Biomimetic persistent luminescent nanoplatform for autofluorescence-free metastasis tracking and chemophotodynamic therapy. Anal. Chem. 90(6), 4188–4195 (2018). https://doi.org/10.1021/acs.analchem.8b00311
J.M. Liu, D.D. Zhang, G.Z. Fang, S. Wang, Erythrocyte membrane bioinspired near-infrared persistent luminescence nanocarriers for in vivo long-circulating bioimaging and drug delivery. Biomaterials 165, 39–47 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.042
Z.H. Wang, J.M. Liu, C.Y. Li, D. Wang, H. Lv, S.W. Lv, N. Zhao, H. Ma, S. Wang, Bacterial biofilm bioinspired persistent luminescence nanoparticles with gut-oriented drug delivery for colorectal cancer imaging and chemotherapy. ACS Appl. Mater. Interfaces 11(40), 36409–36419 (2019). https://doi.org/10.1021/acsami.9b12853
X. Zhao, L.-J. Chen, K.-C. Zhao, Y.-S. Liu, J.-L. Liu, X.-P. Yan, Autofluorescence-free chemo/biosensing in complex matrixes based on persistent luminescence nanoparticles. TrAC Trend. Anal. Chem. 118, 65–72 (2019). https://doi.org/10.1016/j.trac.2019.05.025
B.Y. Wu, H.F. Wang, J.T. Chen, X.P. Yan, Fluorescence resonance energy transfer inhibition assay for alpha-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J. Am. Chem. Soc. 133(4), 686–688 (2011). https://doi.org/10.1021/ja108788p
N. Li, Y. Li, Y. Han, W. Pan, T. Zhang, B. Tang, A highly selective and instantaneous nanoprobe for detection and imaging of ascorbic acid in living cells and in vivo. Anal. Chem. 86(8), 3924–3930 (2014). https://doi.org/10.1021/ac5000587
N. Li, W. Diao, Y. Han, W. Pan, T. Zhang, B. Tang, MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo. Chem. Eur. J. 20(50), 16488–16491 (2014). https://doi.org/10.1002/chem.201404625
L. Zhang, J. Lei, J. Liu, F. Ma, H. Ju, Persistent luminescence nanoprobe for biosensing and lifetime imaging of cell apoptosis via time-resolved fluorescence resonance energy transfer. Biomaterials 67, 323–334 (2015). https://doi.org/10.1016/j.biomaterials.2015.07.037
B.Y. Wu, X.P. Yan, Bioconjugated persistent luminescence nanoparticles for foster resonance energy transfer immunoassay of prostate specific antigen in serum and cell extracts without in situ excitation. Chem. Commun. 51(18), 3903–3906 (2015). https://doi.org/10.1039/c5cc00286a
Y. Wang, Z. Li, Q. Lin, Y. Wei, J. Wang, Y. Li, R. Yang, Q. Yuan, Highly sensitive detection of bladder cancer-related miRNA in urine using time-gated luminescent biochip. ACS Sensors 4(8), 2124–2130 (2019). https://doi.org/10.1021/acssensors.9b00927
J. Tang, Y. Su, D. Deng, L. Zhang, N. Yang, Y. Lv, A persistent luminescence microsphere-based probe for convenient imaging analysis of dopamine. Analyst 141(18), 5366–5373 (2016). https://doi.org/10.1039/c6an00882h
Y. Liu, J.M. Liu, D. Zhang, K. Ge, P. Wang, H. Liu, G. Fang, S. Wang, Persistent luminescence nanophosphor involved near-infrared optical bioimaging for investigation of foodborne probiotics biodistribution in vivo: a proof-of-concept study. J. Agr. Food Chem. 65(37), 8229–8240 (2017). https://doi.org/10.1021/acs.jafc.7b02870
J. Yang, Y. Liu, Y. Zhao, Z. Gong, M. Zhang et al., Ratiometric afterglow nanothermometer for simultaneous in situ bioimaging and local tissue temperature sensing. Chem. Mater. 29(19), 8119–8131 (2017). https://doi.org/10.1021/acs.chemmater.7b01958
Z. Zhou, W. Zheng, J. Kong, Y. Liu, P. Huang, S. Zhou, Z. Chen, J. Shi, X. Chen, Rechargeable and led-activated ZnGa2O4:Cr3+ near-infrared persistent luminescence nanoprobes for background-free biodetection. Nanoscale 9(20), 6846–6853 (2017). https://doi.org/10.1039/c7nr01209h
A.S. Paterson, B. Raja, G. Garvey, A. Kolhatkar, A.E. Hagstrom, K. Kourentzi, T.R. Lee, R.C. Willson, Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays. Anal. Chem. 86(19), 9481–9488 (2014). https://doi.org/10.1021/ac5012624
Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, Nanoprobes with near-infrared persistent luminescence for in vivo imaging. PNAS 104(22), 9266–9271 (2007). https://doi.org/10.1073/pnas.0702427104
X. Sun, J. Shi, S. Zheng, J. Li, S. Wang, H. Zhang, Visualization of inflammation in a mouse model based on near-infrared persistent luminescence nanoparticles. J. Lumin. 204, 520–527 (2018). https://doi.org/10.1016/j.jlumin.2018.08.058
D.D. Zhang, J.M. Liu, S.M. Sun, C. Liu, G.Z. Fang, S. Wang, Construction of persistent luminescence-plastic antibody hybrid nanoprobe for in vivo recognition and clearance of pesticide using background-free nanobioimaging. J. Agr. Food Chem. 67(24), 6874–6883 (2019). https://doi.org/10.1021/acs.jafc.9b02712
Y.-J. Chuang, Z. Zhen, F. Zhang, F. Liu, J.P. Mishra et al., Photostimulable near-infrared persistent luminescent nanoprobes for ultrasensitive and longitudinal deep-tissue bio-imaging. Theranostics 4(11), 1112–1122 (2014). https://doi.org/10.7150/thno.9710
B. Can-Uc, J.B. Montes-Frausto, K. Juarez-Moreno, J. Licea-Rodriguez, I. Rocha-Mendoza, G.A. Hirata, Light sheet microscopy and SrAl2O4 nanoparticles codoped with Eu2+/Dy3+ ions for cancer cell tagging. J. Biophotonics 11(6), e201700301 (2018). https://doi.org/10.1002/jbio.201700301
E. Teston, T. Maldiney, I. Marangon, J. Volatron, Y. Lalatonne et al., Nanohybrids with magnetic and persistent luminescence properties for cell labeling, tracking, in vivo real-time imaging, and magnetic vectorization. Small 14(16), e1800020 (2018). https://doi.org/10.1002/smll.201800020
L.J. Chen, X. Zhao, X.P. Yan, Cell-penetrating peptide-functionalized persistent luminescence nanoparticles for tracking J774A.1 macrophages homing to inflamed tissues. ACS Appl. Mater. Interfaces 11(22), 19894–19901 (2019). https://doi.org/10.1021/acsami.9b05870
J.M. Liu, N. Zhao, Z.H. Wang, S.W. Lv, C.Y. Li, S. Wang, In-taken labeling and in vivo tracing foodborne probiotics via DNA-encapsulated persistent luminescence nanoprobe assisted autofluorescence-free bioimaging. J. Agr. Food Chem. 67(1), 514–519 (2019). https://doi.org/10.1021/acs.jafc.8b05937
H. Liu, F. Ren, X. Zhou, C. Ma, T. Wang, H. Zhang, Q Sun., Z. Li, Ultra-sensitive detection and inhibition of the metastasis of breast cancer cells to adjacent lymph nodes and distant organs by using long-persistent luminescence nanoparticles. Anal. Chem. 91(23), 15064–15072 (2019). https://doi.org/10.1021/acs.analchem.9b03739
H. Zhao, C. Liu, Z. Gu, L. Dong, F. Li, C. Yao, D. Yang, Persistent luminescent nanoparticles containing hydrogels for targeted, sustained, and autofluorescence-free tumor metastasis imaging. Nano Lett. 20(1), 252–260 (2020). https://doi.org/10.1021/acs.nanolett.9b03755
H.-X. Zhao, C.-X. Yang, X.-P. Yan, Fabrication and bioconjugation of BIII and CrIII co-doped ZnGa2O4 persistent luminescent nanoparticles for dual-targeted cancer bioimaging. Nanoscale 8(45), 18987–18994 (2016). https://doi.org/10.1039/C6NR06259H
A. Abdukayum, C.-X. Yang, Q. Zhao, J.-T. Chen, L.-X. Dong, X.-P. Yan, Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imagingin vivo. Anal. Chem. 86(9), 4096–4101 (2014). https://doi.org/10.1021/ac500644x
Z. Gong, J. Yang, H. Zhu, D. Yan, C. Liu, C. Xu, Y. Liu, The synergistically improved afterglow and magnetic resonance imaging induced by Gd3+ doping in ZGGO:Cr3+ nanoparticles. Mater. Res. Bull. 113, 122–132 (2019). https://doi.org/10.1016/j.materresbull.2019.01.031
J. Shi, H. Fu, X. Sun, J. Shen, H. Zhang, Magnetic, long persistent luminescent and mesoporous nanoparticles as trackable transport drug carriers. J. Mater. Chem. B 3(4), 635–641 (2014). https://doi.org/10.1039/C4TB01721H
E. Teston, Y. Lalatonne, D. Elgrabli, G. Autret, L. Motte et al., Design, properties, and in vivo behavior of super-paramagnetic persistent luminescence nanohybrids. Small 11(22), 2696–2704 (2015). https://doi.org/10.1002/smll.201403071
Y. Wang, C.-X. Yang, X.-P. Yan, Hydrothermal and biomineralization synthesis of a dual-modal nanoprobe for targeted near-infrared persistent luminescence and magnetic resonance imaging. Nanoscale 9(26), 9049–9055 (2017). https://doi.org/10.1039/C7NR02038D
Y.-C. Lu, C.-X. Yang, X.-P. Yan, Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging. Nanoscale 7(42), 17929–17937 (2015). https://doi.org/10.1039/C5NR05623C
L.-J. Chen, S.-K. Sun, Y. Wang, C.-X. Yang, S.-Q. Wu, X.-P. Yan, Activatable multifunctional persistent luminescence nanoparticle/copper sulfide nanoprobe for in vivo luminescence imaging-guided photothermal therapy. ACS Appl. Mater. Interfaces 8(48), 32667–32674 (2016). https://doi.org/10.1021/acsami.6b10702
J.-M. Liu, Y.-Y. Liu, D.-D. Zhang, G. Fang, S. Wang Synthesis of plasmon-enhanced near-infrared persistent luminescence GdAlO3:Mn4+, Ge4+@Au core-shell nanoprobes for in vivo tri-modality bioimaging. ACS Appl. Mater. Interfaces 8(44), 29939–29949 (2016). https://doi.org/10.1021/acsami.6b09580
T. Ai, W. Shang, H. Yan, C. Zeng, K. Wang, Y. Gao, T. Guan, C. Fang, J. Tian, Near infrared-emitting persistent luminescent nanoparticles for hepatocellular carcinoma imaging and luminescence-guided surgery. Biomaterials 167, 216–225 (2018). https://doi.org/10.1016/j.biomaterials.2018.01.031
X. Qiu, X. Zhu, M. Xu, Y W. uan, W. Feng, F. Li, Hybrid nanoclusters for near-infrared to near-infrared upconverted persistent luminescence bioimaging. ACS Appl. Mater. Interfaces 9(38), 32583–32590 (2017). https://doi.org/10.1021/acsami.7b10618
S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, R. Valtonen, X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+, R3+ persistent luminescence materials. Opt. Mater. 31(12), 1877–1879 (2009). https://doi.org/10.1016/j.optmat.2008.12.020
S.K. Sharma, A. Bessière, N. Basavaraju, K.R. Priolkar, L. Binet, B. Viana, D. Gourier, Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in vivo imaging. J. Lumin. 155, 251–256 (2014). https://doi.org/10.1016/j.jlumin.2014.06.056
L. Ma, X. Zou, B. Bui, W. Chen, K. Song, T. Solberg, X-ray excited ZnS:Cu, Co afterglow nanoparticles for photodynamic activation. Appl. Phys. Lett. 105(1), 13702 (2014). https://doi.org/10.1063/1.4890105
K. Santacruz-Gomez, R. Meléndrez, M.I. Gil-Tolano, J.A. Jimenez, M.T. Makale et al., Thermally stimulated luminescence and persistent luminescence of β-irradiated YAG:Pr3+ nanophosphors produced by combustion synthesis. Radiat. Meas. 94, 35–40 (2016). https://doi.org/10.1016/j.radmeas.2016.09.001
X. Li, Z. Xue, M. Jiang, Y. Li, S. Zeng, H. Liu, Soft X-ray activated NaYF4:Gd/Tb scintillating nanorods for in vivo dual-modal X-ray/X-ray-induced optical bioimaging. Nanoscale 10(1), 342–350 (2017). https://doi.org/10.1039/c7nr02926h
Z. Xue, X. Li, Y. Li, M. Jiang, H. Liu, S. Zeng, J. Hao, X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging. ACS Appl. Mater. Interfaces 9(27), 22132–22142 (2017). https://doi.org/10.1021/acsami.7b03802
L. Song, X.-H. Lin, X.-R. Song, S. Chen, X.-F. Chen, J. Li, H.-H. Yang, Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging. Nanoscale 9(8), 2718–2722 (2017). https://doi.org/10.1039/C6NR09553D
E. Rodríguez, G. López-Peña, E. Montes, G. Lifante, J. Solé, D. Jaque, L. Diaz-Torres, P. Salas, Persistent luminescence nanothermometers. Appl. Phys. Lett. 111(8), 81901 (2017). https://doi.org/10.1063/1.4990873
J. Xu, D. Murata, Y. Katayama, J. Ueda, S. Tanabe, Cr3+/Er3+ co-doped LaAlO3 perovskite phosphor: a near-infrared persistent luminescence probe covering the first and third biological windows. J. Mater. Chem. B 5(31), 6385–6393 (2017). https://doi.org/10.1039/C7TB01332A
J. Shi, X. Sun, S. Zheng, J. Li, X. Fu, H. Zhang, A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy. Biomaterials 152, 15–23 (2018). https://doi.org/10.1016/j.biomaterials.2017.10.032
S. Kamimura, X.U. Chao-Nan, H. Yamada, G. Marriott, K. Hyodo, T. Ohno, Near-infrared luminescence from double-perovskite Sr3Sn2O7:Nd3+: a new class of probe for in vivo imaging in the second optical window of biological tissue. J. Ceram. Soc. Jpn. 125(7), 591–595 (2017). https://doi.org/10.2109/jcersj2.17051
L. Zhou, T. Qiu, F. Lv, L. Liu, J. Ying, S. Wang, Self-assembled nanomedicines for anticancer and antibacterial applications. Adv. Healthc. Mater. 7(20), e1800670 (2018). https://doi.org/10.1002/adhm.201800670
T. Maldiney, B. Ballet, M. Bessodes, D. Scherman, C. Richard Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery. Nanoscale 6(22), 13970–13976 (2014). https://doi.org/10.1039/C4NR03843F
L.-J. Chen, C.-X. Yang, X.-P. Yan, Liposome-coated persistent luminescence nanoparticles as luminescence trackable drug carrier for chemotherapy. Anal. Chem. 89(13), 6936–6939 (2017). https://doi.org/10.1021/acs.analchem.7b01397
H.J. Zhang, X. Zhao, L.J. Chen, C.X. Yang, X.P. Yan, pH-driven targeting nanoprobe with dual-responsive drug release for persistent luminescence imaging and chemotherapy of tumor. Anal. Chem. 92(1), 1179–1188 (2020). https://doi.org/10.1021/acs.analchem.9b04318
Y. Feng, R. Liu, L. Zhang, Z. Li, Y. Su, Y. Lv Raspberry-like mesoporous Zn1.07Ga2.34Si0.98O6.56:Cr0.01 nanocarriers for enhanced near-infrared afterglow imaging and combined cancer chemotherapy. ACS Appl. Mater. Interfaces 11(48), 44978–44988 (2019). https://doi.org/10.1021/acsami.9b18124
Y. Lv, D. Ding, Y. Zhuang, Y. Feng, J. Shi, H. Zhang, T.L. Zhou, H. Chen, R.J. Xie, Chromium-doped zinc gallogermanate@zeolitic imidazolate framework-8: a multifunctional nanoplatform for rechargeable in vivo persistent luminescence imaging and pH-responsive drug release. ACS Appl. Mater. Interfaces 11(2), 1907–1916 (2019). https://doi.org/10.1021/acsami.8b19172
H. Zhao, G. Shu, J. Zhu, Y. Fu, Z. Gu, D. Yang, Persistent luminescent metal–organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery. Biomaterials 217, 119332 (2019). https://doi.org/10.1016/j.biomaterials.2019.119332
W. Jiang, L. Huang, F. Mo, Y. Zhong, L. Xu, F. Fu, Persistent luminescent multifunctional drug delivery nano-platform based on nanomaterial ZnGa2O4:Cr3+, Sn4+ for imaging-guided cancer chemotherapy. J. Mater. Chem. B 7(18), 3019–3026 (2019). https://doi.org/10.1039/c9tb00109c
G. Liu, S. Zhang, Y. Shi, X. Huang, Y. Tang, P. Chen, W. Si, W. Huang, X. Dong, “Wax-sealed” theranostic nanoplatform for enhanced afterglow imaging-guided photothermally triggered photodynamic therapy. Adv. Funct. Mater. 28(42), 1804317 (2018). https://doi.org/10.1002/adfm.201804317
L. Hu, P. Wang, M. Zhao, L. Liu, L. Zhou et al., Near-infrared rechargeable “optical battery” implant for irradiation-free photodynamic therapy. Biomaterials 163, 154–162 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.029
S.K. Sun, J.C. Wu, H. Wang, L. Zhou, C. Zhang, R. Cheng, D. Kan, X. Zhang, C. Yu, Turning solid into gel for high-efficient persistent luminescence-sensitized photodynamic therapy. Biomaterials 218, 119328 (2019). https://doi.org/10.1016/j.biomaterials.2019.119328
R. Abdurahman, C.-X. Yang, X.-P. Yan, Conjugation of a photosensitizer to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy. Chem. Commun. 52(90), 13303–13306 (2016). https://doi.org/10.1039/C6CC07616E
J. Wang, Y. Li, R. Mao, Y. Wang, X. Yan, J. Liu, Persistent luminescent nanoparticles as energy mediators for enhanced photodynamic therapy with fractionated irradiation. J. Mater. Chem. B 5(29), 5793–5805 (2017). https://doi.org/10.1039/C7TB00950J
T. Ozdemir, Y.C. Lu, S. Kolemen, E. Tanriverdi-Ecik, E.U. Akkaya, Generation of singlet oxygen by persistent luminescent nanoparticle–photosensitizer conjugates: a proof of principle for photodynamic therapy without light. Chem. Photo. Chem. 1(5), 183–187 (2017). https://doi.org/10.1002/cptc.201600049
W. Fan, N. Lu, C. Xu, Y. Liu, J. Lin et al., Enhanced afterglow performance of persistent luminescence implants for efficient repeatable photodynamic therapy. ACS Nano 11, 5864–5872 (2017). https://doi.org/10.1021/acsnano.7b01505
B. Zheng, H.-B. Chen, P.-Q. Zhao, H.-Z. Pan, X.-L. Wu, X.-Q. Gong, H.-J. Wang, J. Chang, Persistent luminescent nanocarrier as an accurate tracker in vivo for near infrared-remote selectively triggered photothermal therapy. ACS Appl. Mater. Interfaces 8(33), 21603–21611 (2016). https://doi.org/10.1021/acsami.6b07642
P. Zhao, W. Ji, S. Zhou, L. Qiu, L. Li, Z. Qian, X. Liu, H. Zhang, X. Cao, Upconverting and persistent luminescent nanocarriers for accurately imaging-guided photothermal therapy. Mat. Sci. Eng. C 79, 191–198 (2017). https://doi.org/10.1016/j.msec.2017.05.046
H. Chen, B. Zheng, C. Liang, L. Zhao, Y. Zhang et al., Near-infrared persistent luminescence phosphors ZnGa2O4:Cr3+ as an accurately tracker to photothermal therapy in vivo for visual treatment. Mat. Sci. Eng. C 79, 372–381 (2017). https://doi.org/10.1016/j.msec.2017.05.053
S.Q. Wu, C.X. Yang, X.P. Yan, A dual-functional persistently luminescent nanocomposite enables engineering of mesenchymal stem cells for homing and gene therapy of glioblastoma. Adv. Funct. Mater. 27(11), 1604992 (2017). https://doi.org/10.1002/adfm.201604992
L. Qin, P. Yan, C. Xie, J. Huang, Z. Ren, X. Li, S. Best, X. Cai, G. Han, Gold nanorod-assembled ZnGa2O4:Cr nanofibers for led-amplified gene silencing in cancer cells. Nanoscale 10(28), 13432–13442 (2018). https://doi.org/10.1039/c8nr03802c
Y. Zhang, F. Wang, E. Ju, Z. Liu, Z. Chen, J. Ren, X. Qu, Metal-organic-framework-based vaccine platforms for enhanced systemic immune and memory response. Adv. Funct. Mater. 26(35), 6454–6461 (2016). https://doi.org/10.1002/adfm.201600650
M.H. Spitzer, Y. Carmi, N.E. Reticker-Flynn, S.S. Kwek, D. Madhireddy et al., Systemic immunity is required for effective cancer immunotherapy. Cell 168(3), 487–490 (2017). https://doi.org/10.1016/j.cell.2016.12.022
T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, D. Scherman, Effect of core diameter, surface coating, and peg chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano 5(2), 854–862 (2011). https://doi.org/10.1021/nn101937h
T. Maldiney, G. Byk, N. Wattier, J. Seguin, R. Khandadash, M. Bessodes, C. Richard, D. Scherman, Synthesis and functionalization of persistent luminescence nanoparticles with small molecules and evaluation of their targeting ability. Int. J. Pharmaceut. 423(1), 102–107 (2012). https://doi.org/10.1016/j.ijpharm.2011.06.048
T. Maldiney, M. Rémond, M. Bessodes, D. Scherman, C. Richard, Controlling aminosilane layer thickness to extend the plasma half-life of stealth persistent luminescence nanoparticles in vivo. J. Mater. Chem. B 3(19), 4009–4016 (2015). https://doi.org/10.1039/C5TB00146C
G. Ramírez-García, S. Gutiérrez-Granados, M.A. Gallegos-Corona, L. Palma-Tirado, F. d’Orlyé et al., Long-term toxicological effects of persistent luminescence nanoparticles after intravenous injection in mice. Int. J. Pharmaceut. 532(2), 686–695 (2017). https://doi.org/10.1016/j.ijpharm.2017.07.015
Y. Jiang, Y. Li, C. Richard, D. Scherman, Y. Liu, Hemocompatibility investigation and improvement of near-infrared persistent luminescent nanoparticle ZnGa2O4:Cr3+ by surface pegylation. J. Mater. Chem. B 7(24), 3796–3803 (2019). https://doi.org/10.1039/c9tb00378a
L. Wang, J. Zhang, B. Qu, Q. Wu, R. Zhou et al., Mechanistic insights into tunable luminescence and persistent luminescence of the full-color-emitting bcno phosphors. Carbon 122, 176–184 (2017). https://doi.org/10.1016/j.carbon.2017.06.054
X. Yang, D. Yan, Strongly enhanced long-lived persistent room temperature phosphorescence based on the formation of metal–organic hybrids. Adv. Opt. Mater. 4(6), 897–905 (2016). https://doi.org/10.1002/adom.201500666
X. Yang, D. Yan, Long-afterglow metal–organic frameworks: reversible guest-induced phosphorescence tunability. Chem. Sci. 7(7), 4519–4526 (2016). https://doi.org/10.1039/C6SC00563B
J. Liu, Y. Zhuang, L. Wang, T. Zhou, N. Hirosaki, R.J. Xie, Achieving multicolor long-lived luminescence in dye-encapsulated metal–organic frameworks and its application to anticounterfeiting stamps. ACS Appl. Mater. Interfaces 10(2), 1802–1809 (2018). https://doi.org/10.1021/acsami.7b13486
Z. Wang, C.Y. Zhu, S.Y. Yin, Z.W. Wei, J.H. Zhang, Y.N. Fan, J.J. Jiang, M. Pan, C.Y. Su, A metal–organic supramolecular box as a universal reservoir of UV, WL, and NIR light for long-persistent luminescence. Angew. Chem. Int. Ed. 58(11), 3481–3485 (2019). https://doi.org/10.1002/anie.201812708
Z. Cheng, H. Shi, H. Ma, L. Bian, Q. Wu et al., Ultralong phosphorescence from organic ionic crystals under ambient conditions. Angew. Chem. Int. Ed. 57(3), 678–682 (2018). https://doi.org/10.1002/anie.201710017
J. Han, W. Feng, D.Y. Muleta, C.N. Bridgmohan, Y. Dang et al., Small-molecule-doped organic crystals with long-persistent luminescence. Adv. Funct. Mater. 29(30), 1902503 (2019). https://doi.org/10.1002/adfm.201902503
B. Zhou, D. Yan, Simultaneous long-persistent blue luminescence and high quantum yield within 2D organic-metal halide perovskite micro/nanosheets. Angew. Chem. Int. Ed. 58(42), 15128–15135 (2019). https://doi.org/10.1002/anie.201909760
P. Xue, P. Wang, P. Chen, B. Yao, P. Gong, J. Sun, Z. Zhang, R. Lu, Bright persistent luminescence from pure organic molecules through a moderate intermolecular heavy atom effect. Chem. Sci. 8(9), 6060–6065 (2015). https://doi.org/10.1039/C5SC03739E
M. Palner, K. Pu, S. Shao, J. Rao, Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew. Chem. Int. Ed. 127(39), 11639–11642 (2015). https://doi.org/10.1002/ange.201502736
X. Zhen, Y. Tao, Z. An, P. Chen, C. Xu, R. Chen, W. Huang, K. Pu, Ultralong phosphorescence of water-soluble organic nanoparticles for in vivo afterglow imaging. Adv. Mater. 29(33), 1606665 (2017). https://doi.org/10.1002/adma.201606665
J. Li, J. Rao, K. Pu, Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 155, 217–235 (2018). https://doi.org/10.1016/j.biomaterials.2017.11.025
Y. Lyu, X. Zhen, Y. Miao, K. Pu, Reaction-based semiconducting polymer nanoprobes for photoacoustic imaging of protein sulfenic acids. ACS Nano 11(1), 358–367 (2017). https://doi.org/10.1021/acsnano.6b05949
Y. Lyu, D. Cui, H. Sun, Y. Miao, H. Duan, K. Pu, Dendronized semiconducting polymer as photothermal nanocarrier for remote activation of gene expression. Angew. Chem. Int. Ed. 56(31), 9155–9159 (2017). https://doi.org/10.1002/anie.201705543
C. Xie, X. Zhen, Q. Miao, Y. Lyu, K. Pu, Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv. Mater. 30(21), e1801331 (2018). https://doi.org/10.1002/adma.201801331
J. Li, Z. Hai, H. Xiao, X. Yi, G. Liang, Intracellular self-assembly of Ru(bpy)2+3 nanoparticles enables persistent phosphorescence imaging of tumors. Chem. Commun. 54(28), 3460–3463 (2018). https://doi.org/10.1039/C8CC01759J
S. He, C. Xie, Y. Jiang, K. Pu, An organic afterglow protheranostic nanoassembly. Adv. Mater. 31(32), e1902672 (2019). https://doi.org/10.1002/adma.201902672
X. Ni, X. Zhang, X. Duan, H.L. Zheng, X.S. Xue, D. Ding, Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett. 19(1), 318–330 (2019). https://doi.org/10.1021/acs.nanolett.8b03936
T. Lecuyer, M.A. Durand, J. Volatron, M. Desmau, R. Lai-Kuen, Y. Corvis et al., Degradation of ZnGa2O4:Cr3+ luminescent nanoparticles in lysosomal-like medium. Nanoscale (2020). https://doi.org/10.1039/c9nr06867h
J. Wang, Q. Ma, W. Zheng, H. Liu, C. Yin, F. Wang, X. Chen, Q. Yuan, W. Tan, One-dimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano 11(8), 8185–8191 (2017). https://doi.org/10.1021/acsnano.7b03128
R.H. Wang, C.L. Zhu, L.L. Wang, L.Z. Xu, W.L. Wang, C. Yang, Y. Zhang, Dual-modal aptasensor for the detection of isocarbophos in vegetables. Talanta 205, 120094 (2019). https://doi.org/10.1016/j.talanta.2019.06.094
F. Feng, X. Chen, G. Li, S. Liang, Z. Hong, H.F. Wang, Afterglow resonance energy transfer inhibition for fibroblast activation protein-alpha assay. ACS Sensors 3(9), 1846–1854 (2018). https://doi.org/10.1021/acssensors.8b00680
J. Li, C. Yang, W.L. Wang, X.P. Yan, Functionalized gold and persistent luminescence nanoparticle-based ratiometric absorption and TR-FRET nanoplatform for high-throughput sequential detection of l-cysteine and insulin. Nanoscale 10(31), 14931–14937 (2018). https://doi.org/10.1039/c8nr04414g
Y. Liu, Y. Wang, K. Jiang, S. Sun, S. Qian, Q. Wu, H. Lin, A persistent luminescence-based label-free probe for the ultrasensitive detection of hemoglobin in human serum. Talanta 206, 120206 (2020). https://doi.org/10.1016/j.talanta.2019.120206
X. Zhang, N.-Y. Xu, Q. Ruan, D.-Q. Lu, Y.-H. Yang, R. Hu, A label-free and sensitive photoluminescence sensing platform based on long persistent luminescence nanoparticles for the determination of antibiotics and 2,4,6-trinitrophenol. RSC Adv. 8(11), 5714–5720 (2018). https://doi.org/10.1039/c7ra12222e
K. Ge, J. Liu, P. Wang, G. Fang, D. Zhang, S. Wang, Near-infrared-emitting persistent luminescent nanoparticles modified with gold nanorods as multifunctional probes for detection of arsenic(III). Microchim. Acta 186(3), 197 (2019). https://doi.org/10.1007/s00604-019-3294-z