Oxygen-Deficient β-MnO2@Graphene Oxide Cathode for High-Rate and Long-Life Aqueous Zinc Ion Batteries
Corresponding Author: Shunning Li
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 173
Abstract
Recent years have witnessed a booming interest in grid-scale electrochemical energy storage, where much attention has been paid to the aqueous zinc ion batteries (AZIBs). Among various cathode materials for AZIBs, manganese oxides have risen to prominence due to their high energy density and low cost. However, sluggish reaction kinetics and poor cycling stability dictate against their practical application. Herein, we demonstrate the combined use of defect engineering and interfacial optimization that can simultaneously promote rate capability and cycling stability of MnO2 cathodes. β-MnO2 with abundant oxygen vacancies (VO) and graphene oxide (GO) wrapping is synthesized, in which VO in the bulk accelerate the charge/discharge kinetics while GO on the surfaces inhibits the Mn dissolution. This electrode shows a sustained reversible capacity of ~ 129.6 mAh g−1 even after 2000 cycles at a current rate of 4C, outperforming the state-of-the-art MnO2-based cathodes. The superior performance can be rationalized by the direct interaction between surface VO and the GO coating layer, as well as the regulation of structural evolution of β-MnO2 during cycling. The combinatorial design scheme in this work offers a practical pathway for obtaining high-rate and long-life cathodes for AZIBs.
Highlights:
1 The concurrent application of vacancy enrichment and surface coating in β-MnO2 electrode can both improve the intercalation kinetics and inhibit the Mn dissolution.
2 The oxygen-deficient β-MnO2@graphene oxide electrode delivers a reversible capacity of 129.6 mAh g−1 after 2000 cycles at 4C, outperforming the state-of-the-art MnO2-based cathodes.
3 The excellent performance is rooted in the strong binding of graphene oxide on defective β-MnO2 and the regulated structural evolution into the ZnxMn2O4 phase.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Fang, J. Zhou, S. Liang et al., Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- L. Blanc, D. Kundu, L. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 1–29 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
- D. Kundu, B. Dams, V. Duffort, S. Vajargah, L. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1(10), 16119 (2016). https://doi.org/10.1038/NENERGY.2016.119
- Q. Yang, F. Mo, Z. Liu, S. Chen, S. Zhang et al., Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10000-cycle lifespan and superior rate capability. Adv. Mater. 31(32), 1901521 (2019). https://doi.org/10.1002/adma.201901521
- X. Wu, Y. Xu, C. Zhang, D. Leonard, A. Markir et al., Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 141, 6338–6344 (2019). https://doi.org/10.1021/jacs.9b00617
- S. Huang, F. Wan, S. Bi, J. Zhu, Z. Niu et al., A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. Int. Ed. 58(13), 4313–4317 (2019). https://doi.org/10.1002/ange.201814653
- B. Lee, C. Yoon, H. Lee, K. Chung, B. Cho et al., Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci. Rep. 4, 6066 (2014). https://doi.org/10.1038/srep06066
- N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8(1), 405 (2016). https://doi.org/10.1038/s41467-017-00467-x
- C. Wang, Y. Zeng, X. Xiao, S. Wu, G. Zhong et al., γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J. Energy Chem. 43, 182–187 (2020). https://doi.org/10.1016/j.jechem.2019.08.011
- J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu et al., Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9(1), 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
- Y. Xu, X. Deng, Q. Li, G. Zhang, F. Xiong et al., Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries. Chem 5, 1194–1209 (2019). https://doi.org/10.1016/j.chempr.2019.02.014
- N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49, 4203–4219 (2020). https://doi.org/10.1039/c9cs00349e
- Q. Zhao, A. Song, S. Ding, R. Qin, Y. Cui et al., Pre-intercalation strategy in manganese oxides for electrochemical energy storage: review and prospect. Adv. Mater. 32, 2002450 (2020). https://doi.org/10.1002/adma.202002450
- T. Xiong, Y. Zhang, W. Lee, J. Xue et al., Defect engineering in manganese-based oxides for aqueous rechargeable zinc-ion batteries: a review. Adv. Energy Mater. 10, 2001769 (2020). https://doi.org/10.1002/aenm.202001769
- Y. Tian, X. Liu, L. Xu, D. Yuan, Y. Dou et al., Engineering crystallinity and oxygen vacancies of Co(II) oxide nanosheets for high performance and robust rechargeable Zn–air batteries. Adv. Funct. Mater. 31, 2101239 (2021). https://doi.org/10.1002/adfm.202101239
- X. Zhang, J. Li, Y. Qian et al., Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries. Energy Storage Mater. 30, 337–345 (2020). https://doi.org/10.1016/j.ensm.2020.05.021
- Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn–Air batteries. Nano-Micro Lett. 13, 3 (2021). https://doi.org/10.1007/s40820-020-00526-x
- Q. Zhao, A. Song, W. Zhao, R. Qin, S. Ding et al., Boosting the energy density of aqueous batteries via facile grotthuss proton transport. Angew. Chem. Int. Ed. 132, 2–8 (2020). https://doi.org/10.1002/ange.202011588
- N. Liu, X. Wu, Y. Yin, Y. Chen, A. Zhao et al., Constructing the efficient ion diffusion pathway by introducing oxygen defects in Mn2O3 for high-performance aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 12(25), 28199–28205 (2020). https://doi.org/10.1021/acsami.0c05968
- Q. Tan, X. Li, B. Zhang, X. Chen, Y. Tian et al., valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery. Adv. Energy Mater. 10(38), 2001050 (2019). https://doi.org/10.1002/aenm.202001050
- T. Xiong, Z. Yu, H. Wu, Y. Du, Q.J. Chen et al., Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 9(14), 1803815 (2019). https://doi.org/10.1002/aenm.201803815
- J. Wang, X. Qin, Y. Wang, M. Shao et al., Superfine MnO2 nanowires with rich defects toward a boosted zinc ion storage performance. ACS Appl. Mater. Interfaces 12, 34949–34958 (2020). https://doi.org/10.1021/acsami.0c08812
- G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang et al., Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 29(15), 1808375 (2019). https://doi.org/10.1002/adfm.201808375
- H. Zhang, J. Wang, Q. Liu, W. He, Z. Lai et al., Extracting oxygen anions from ZnMn2O4: robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Mater. 21, 154–161 (2019). https://doi.org/10.1016/j.ensm.2018.12.019
- M. Han, J. Huang, S. Liang, L. Shan, X. Xie et al., Oxygen defects in beta-MnO2 enabling high-performance rechargeable aqueous zinc/manganese dioxide battery. iScience 23(1), 100797 (2020). https://doi.org/10.1016/j.isci.2019.100797
- B. Wu, G. Zhang, M. Yan, T. Xiong, L. Mai, Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14(13), 1703850 (2018). https://doi.org/10.1016/10.1002/smll.201703850
- W. Jiang, X. Xu, Y. Liu, F. Zhou, Z. Xu et al., Facile plasma treated β-MnO2@C hybrids for durable cycling cathodes in aqueous Zn-ion batteries. J. Alloy. Compd. 827, 154273 (2020). https://doi.org/10.1016/j.jallcom.2020.154273
- Q. Zhao, X. Huang, M. Zhou, Z. Ju, X. Sun et al., Proton insertion promoted polyfurfural/MnO2 nanocomposite cathode for rechargeable aqueous Zn-MnO2 battery. ACS Appl. Mater. Interfaces 12(32), 36072–36081 (2020). https://doi.org/10.1021/acsami.0c08579
- J. Huang, X. Tang, K. Liu, G. Fang, Z. He et al., Interfacial chemical binding and improved kinetics assisting stable aqueous Zn–MnO2 batteries. Mater. Today Energy 17, 100475 (2020). https://doi.org/10.1016/j.mtener.2020.100475
- W. Chen, X. Feng, J. Chen, L. Yan, Power-output reduction of graphene oxide and a MnO2-free Zn/GO primary cell. RSC Adv. 4(80), 42418–42423 (2014). https://doi.org/10.1016/10.1039/c4ra06354f
- Y. Zhang, S. Deng, G. Pan, H. Zhang, B. Liu et al., Introducing oxygen defects into phosphate ions intercalated manganese dioxide. Small Methods 4(6), 1900828 (2020). https://doi.org/10.1002/smtd.201900828
- M. Long, Y. Qin, C. Chen, X. Guo, B. Tan et al., Origin of visible light photoactivity of reduced graphene oxide/TiO2 by in situ hydrothermal growth of undergrown TiO2 with graphene oxide. J. Phys. Chem. C 117(23), 16734–16741 (2013). https://doi.org/10.1021/jp4058109
- M. Sun, X. Dong, B. Lei, J. Li, P. Chen et al., Graphene oxide mediated Co-generation of C-doping and oxygen defects in Bi2WO6 nanosheets: a combined DRIFTS and DFT investigation. Nanoscale 11, 20562 (2019). https://doi.org/10.1039/C9NR06874K
- M. Zhu, Y. Cai, S. Liu, M. Fang, X. Tan et al., K2Ti6O13 hybridized graphene oxide: effective enhancement in photodegradation of RhB and photoreduction of U(VI). Environ. Pollut. 248, 448–455 (2019). https://doi.org/10.1016/j.envpol.2019.02.025
- X. Lei, X. Li, Z. Ruan, T. Zhang, F. Pan et al., Adsorption-photocatalytic degradation of dye pollutant in water by graphite oxide grafted titanate nanotubes. J. Mol. Liq. 266, 122–131 (2018). https://doi.org/10.1016/j.molliq.2018.06.053
- M. Liu, Q. Zhao, H. Liu, J. Yang, X. Chen et al., Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 64, 103942 (2019). https://doi.org/10.1016/j.nanoen.2019.103942
- Q. Zhao, X. Chen, Z. Wang, L. Yang, R. Qin et al., Unravelling H+/Zn2+ synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery. Small 15, 1904545 (2019). https://doi.org/10.1002/smll.201904545
- N. Li, G. Li, C. Li, H. Yang, G. Qin et al., Bi-cation electrolyte for a 1.7 V aqueous Zn ion battery. ACS Appl. Mater. Interfaces 12(12), 13790–13796 (2020). https://doi.org/10.1021/acsami.9b20531
- H. Pan, Y. Shao, Y. Chen, K. Han, Z. Nie et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/NENERGY.2016.39
- M. Chamoun, W. Brant, C. Tai, D. Noréus et al., Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions. Energy Storage Mater. 15, 351–360 (2018). https://doi.org/10.1016/j.ensm.2018.06.019
References
G. Fang, J. Zhou, S. Liang et al., Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
L. Blanc, D. Kundu, L. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 1–29 (2020). https://doi.org/10.1016/j.joule.2020.03.002
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
D. Kundu, B. Dams, V. Duffort, S. Vajargah, L. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1(10), 16119 (2016). https://doi.org/10.1038/NENERGY.2016.119
Q. Yang, F. Mo, Z. Liu, S. Chen, S. Zhang et al., Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10000-cycle lifespan and superior rate capability. Adv. Mater. 31(32), 1901521 (2019). https://doi.org/10.1002/adma.201901521
X. Wu, Y. Xu, C. Zhang, D. Leonard, A. Markir et al., Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 141, 6338–6344 (2019). https://doi.org/10.1021/jacs.9b00617
S. Huang, F. Wan, S. Bi, J. Zhu, Z. Niu et al., A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. Int. Ed. 58(13), 4313–4317 (2019). https://doi.org/10.1002/ange.201814653
B. Lee, C. Yoon, H. Lee, K. Chung, B. Cho et al., Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci. Rep. 4, 6066 (2014). https://doi.org/10.1038/srep06066
N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8(1), 405 (2016). https://doi.org/10.1038/s41467-017-00467-x
C. Wang, Y. Zeng, X. Xiao, S. Wu, G. Zhong et al., γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J. Energy Chem. 43, 182–187 (2020). https://doi.org/10.1016/j.jechem.2019.08.011
J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu et al., Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9(1), 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
Y. Xu, X. Deng, Q. Li, G. Zhang, F. Xiong et al., Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries. Chem 5, 1194–1209 (2019). https://doi.org/10.1016/j.chempr.2019.02.014
N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49, 4203–4219 (2020). https://doi.org/10.1039/c9cs00349e
Q. Zhao, A. Song, S. Ding, R. Qin, Y. Cui et al., Pre-intercalation strategy in manganese oxides for electrochemical energy storage: review and prospect. Adv. Mater. 32, 2002450 (2020). https://doi.org/10.1002/adma.202002450
T. Xiong, Y. Zhang, W. Lee, J. Xue et al., Defect engineering in manganese-based oxides for aqueous rechargeable zinc-ion batteries: a review. Adv. Energy Mater. 10, 2001769 (2020). https://doi.org/10.1002/aenm.202001769
Y. Tian, X. Liu, L. Xu, D. Yuan, Y. Dou et al., Engineering crystallinity and oxygen vacancies of Co(II) oxide nanosheets for high performance and robust rechargeable Zn–air batteries. Adv. Funct. Mater. 31, 2101239 (2021). https://doi.org/10.1002/adfm.202101239
X. Zhang, J. Li, Y. Qian et al., Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries. Energy Storage Mater. 30, 337–345 (2020). https://doi.org/10.1016/j.ensm.2020.05.021
Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn–Air batteries. Nano-Micro Lett. 13, 3 (2021). https://doi.org/10.1007/s40820-020-00526-x
Q. Zhao, A. Song, W. Zhao, R. Qin, S. Ding et al., Boosting the energy density of aqueous batteries via facile grotthuss proton transport. Angew. Chem. Int. Ed. 132, 2–8 (2020). https://doi.org/10.1002/ange.202011588
N. Liu, X. Wu, Y. Yin, Y. Chen, A. Zhao et al., Constructing the efficient ion diffusion pathway by introducing oxygen defects in Mn2O3 for high-performance aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 12(25), 28199–28205 (2020). https://doi.org/10.1021/acsami.0c05968
Q. Tan, X. Li, B. Zhang, X. Chen, Y. Tian et al., valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery. Adv. Energy Mater. 10(38), 2001050 (2019). https://doi.org/10.1002/aenm.202001050
T. Xiong, Z. Yu, H. Wu, Y. Du, Q.J. Chen et al., Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 9(14), 1803815 (2019). https://doi.org/10.1002/aenm.201803815
J. Wang, X. Qin, Y. Wang, M. Shao et al., Superfine MnO2 nanowires with rich defects toward a boosted zinc ion storage performance. ACS Appl. Mater. Interfaces 12, 34949–34958 (2020). https://doi.org/10.1021/acsami.0c08812
G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang et al., Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 29(15), 1808375 (2019). https://doi.org/10.1002/adfm.201808375
H. Zhang, J. Wang, Q. Liu, W. He, Z. Lai et al., Extracting oxygen anions from ZnMn2O4: robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Mater. 21, 154–161 (2019). https://doi.org/10.1016/j.ensm.2018.12.019
M. Han, J. Huang, S. Liang, L. Shan, X. Xie et al., Oxygen defects in beta-MnO2 enabling high-performance rechargeable aqueous zinc/manganese dioxide battery. iScience 23(1), 100797 (2020). https://doi.org/10.1016/j.isci.2019.100797
B. Wu, G. Zhang, M. Yan, T. Xiong, L. Mai, Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14(13), 1703850 (2018). https://doi.org/10.1016/10.1002/smll.201703850
W. Jiang, X. Xu, Y. Liu, F. Zhou, Z. Xu et al., Facile plasma treated β-MnO2@C hybrids for durable cycling cathodes in aqueous Zn-ion batteries. J. Alloy. Compd. 827, 154273 (2020). https://doi.org/10.1016/j.jallcom.2020.154273
Q. Zhao, X. Huang, M. Zhou, Z. Ju, X. Sun et al., Proton insertion promoted polyfurfural/MnO2 nanocomposite cathode for rechargeable aqueous Zn-MnO2 battery. ACS Appl. Mater. Interfaces 12(32), 36072–36081 (2020). https://doi.org/10.1021/acsami.0c08579
J. Huang, X. Tang, K. Liu, G. Fang, Z. He et al., Interfacial chemical binding and improved kinetics assisting stable aqueous Zn–MnO2 batteries. Mater. Today Energy 17, 100475 (2020). https://doi.org/10.1016/j.mtener.2020.100475
W. Chen, X. Feng, J. Chen, L. Yan, Power-output reduction of graphene oxide and a MnO2-free Zn/GO primary cell. RSC Adv. 4(80), 42418–42423 (2014). https://doi.org/10.1016/10.1039/c4ra06354f
Y. Zhang, S. Deng, G. Pan, H. Zhang, B. Liu et al., Introducing oxygen defects into phosphate ions intercalated manganese dioxide. Small Methods 4(6), 1900828 (2020). https://doi.org/10.1002/smtd.201900828
M. Long, Y. Qin, C. Chen, X. Guo, B. Tan et al., Origin of visible light photoactivity of reduced graphene oxide/TiO2 by in situ hydrothermal growth of undergrown TiO2 with graphene oxide. J. Phys. Chem. C 117(23), 16734–16741 (2013). https://doi.org/10.1021/jp4058109
M. Sun, X. Dong, B. Lei, J. Li, P. Chen et al., Graphene oxide mediated Co-generation of C-doping and oxygen defects in Bi2WO6 nanosheets: a combined DRIFTS and DFT investigation. Nanoscale 11, 20562 (2019). https://doi.org/10.1039/C9NR06874K
M. Zhu, Y. Cai, S. Liu, M. Fang, X. Tan et al., K2Ti6O13 hybridized graphene oxide: effective enhancement in photodegradation of RhB and photoreduction of U(VI). Environ. Pollut. 248, 448–455 (2019). https://doi.org/10.1016/j.envpol.2019.02.025
X. Lei, X. Li, Z. Ruan, T. Zhang, F. Pan et al., Adsorption-photocatalytic degradation of dye pollutant in water by graphite oxide grafted titanate nanotubes. J. Mol. Liq. 266, 122–131 (2018). https://doi.org/10.1016/j.molliq.2018.06.053
M. Liu, Q. Zhao, H. Liu, J. Yang, X. Chen et al., Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 64, 103942 (2019). https://doi.org/10.1016/j.nanoen.2019.103942
Q. Zhao, X. Chen, Z. Wang, L. Yang, R. Qin et al., Unravelling H+/Zn2+ synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery. Small 15, 1904545 (2019). https://doi.org/10.1002/smll.201904545
N. Li, G. Li, C. Li, H. Yang, G. Qin et al., Bi-cation electrolyte for a 1.7 V aqueous Zn ion battery. ACS Appl. Mater. Interfaces 12(12), 13790–13796 (2020). https://doi.org/10.1021/acsami.9b20531
H. Pan, Y. Shao, Y. Chen, K. Han, Z. Nie et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/NENERGY.2016.39
M. Chamoun, W. Brant, C. Tai, D. Noréus et al., Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions. Energy Storage Mater. 15, 351–360 (2018). https://doi.org/10.1016/j.ensm.2018.06.019