Highly Reversible Li–Se Batteries with Ultra-Lightweight N,S-Codoped Graphene Blocking Layer
Corresponding Author: Yanglong Hou
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 59
Abstract
The desire for practical utilization of rechargeable lithium batteries with high energy density has motivated attempts to develop new electrode materials and battery systems. Here, without additional binders we present a simple vacuum filtration method to synthesize nitrogen and sulfur codoped graphene (N,S-G) blocking layer, which is ultra-lightweight, conductive, and free standing. When the N,S-G membrane was inserted between the catholyte and separator, the lithium–selenium (Li–Se) batteries exhibited a high reversible discharge capacity of 330.7 mAh g−1 at 1 C (1 C = 675 mA g−1) after 500 cycles and high rate performance (over 310 mAh g−1 at 4 C) even at an active material loading as high as ~ 5 mg cm−2. This excellent performance can be ascribed to homogenous dispersion of the liquid active material in the electrode, good Li+-ion conductivity, fast electronic transport in the conductive graphene framework, and strong chemical confinement of polyselenides by nitrogen and sulfur atoms. More importantly, it is a promising strategy for enhancing the energy density of Li–Se batteries by using the catholyte with a lightweight heteroatom doping carbon matrix.
Highlights:
1 A free-standing, ultra-lightweight, N,S-codoped graphene membrane is assembled by a simple vacuum filtration method.
2 The N,S-codoped graphene membrane is first used as the blocking layer for a polyselenide catholyte.
3 The Li–Se batteries based on the as-prepared graphene membrane exhibites excellent cycling performance and rate capability at high selenium loading (5 mg cm−2).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Liu, M. Jia, Y. Zhang, J. Han, Y. Li, S. Bao, D. Liu, J. Jiang, M. Xu, Confined selenium within metal–organic frameworks derived porous carbon microcubes as cathode for rechargeable lithium–selenium batteries. J. Power Sources 341, 53–59 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.099
- Q. Cai, Y. Li, L. Wang, Q. Li, J. Xu, B. Gao, X. Zhang, K. Huo, P.K. Chu, Freestanding hollow double-shell Se@CNx nanobelts as large-capacity and high-rate cathodes for Li–Se batteries. Nano Energy 32, 1–9 (2017). https://doi.org/10.1016/j.nanoen.2016.12.010
- A. Eftekhari, The rise of lithium–selenium batteries. Sustain. Energy Fuels 1(1), 14–29 (2017). https://doi.org/10.1039/c6se00094k
- S. Xin, L. Yu, Y. You, H.P. Cong, Y.X. Yin et al., The electrochemistry with lithium versus sodium of selenium confined to slit micropores in carbon. Nano Lett. 16(7), 4560–4568 (2016). https://doi.org/10.1021/acs.nanolett.6b01819
- X. Gu, C.-J. Tong, B. Wen, L.-M. Liu, C. Lai, S. Zhang, Ball-milling synthesis of ZnO@sulphur/carbon nanotubes and Ni(OH)2@sulphur/carbon nanotubes composites for high-performance lithium-sulphur batteries. Electrochim. Acta 196, 369–376 (2016). https://doi.org/10.1016/j.electacta.2016.03.018
- M. Jia, Y. Niu, C. Mao, S. Liu, Y. Zhang, S.J. Bao, M. Xu, Porous carbon derived from sunflower as a host matrix for ultra-stable lithium–selenium battery. J. Colloid Interface Sci. 490, 747–753 (2017). https://doi.org/10.1016/j.jcis.2016.12.012
- C.P. Yang, S. Xin, Y.X. Yin, H. Ye, J. Zhang, Y.G. Guo, An advanced selenium–carbon cathode for rechargeable lithium–selenium batteries. Angew. Chem. Int. Ed. 52(32), 8363–8367 (2013). https://doi.org/10.1002/anie.201303147
- K. Han, Z. Liu, J. Shen, Y. Lin, F. Dai, H. Ye, A free-standing and ultralong-life lithium–selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture. Adv. Funct. Mater. 25(3), 455–463 (2015). https://doi.org/10.1002/adfm.201402815
- Y. Liu, L. Si, Y. Du, X. Zhou, Z. Dai, J. Bao, Strongly bonded selenium/microporous carbon nanofibers composite as a high-performance cathode for lithium–selenium batteries. J. Phys. Chem. C 119(49), 27316–27321 (2015). https://doi.org/10.1021/acs.jpcc.5b09553
- H. Wu, Y. Huang, S. Xu, W. Zhang, K. Wang, M. Zong, Fabricating three-dimensional hierarchical porous N-doped graphene by a tunable assembly method for interlayer assisted lithium–sulfur batteries. Chem. Eng. J. 327, 855–867 (2017). https://doi.org/10.1016/j.cej.2017.06.164
- L. Kong, H.-J. Peng, J.-Q. Huang, W. Zhu, G. Zhang et al., Beaver-dam-like membrane: a robust and sulphifilic MgBO2(OH)/CNT/PP nest separator in Li–S batteries. Energy Storage Mater. 8, 153–160 (2017). https://doi.org/10.1016/j.ensm.2017.05.009
- H.J. Peng, D.-W. Wang, J.-Q. Huang, X.-B. Cheng, Z. Yuan, F. Wei, Q. Zhang, Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries. Adv. Sci. 3, 1500268–1500278 (2016). https://doi.org/10.1002/advs.201500268
- J.T. Lee, H. Kim, M. Oschatz, D.-C. Lee, F. Wu et al., Micro- and mesoporous carbide-derived carbon–selenium cathodes for high-performance lithium–selenium batteries. Adv. Energy Mater. 5(1), 1400981–1400987 (2015). https://doi.org/10.1002/aenm.201400981
- Z. Li, L. Yuan, Z. Yi, Y. Liu, Y. Huang, Confined selenium within porous carbon nanospheres as cathode for advanced Li–Se batteries. Nano Energy 9, 229–236 (2014). https://doi.org/10.1016/j.nanoen.2014.07.012
- L.C. Zeng, W.C. Zeng, Y. Jiang, X. Wei, W.H. Li, C.L. Yang, Y.W. Zhu, Y. Yu, A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li–Se and Na–Se batteries. Adv. Energy Mater. 5(4), 1401377–1401387 (2015). https://doi.org/10.1002/Aenm.201401377
- J.-Q. Huang, Q. Zhang, F. Wei, Multi-functional separator/interlayer system for high-stable lithium–sulfur batteries: progress and prospects. Energy Storage Mater. 1, 127–145 (2015). https://doi.org/10.1016/j.ensm.2015.09.008
- T.Z. Zhuang, J.Q. Huang, H.J. Peng, L.Y. He, X.B. Cheng, C.M. Chen, Q. Zhang, Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium–sulfur batteries. Small 12(3), 381–389 (2016). https://doi.org/10.1002/smll.201503133
- T. Wang, K. Kretschmer, S. Choi, H. Pang, H. Xue, G. Wang, Fabrication methods of porous carbon materials and separator membranes for lithium–sulfur batteries: development and future perspectives. Small Methods 1(8), 1700089–1700107 (2017). https://doi.org/10.1002/smtd.201700089
- L. Qie, A. Manthiram, Uniform Li2S precipitation on N,O-codoped porous hollow carbon fibers for high-energy-density lithium–sulfur batteries with superior stability. Chem. Commun. 52(73), 10964–10967 (2016). https://doi.org/10.1039/c6cc06340c
- Z. Yi, L. Yuan, D. Sun, Z. Li, C. Wu, W. Yang, Y. Wen, B. Shan, Y. Huang, High-performance lithium–selenium batteries promoted by heteroatom-doped microporous carbon. J. Mater. Chem. A 3(6), 3059–3065 (2015). https://doi.org/10.1039/c4ta06141a
- Z. Li, L. Yin, Mof-derived, N-doped, hierarchically porous carbon sponges as immobilizers to confine selenium as cathodes for Li–Se batteries with superior storage capacity and perfect cycling stability. Nanoscale 7(21), 9597–9606 (2015). https://doi.org/10.1039/c5nr00903k
- Z. Zhang, X. Yang, X. Wang, Q. Li, Z. Zhang, TiO2–Se composites as cathode material for rechargeable lithium–selenium batteries. Solid State Ionics 260, 101–106 (2014). https://doi.org/10.1016/j.ssi.2014.03.022
- J. Guo, Q. Wang, J. Jin, C. Chen, Z. Wen, Analysis of structure and electrochemistry of selenium-containing conductive polymer materials for rechargeable lithium batteries. J. Electrochem. Soc. 163(5), A654–A659 (2016). https://doi.org/10.1149/2.0661605jes
- X. Gu, C.J. Tong, S. Rehman, L.M. Liu, Y. Hou, S. Zhang, Multifunctional nitrogen-doped loofah sponge carbon blocking layer for high-performance rechargeable lithium batteries. ACS Appl. Mater. Interfaces 8(25), 15991–16001 (2016). https://doi.org/10.1021/acsami.6b02378
- J. Guo, Z. Wen, Q. Wang, J. Jin, G. Ma, A conductive selenized polyacrylonitrile cathode material for re-chargeable lithium batteries with long cycle life. J. Mater. Chem. A 3(39), 19815–19821 (2015). https://doi.org/10.1039/c5ta04510j
- Y.J. Hong, Y.C. Kang, Selenium-impregnated hollow carbon microspheres as efficient cathode materials for lithium–selenium batteries. Carbon 111, 198–206 (2017). https://doi.org/10.1016/j.carbon.2016.09.069
- Y. Qu, Z. Zhang, S. Jiang, X. Wang, Y. Lai, Y. Liu, J. Li, Confining selenium in nitrogen-containing hierarchical porous carbon for high-rate rechargeable lithium–selenium batteries. J. Mater. Chem. A 2(31), 12255–12261 (2014). https://doi.org/10.1039/c4ta02563f
- J. Guo, Q. Wang, C. Qi, J. Jin, Y. Zhu, Z. Wen, One-step microwave synthesized core-shell structured selenium@carbon spheres as cathode materials for rechargeable lithium batteries. Chem. Commun. 52(32), 5613–5616 (2016). https://doi.org/10.1039/c6cc00638h
- L.-B. Xing, K. Xi, Q. Li, Z. Su, C. Lai, X. Zhao, R.V. Kumar, Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and-power lithium–sulfur batteries. J. Power Sources 303, 22–28 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.097
- Y. Chen, J. Li, G. Yue, X. Luo, Novel Ag@nitrogen-doped porous carbon composite with high electrochemical performance as anode materials for lithium-ion batteries. Nano-Micro Lett. 9, 29 (2017). https://doi.org/10.1007/s40820-017-0131-y
- I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization. Nat. Commun. 1, 73–78 (2010). https://doi.org/10.1038/ncomms1067
- Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5, 4350–4358 (2011). https://doi.org/10.1021/nn103584t
- D. Lamuel, G. Singh, Reduced graphene oxide paper electrode: opposing effect of thermal annealing on Li and Na cyclability. J. Phys. Chem. C 118, 28401–28408 (2014). https://doi.org/10.1021/jp5080847
- J. Yang, F. Chen, C. Li, T. Bai, B. Long, X. Zhou, A free-standing sulfur-doped microporous carbon interlayer derived from luffa sponge for high performance lithium–sulfur batteries. J. Mater. Chem. A 4(37), 14324–14333 (2016). https://doi.org/10.1039/c6ta06250d
- F. Sun, H. Cheng, J. Chen, N. Zheng, Y. Li, J. Shi, Heteroatomic SenS8−n molecules confined in nitrogen-doped mesoporous carbons as reversible cathode materials for high-performance lithium batteries. ACS Nano 10(9), 8289–8298 (2016). https://doi.org/10.1021/acsnano.6b02315
- W.-J. Li, Y.-N. Zhou, Z.-W. Fu, Nanocomposite Fe2O3–Se as a new lithium storage material. Electrochim. Acta 55(28), 8680–8685 (2010). https://doi.org/10.1016/j.electacta.2010.07.095
- Y. Wei, Y. Tao, Z. Kong, L. Liu, J. Wang, W. Qiao, L. Ling, D. Long, Unique electrochemical behavior of heterocyclic selenium–sulfur cathode materials in ether-based electrolytes for rechargeable lithium batteries. Energy Storage Mater. 5, 171–179 (2016). https://doi.org/10.1016/j.ensm.2016.07.005
- T. Liu, B. Wang, X. Gu, L. Wang, M. Ling, G. Liu, D. Wang, S. Zhang, All-climate sodium ion batteries based on the NASICON electrode materials. Nano Energy 30, 756–761 (2016). https://doi.org/10.1016/j.nanoen.2016.09.024
- H.S. Choi, J.Y. Oh, C.R. Park, One step synthesis of sulfur–carbon nanosheet hybrids via a solid solvothermal reaction for lithium–sulfur batteries. RSC Adv. 4(8), 3684–3690 (2014). https://doi.org/10.1039/c3ra45187a
- C. Wu, C. Guo, J. Wu, W. Ai, T. Yu, C.M. Li, Construct stable lithium sulfide membrane to greatly confine polysulfides for high performance lithium–sulfur batteries. J. Mater. Chem. A 6, 8655–8661 (2018). https://doi.org/10.1039/C8TA00098K
References
T. Liu, M. Jia, Y. Zhang, J. Han, Y. Li, S. Bao, D. Liu, J. Jiang, M. Xu, Confined selenium within metal–organic frameworks derived porous carbon microcubes as cathode for rechargeable lithium–selenium batteries. J. Power Sources 341, 53–59 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.099
Q. Cai, Y. Li, L. Wang, Q. Li, J. Xu, B. Gao, X. Zhang, K. Huo, P.K. Chu, Freestanding hollow double-shell Se@CNx nanobelts as large-capacity and high-rate cathodes for Li–Se batteries. Nano Energy 32, 1–9 (2017). https://doi.org/10.1016/j.nanoen.2016.12.010
A. Eftekhari, The rise of lithium–selenium batteries. Sustain. Energy Fuels 1(1), 14–29 (2017). https://doi.org/10.1039/c6se00094k
S. Xin, L. Yu, Y. You, H.P. Cong, Y.X. Yin et al., The electrochemistry with lithium versus sodium of selenium confined to slit micropores in carbon. Nano Lett. 16(7), 4560–4568 (2016). https://doi.org/10.1021/acs.nanolett.6b01819
X. Gu, C.-J. Tong, B. Wen, L.-M. Liu, C. Lai, S. Zhang, Ball-milling synthesis of ZnO@sulphur/carbon nanotubes and Ni(OH)2@sulphur/carbon nanotubes composites for high-performance lithium-sulphur batteries. Electrochim. Acta 196, 369–376 (2016). https://doi.org/10.1016/j.electacta.2016.03.018
M. Jia, Y. Niu, C. Mao, S. Liu, Y. Zhang, S.J. Bao, M. Xu, Porous carbon derived from sunflower as a host matrix for ultra-stable lithium–selenium battery. J. Colloid Interface Sci. 490, 747–753 (2017). https://doi.org/10.1016/j.jcis.2016.12.012
C.P. Yang, S. Xin, Y.X. Yin, H. Ye, J. Zhang, Y.G. Guo, An advanced selenium–carbon cathode for rechargeable lithium–selenium batteries. Angew. Chem. Int. Ed. 52(32), 8363–8367 (2013). https://doi.org/10.1002/anie.201303147
K. Han, Z. Liu, J. Shen, Y. Lin, F. Dai, H. Ye, A free-standing and ultralong-life lithium–selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture. Adv. Funct. Mater. 25(3), 455–463 (2015). https://doi.org/10.1002/adfm.201402815
Y. Liu, L. Si, Y. Du, X. Zhou, Z. Dai, J. Bao, Strongly bonded selenium/microporous carbon nanofibers composite as a high-performance cathode for lithium–selenium batteries. J. Phys. Chem. C 119(49), 27316–27321 (2015). https://doi.org/10.1021/acs.jpcc.5b09553
H. Wu, Y. Huang, S. Xu, W. Zhang, K. Wang, M. Zong, Fabricating three-dimensional hierarchical porous N-doped graphene by a tunable assembly method for interlayer assisted lithium–sulfur batteries. Chem. Eng. J. 327, 855–867 (2017). https://doi.org/10.1016/j.cej.2017.06.164
L. Kong, H.-J. Peng, J.-Q. Huang, W. Zhu, G. Zhang et al., Beaver-dam-like membrane: a robust and sulphifilic MgBO2(OH)/CNT/PP nest separator in Li–S batteries. Energy Storage Mater. 8, 153–160 (2017). https://doi.org/10.1016/j.ensm.2017.05.009
H.J. Peng, D.-W. Wang, J.-Q. Huang, X.-B. Cheng, Z. Yuan, F. Wei, Q. Zhang, Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries. Adv. Sci. 3, 1500268–1500278 (2016). https://doi.org/10.1002/advs.201500268
J.T. Lee, H. Kim, M. Oschatz, D.-C. Lee, F. Wu et al., Micro- and mesoporous carbide-derived carbon–selenium cathodes for high-performance lithium–selenium batteries. Adv. Energy Mater. 5(1), 1400981–1400987 (2015). https://doi.org/10.1002/aenm.201400981
Z. Li, L. Yuan, Z. Yi, Y. Liu, Y. Huang, Confined selenium within porous carbon nanospheres as cathode for advanced Li–Se batteries. Nano Energy 9, 229–236 (2014). https://doi.org/10.1016/j.nanoen.2014.07.012
L.C. Zeng, W.C. Zeng, Y. Jiang, X. Wei, W.H. Li, C.L. Yang, Y.W. Zhu, Y. Yu, A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li–Se and Na–Se batteries. Adv. Energy Mater. 5(4), 1401377–1401387 (2015). https://doi.org/10.1002/Aenm.201401377
J.-Q. Huang, Q. Zhang, F. Wei, Multi-functional separator/interlayer system for high-stable lithium–sulfur batteries: progress and prospects. Energy Storage Mater. 1, 127–145 (2015). https://doi.org/10.1016/j.ensm.2015.09.008
T.Z. Zhuang, J.Q. Huang, H.J. Peng, L.Y. He, X.B. Cheng, C.M. Chen, Q. Zhang, Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium–sulfur batteries. Small 12(3), 381–389 (2016). https://doi.org/10.1002/smll.201503133
T. Wang, K. Kretschmer, S. Choi, H. Pang, H. Xue, G. Wang, Fabrication methods of porous carbon materials and separator membranes for lithium–sulfur batteries: development and future perspectives. Small Methods 1(8), 1700089–1700107 (2017). https://doi.org/10.1002/smtd.201700089
L. Qie, A. Manthiram, Uniform Li2S precipitation on N,O-codoped porous hollow carbon fibers for high-energy-density lithium–sulfur batteries with superior stability. Chem. Commun. 52(73), 10964–10967 (2016). https://doi.org/10.1039/c6cc06340c
Z. Yi, L. Yuan, D. Sun, Z. Li, C. Wu, W. Yang, Y. Wen, B. Shan, Y. Huang, High-performance lithium–selenium batteries promoted by heteroatom-doped microporous carbon. J. Mater. Chem. A 3(6), 3059–3065 (2015). https://doi.org/10.1039/c4ta06141a
Z. Li, L. Yin, Mof-derived, N-doped, hierarchically porous carbon sponges as immobilizers to confine selenium as cathodes for Li–Se batteries with superior storage capacity and perfect cycling stability. Nanoscale 7(21), 9597–9606 (2015). https://doi.org/10.1039/c5nr00903k
Z. Zhang, X. Yang, X. Wang, Q. Li, Z. Zhang, TiO2–Se composites as cathode material for rechargeable lithium–selenium batteries. Solid State Ionics 260, 101–106 (2014). https://doi.org/10.1016/j.ssi.2014.03.022
J. Guo, Q. Wang, J. Jin, C. Chen, Z. Wen, Analysis of structure and electrochemistry of selenium-containing conductive polymer materials for rechargeable lithium batteries. J. Electrochem. Soc. 163(5), A654–A659 (2016). https://doi.org/10.1149/2.0661605jes
X. Gu, C.J. Tong, S. Rehman, L.M. Liu, Y. Hou, S. Zhang, Multifunctional nitrogen-doped loofah sponge carbon blocking layer for high-performance rechargeable lithium batteries. ACS Appl. Mater. Interfaces 8(25), 15991–16001 (2016). https://doi.org/10.1021/acsami.6b02378
J. Guo, Z. Wen, Q. Wang, J. Jin, G. Ma, A conductive selenized polyacrylonitrile cathode material for re-chargeable lithium batteries with long cycle life. J. Mater. Chem. A 3(39), 19815–19821 (2015). https://doi.org/10.1039/c5ta04510j
Y.J. Hong, Y.C. Kang, Selenium-impregnated hollow carbon microspheres as efficient cathode materials for lithium–selenium batteries. Carbon 111, 198–206 (2017). https://doi.org/10.1016/j.carbon.2016.09.069
Y. Qu, Z. Zhang, S. Jiang, X. Wang, Y. Lai, Y. Liu, J. Li, Confining selenium in nitrogen-containing hierarchical porous carbon for high-rate rechargeable lithium–selenium batteries. J. Mater. Chem. A 2(31), 12255–12261 (2014). https://doi.org/10.1039/c4ta02563f
J. Guo, Q. Wang, C. Qi, J. Jin, Y. Zhu, Z. Wen, One-step microwave synthesized core-shell structured selenium@carbon spheres as cathode materials for rechargeable lithium batteries. Chem. Commun. 52(32), 5613–5616 (2016). https://doi.org/10.1039/c6cc00638h
L.-B. Xing, K. Xi, Q. Li, Z. Su, C. Lai, X. Zhao, R.V. Kumar, Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and-power lithium–sulfur batteries. J. Power Sources 303, 22–28 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.097
Y. Chen, J. Li, G. Yue, X. Luo, Novel Ag@nitrogen-doped porous carbon composite with high electrochemical performance as anode materials for lithium-ion batteries. Nano-Micro Lett. 9, 29 (2017). https://doi.org/10.1007/s40820-017-0131-y
I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization. Nat. Commun. 1, 73–78 (2010). https://doi.org/10.1038/ncomms1067
Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5, 4350–4358 (2011). https://doi.org/10.1021/nn103584t
D. Lamuel, G. Singh, Reduced graphene oxide paper electrode: opposing effect of thermal annealing on Li and Na cyclability. J. Phys. Chem. C 118, 28401–28408 (2014). https://doi.org/10.1021/jp5080847
J. Yang, F. Chen, C. Li, T. Bai, B. Long, X. Zhou, A free-standing sulfur-doped microporous carbon interlayer derived from luffa sponge for high performance lithium–sulfur batteries. J. Mater. Chem. A 4(37), 14324–14333 (2016). https://doi.org/10.1039/c6ta06250d
F. Sun, H. Cheng, J. Chen, N. Zheng, Y. Li, J. Shi, Heteroatomic SenS8−n molecules confined in nitrogen-doped mesoporous carbons as reversible cathode materials for high-performance lithium batteries. ACS Nano 10(9), 8289–8298 (2016). https://doi.org/10.1021/acsnano.6b02315
W.-J. Li, Y.-N. Zhou, Z.-W. Fu, Nanocomposite Fe2O3–Se as a new lithium storage material. Electrochim. Acta 55(28), 8680–8685 (2010). https://doi.org/10.1016/j.electacta.2010.07.095
Y. Wei, Y. Tao, Z. Kong, L. Liu, J. Wang, W. Qiao, L. Ling, D. Long, Unique electrochemical behavior of heterocyclic selenium–sulfur cathode materials in ether-based electrolytes for rechargeable lithium batteries. Energy Storage Mater. 5, 171–179 (2016). https://doi.org/10.1016/j.ensm.2016.07.005
T. Liu, B. Wang, X. Gu, L. Wang, M. Ling, G. Liu, D. Wang, S. Zhang, All-climate sodium ion batteries based on the NASICON electrode materials. Nano Energy 30, 756–761 (2016). https://doi.org/10.1016/j.nanoen.2016.09.024
H.S. Choi, J.Y. Oh, C.R. Park, One step synthesis of sulfur–carbon nanosheet hybrids via a solid solvothermal reaction for lithium–sulfur batteries. RSC Adv. 4(8), 3684–3690 (2014). https://doi.org/10.1039/c3ra45187a
C. Wu, C. Guo, J. Wu, W. Ai, T. Yu, C.M. Li, Construct stable lithium sulfide membrane to greatly confine polysulfides for high performance lithium–sulfur batteries. J. Mater. Chem. A 6, 8655–8661 (2018). https://doi.org/10.1039/C8TA00098K