Tumor Microenvironment Cascade-Responsive Nanodrug with Self-Targeting Activation and ROS Regeneration for Synergistic Oxidation-Chemotherapy
Corresponding Author: Jingfeng Liu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 182
Abstract
Carrier-free nanodrug with exceptionally high drug payload has attracted increasing attentions. Herein, we construct a pH/ROS cascade-responsive nanodrug which could achieve tumor acidity-triggered targeting activation followed by circularly amplified ROS-triggered drug release via positive-feedback loop. The di-selenide-bridged prodrug synthesized from vitamin E succinate and methotrexate (MTX) self-assembles into nanoparticles (VSeM); decorating acidity-cleavable PEG onto VSeM surface temporarily shields the targeting ability of MTX to evade immune clearance and consequently elongate circulation time. Upon reaching tumor sites, acidity-triggered detachment of PEG results in targeting recovery to enhance tumor cell uptake. Afterward, the VSeM could be dissociated in response to intracellular ROS to trigger VES/MTX release; then the released VES could produce extra ROS to accelerate the collapse of VSeM. Finally, the excessive ROS produced from VES could synergize with the released MTX to efficiently suppress tumor growth via orchestrated oxidation-chemotherapy. Our study provides a novel strategy to engineer cascade-responsive nanodrug for synergistic cancer treatment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Wang, C. Yu, L. Xu, L. Shi, G. Tong et al., Nucleoside analogue-based supramolecular nanodrugs driven by molecular recognition for synergistic cancer therapy. J. Am. Chem. Soc. 140, 8797–8806 (2018). https://doi.org/10.1021/jacs.8b04556
- X. Xin, X. Du, Q. Xiao, H.S. Azevedo, W. He, L. Yin, Drug nanorod-mediated intracellular delivery of microrna-101 for self-sensitization via autophagy inhibition. Nano-Micro Lett. 11, 82 (2019). https://doi.org/10.1007/s40820-019-0310-0
- J. Hou, Y. Pan, D. Zhu, Y. Fan, G. Feng et al., Targeted delivery of nitric oxide via a ‘bump-and-hole’’-based enzyme-prodrug pair. Nat. Chem. Biol. 15, 151–160 (2019). https://doi.org/10.1038/s41589-018-0190-5
- I. Ekladious, Y.L. Colson, M.W. Grinstaff, Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov. 18, 273–294 (2019). https://doi.org/10.1038/s41573-018-0005-0
- S. Xu, X. Zhu, W. Huang, Y. Zhou, D. Yan, Supramolecular cisplatin-vorinostat nanodrug for overcoming drug resistance in cancer synergistic therapy. J. Control. Release 266, 36–46 (2017). https://doi.org/10.1016/j.jconrel.2017.09.007
- X. Liang, C. Gao, L. Cui, S. Wang, J. Wang, Z. Dai, Self-assembly of an amphiphilic janus camptothecin-floxuridine conjugate into liposome-like nanocapsules for more efficacious combination chemotherapy in cancer. Adv. Mater. 29, 1703135–1703143 (2017). https://doi.org/10.1002/adma.201703135
- P. Huang, D. Wang, Y. Su, W. Huang, Y. Zhou et al., Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug-drug conjugate for cancer therapy. J. Am. Chem. Soc. 136, 11748–11756 (2014). https://doi.org/10.1021/ja505212y
- J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017). https://doi.org/10.1038/nrc.2016.108
- N. Yongvongsoontorn, J.E. Chung, S.J. Gao, K.H. Bae, A. Yamashita et al., Carrier-enhanced anticancer efficacy of sunitinib-loaded green tea-based micellar nanocomplex beyond tumor-targeted delivery. ACS Nano 13, 7591–7602 (2019). https://doi.org/10.1021/acsnano.9b00467
- S. Wang, P. Huang, X. Chen, Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater. 28, 7340–7364 (2016). https://doi.org/10.1002/adma.201601498
- S. Wang, G. Yu, Z. Wang, O. Jacobson, R. Tian et al., Hierarchical tumor microenvironment-responsive nanomedicine for programmed delivery of chemotherapeutics. Adv. Mater. 30, 1803926–1803933 (2018). https://doi.org/10.1002/adma.201803926
- H.S. El-Sawy, A.M. Al-Abd, T.A. Ahmed, K.M. El-Say, V.P. Torchilin, Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives. ACS Nano 12, 10636–10664 (2018). https://doi.org/10.1021/acsnano.8b06104
- M. Li, X. Sun, N. Zhang, W. Wang, Y. Yang, H. Jia, W. Liu, Nir-activated polydopamine-coated carrier-free “nanobomb” for in situ on-demand drug release. Adv. Sci. 5, 1800155 (2018). https://doi.org/10.1002/advs.201800155
- X. Li, Y. Liu, F. Fu, M. Cheng, Y. Liu et al., Single nir laser-activated multifunctional nanoparticles for cascaded photothermal and oxygen-independent photodynamic therapy. Nano-Micro Lett. 11, 68 (2019). https://doi.org/10.1007/s40820-019-0298-5
- R.R. Castillo, D. Lozano, B. Gonzalez, M. Manzano, I. Izquierdo-Barba, M. Vallet-Regi, Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Exp. Opin. Drug Deliv. 16, 415–439 (2019). https://doi.org/10.1080/17425247.2019.1598375
- J. Du, L.A. Lane, S. Nie, Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J. Control. Release 219, 205–214 (2015). https://doi.org/10.1016/j.jconrel.2015.08.050
- M. Cui, S. Liu, B. Song, D. Guo, J. Wang et al., Fluorescent silicon nanorods-based nanotheranostic agents for multimodal imaging-guided photothermal therapy. Nano-Micro Lett. 11, 73 (2019). https://doi.org/10.1007/s40820-019-0306-9
- Z. Jiang, B. Yuan, N. Qiu, Y. Wang, L. Sun et al., Manganese-zeolitic imidazolate frameworks-90 with high blood circulation stability for mri-guided tumor therapy. Nano-Micro Lett. 11, 61 (2019). https://doi.org/10.1007/s40820-019-0292-y
- Q. Jin, Y. Deng, X. Chen, J. Ji, Rational design of cancer nanomedicine for simultaneous stealth surface and enhanced cellular uptake. ACS Nano 13, 954–977 (2019). https://doi.org/10.1021/acsnano.8b07746
- J.F. Mukerabigwi, W. Yin, Z. Zha, W. Ke, Y. Wang et al., Polymersome nanoreactors with tumor ph-triggered selective membrane permeability for prodrug delivery, activation, and combined oxidation-chemotherapy. J. Control. Release 303, 209–222 (2019). https://doi.org/10.1016/j.jconrel.2019.04.032
- J. Lu, J. Wang, D. Ling, Surface engineering of nanoparticles for targeted delivery to hepatocellular carcinoma. Small 14, 1702037 (2018). https://doi.org/10.1002/smll.201702037
- P. Davoodi, L.Y. Lee, Q. Xu, V. Sunil, Y. Sun, S. Soh, C.H. Wang, Drug delivery systems for programmed and on-demand release. Adv. Drug Deliv. Rev. 132, 104–138 (2018). https://doi.org/10.1016/j.addr.2018.07.002
- G.G. Yang, H. Zhang, D.Y. Zhang, Q. Cao, J. Yang, L.N. Ji, Z.W. Mao, Cancer-specific chemotherapeutic strategy based on the vitamin k3 mediated ros regenerative feedback and visualized drug release in vivo. Biomaterials 185, 73–85 (2018). https://doi.org/10.1016/j.biomaterials.2018.08.065
- X. Xu, P.E. Saw, W. Tao, Y. Li, X. Ji et al., Ros-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv. Mater. 29, 1700141 (2017). https://doi.org/10.1002/adma.201700141
- X. Lv, Y. Zhu, H. Ghandehari, A. Yu, Y. Wang, An ros-responsive and self-accelerating drug release nanoplatform for overcoming multidrug resistance. Chem. Commun. 55, 3383–3386 (2019). https://doi.org/10.1039/C9CC00358D
- G. Saravanakumar, J. Kim, W.J. Kim, Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv. Sci. 4, 1600124 (2017). https://doi.org/10.1002/advs.201600124
- L. Dai, X. Li, X. Duan, M. Li, P. Niu et al., A ph/ros cascade-responsive charge-reversal nanosystem with self-amplified drug release for synergistic oxidation-chemotherapy. Adv. Sci. 6, 1801807 (2019). https://doi.org/10.1002/advs.201801807
- K.E. Broaders, S. Grandhe, J.M.J. Fréchet, A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J. Am. Chem. Soc. 133, 756–758 (2011). https://doi.org/10.1021/ja110468v
- C. de Gracia Lux, S. Joshi-Barr, T. Nguyen, E. Mahmoud, E. Schopf, N. Fomina, A. Almutairi, Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J. Am. Chem. Soc. 134, 15758–15764 (2012). https://doi.org/10.1021/ja303372u
- L. Schnipper, Clinical implications of tumor-cell heterogeneity. N. Engl. J. Med. 314, 1423–1431 (1986). https://doi.org/10.1056/NEJM198605293142206
- L.F. Dong, P. Low, J.C. Dyason, X.F. Wang, L. Prochazka et al., Α-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 27, 4324–4335 (2008). https://doi.org/10.1038/onc.2008.69
- J. Neuzil, Vitamin e succinate and cancer treatment: a vitamin e prototype for selective antitumour activity. Br. J. Cancer 89, 1822–1826 (2003). https://doi.org/10.1038/sj.bjc.6601360
- L.F. Dong, V.J. Jameson, D. Tilly, J. Cerny, E. Mahdavian et al., Mitochondrial targeting of vitamin e succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J. Biol. Chem. 286, 3717–3728 (2011). https://doi.org/10.1074/jbc.M110.186643
- T. Weber, M. Lu, L. Andera, H. Lahm, N. Gellert et al., Vitamin E succinate is a potent novel antineoplastic agent with high selectivity and cooperativity with tumor necrosis factor-related apoptosis-inducing ligand (apo2 ligand) in vivo. Clin. Cancer Res. 8, 863–869 (2002). https://doi.org/10.0000/PMID11895920
- L.-F. Dong, R. Freeman, J. Liu, R. Zobalova, A. Marin-Hernandez et al., Suppression of tumor growth in vivo by the mitocan α-tocopheryl succinate requires respiratory complex II. Clin. Cancer Res. 15, 1593–1600 (2009). https://doi.org/10.1158/1078-0432.ccr-08-2439
- L.F. Dong, E. Swettenham, J. Eliasson, X.F. Wang, M. Gold et al., Vitamin E analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress. Cancer Res. 67, 11906–11913 (2007). https://doi.org/10.1158/0008-5472.CAN-07-3034
- X.R. Song, S.H. Li, H. Guo, W. You, D. Tu et al., Enhancing antitumor efficacy by simultaneous atp-responsive chemodrug release and cancer cell sensitization based on a smart nanoagent. Adv. Sci. 5, 1801201 (2018). https://doi.org/10.1002/advs.201801201
- K. Mizusawa, Y. Takaoka, I. Hamachi, Specific cell surface protein imaging by extended self-assembling fluorescent turn-on nanoprobes. J. Am. Chem. Soc. 134, 13386–13395 (2012). https://doi.org/10.1021/ja304239g
- Y. Li, J. Lin, Z. Cai, P. Wang, Q. Luo et al., Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy. J. Control. Release 321, 222–235 (2020). https://doi.org/10.1016/j.jconrel.2020.02.025
- W. Lin, T. Sun, Z. Xie, J. Gu, X. Jing, A dual-responsive nanocapsule via disulfide-induced self-assembly for therapeutic agent delivery. Chem. Sci. 7, 1846–1852 (2016). https://doi.org/10.1039/C5SC03707G
- Y. Wang, D. Liu, Q. Zheng, Q. Zhao, H. Zhang et al., Disulfide bond bridge insertion turns hydrophobic anticancer prodrugs into self-assembled nanomedicines. Nano Lett. 14, 5577–5583 (2014). https://doi.org/10.1021/nl502044x
- H.L. Pu, W.L. Chiang, B. Maiti, Z.X. Liao, Y.C. Ho et al., Nanoparticles with dual responses to oxidative stress and reduced ph for drug release and anti-inflammatory applications. ACS Nano 8, 1213–1221 (2014). https://doi.org/10.1021/nn4058787
- N. Kamaly, B. Yameen, J. Wu, O.C. Farokhzad, Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016). https://doi.org/10.1021/acs.chemrev.5b00346
- D. Shao, M. Li, Z. Wang, X. Zheng, Y.H. Lao et al., Bioinspired diselenide-bridged mesoporous silica nanoparticles for dual-responsive protein delivery. Adv. Mater. 30, 1801198 (2018). https://doi.org/10.1002/adma.201801198
- K. Liang, J.E. Chung, S.J. Gao, N. Yongvongsoontorn, M. Kurisawa, Highly augmented drug loading and stability of micellar nanocomplexes composed of doxorubicin and poly(ethylene glycol)-green tea catechin conjugate for cancer therapy. Adv. Mater. 30, 1706963 (2018). https://doi.org/10.1002/adma.201706963
- Y. Li, J. Lin, P. Wang, Q. Luo, H. Lin et al., Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy. ACS Nano 13, 12912–12928 (2019). https://doi.org/10.1021/acsnano.9b05425
- C.D. Walkey, J.B. Olsen, H. Guo, A. Emili, W.C. Chan, Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012). https://doi.org/10.1021/ja2084338
- S.B. Lee, J. Lee, S.J. Cho, J. Chin, S.K. Kim et al., Crushed gold shell nanoparticles labeled with radioactive iodine as a theranostic nanoplatform for macrophage-mediated photothermal therapy. Nano-Micro Lett. 11, 36 (2019). https://doi.org/10.1007/s40820-019-0266-0
- P. Mi, H. Cabral, K. Kataoka, Ligand-installed nanocarriers toward precision therapy. Adv. Mater. 32, 1902604–1902632 (2019). https://doi.org/10.1002/adma.201902604
- S. Wang, E.E. Dormidontova, Selectivity of ligand-receptor interactions between nanoparticle and cell surfaces. Phys. Rev. Lett. 109, 238102 (2012). https://doi.org/10.1103/PhysRevLett.109.238102
- Q. Guan, L.L. Zhou, Y.A. Li, W.Y. Li, S. Wang, C. Song, Y.B. Dong, Nanoscale covalent organic framework for combinatorial antitumor photodynamic and photothermal therapy. ACS Nano 13, 13304–13316 (2019). https://doi.org/10.1021/acsnano.9b06467
- R.G. Tuguntaev, S. Chen, A.S. Eltahan, A. Mozhi, S. Jin et al., P-gp inhibition and mitochondrial impairment by dual-functional nanostructure based on vitamin e derivatives to overcome multidrug resistance. ACS Appl. Mater. Interfaces. 9, 16900–16912 (2017). https://doi.org/10.1021/acsami.7b03877
- R. Wen, B. Banik, R.K. Pathak, A. Kumar, N. Kolishetti, S. Dhar, Nanotechnology inspired tools for mitochondrial dysfunction related diseases. Adv. Drug Deliv. Rev. 99, 52–69 (2016). https://doi.org/10.1016/j.addr.2015.12.024
- S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, W.C.W. Chan, Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014–16025 (2016). https://doi.org/10.1038/natrevmats.2016.14
References
D. Wang, C. Yu, L. Xu, L. Shi, G. Tong et al., Nucleoside analogue-based supramolecular nanodrugs driven by molecular recognition for synergistic cancer therapy. J. Am. Chem. Soc. 140, 8797–8806 (2018). https://doi.org/10.1021/jacs.8b04556
X. Xin, X. Du, Q. Xiao, H.S. Azevedo, W. He, L. Yin, Drug nanorod-mediated intracellular delivery of microrna-101 for self-sensitization via autophagy inhibition. Nano-Micro Lett. 11, 82 (2019). https://doi.org/10.1007/s40820-019-0310-0
J. Hou, Y. Pan, D. Zhu, Y. Fan, G. Feng et al., Targeted delivery of nitric oxide via a ‘bump-and-hole’’-based enzyme-prodrug pair. Nat. Chem. Biol. 15, 151–160 (2019). https://doi.org/10.1038/s41589-018-0190-5
I. Ekladious, Y.L. Colson, M.W. Grinstaff, Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov. 18, 273–294 (2019). https://doi.org/10.1038/s41573-018-0005-0
S. Xu, X. Zhu, W. Huang, Y. Zhou, D. Yan, Supramolecular cisplatin-vorinostat nanodrug for overcoming drug resistance in cancer synergistic therapy. J. Control. Release 266, 36–46 (2017). https://doi.org/10.1016/j.jconrel.2017.09.007
X. Liang, C. Gao, L. Cui, S. Wang, J. Wang, Z. Dai, Self-assembly of an amphiphilic janus camptothecin-floxuridine conjugate into liposome-like nanocapsules for more efficacious combination chemotherapy in cancer. Adv. Mater. 29, 1703135–1703143 (2017). https://doi.org/10.1002/adma.201703135
P. Huang, D. Wang, Y. Su, W. Huang, Y. Zhou et al., Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug-drug conjugate for cancer therapy. J. Am. Chem. Soc. 136, 11748–11756 (2014). https://doi.org/10.1021/ja505212y
J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017). https://doi.org/10.1038/nrc.2016.108
N. Yongvongsoontorn, J.E. Chung, S.J. Gao, K.H. Bae, A. Yamashita et al., Carrier-enhanced anticancer efficacy of sunitinib-loaded green tea-based micellar nanocomplex beyond tumor-targeted delivery. ACS Nano 13, 7591–7602 (2019). https://doi.org/10.1021/acsnano.9b00467
S. Wang, P. Huang, X. Chen, Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater. 28, 7340–7364 (2016). https://doi.org/10.1002/adma.201601498
S. Wang, G. Yu, Z. Wang, O. Jacobson, R. Tian et al., Hierarchical tumor microenvironment-responsive nanomedicine for programmed delivery of chemotherapeutics. Adv. Mater. 30, 1803926–1803933 (2018). https://doi.org/10.1002/adma.201803926
H.S. El-Sawy, A.M. Al-Abd, T.A. Ahmed, K.M. El-Say, V.P. Torchilin, Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives. ACS Nano 12, 10636–10664 (2018). https://doi.org/10.1021/acsnano.8b06104
M. Li, X. Sun, N. Zhang, W. Wang, Y. Yang, H. Jia, W. Liu, Nir-activated polydopamine-coated carrier-free “nanobomb” for in situ on-demand drug release. Adv. Sci. 5, 1800155 (2018). https://doi.org/10.1002/advs.201800155
X. Li, Y. Liu, F. Fu, M. Cheng, Y. Liu et al., Single nir laser-activated multifunctional nanoparticles for cascaded photothermal and oxygen-independent photodynamic therapy. Nano-Micro Lett. 11, 68 (2019). https://doi.org/10.1007/s40820-019-0298-5
R.R. Castillo, D. Lozano, B. Gonzalez, M. Manzano, I. Izquierdo-Barba, M. Vallet-Regi, Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Exp. Opin. Drug Deliv. 16, 415–439 (2019). https://doi.org/10.1080/17425247.2019.1598375
J. Du, L.A. Lane, S. Nie, Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J. Control. Release 219, 205–214 (2015). https://doi.org/10.1016/j.jconrel.2015.08.050
M. Cui, S. Liu, B. Song, D. Guo, J. Wang et al., Fluorescent silicon nanorods-based nanotheranostic agents for multimodal imaging-guided photothermal therapy. Nano-Micro Lett. 11, 73 (2019). https://doi.org/10.1007/s40820-019-0306-9
Z. Jiang, B. Yuan, N. Qiu, Y. Wang, L. Sun et al., Manganese-zeolitic imidazolate frameworks-90 with high blood circulation stability for mri-guided tumor therapy. Nano-Micro Lett. 11, 61 (2019). https://doi.org/10.1007/s40820-019-0292-y
Q. Jin, Y. Deng, X. Chen, J. Ji, Rational design of cancer nanomedicine for simultaneous stealth surface and enhanced cellular uptake. ACS Nano 13, 954–977 (2019). https://doi.org/10.1021/acsnano.8b07746
J.F. Mukerabigwi, W. Yin, Z. Zha, W. Ke, Y. Wang et al., Polymersome nanoreactors with tumor ph-triggered selective membrane permeability for prodrug delivery, activation, and combined oxidation-chemotherapy. J. Control. Release 303, 209–222 (2019). https://doi.org/10.1016/j.jconrel.2019.04.032
J. Lu, J. Wang, D. Ling, Surface engineering of nanoparticles for targeted delivery to hepatocellular carcinoma. Small 14, 1702037 (2018). https://doi.org/10.1002/smll.201702037
P. Davoodi, L.Y. Lee, Q. Xu, V. Sunil, Y. Sun, S. Soh, C.H. Wang, Drug delivery systems for programmed and on-demand release. Adv. Drug Deliv. Rev. 132, 104–138 (2018). https://doi.org/10.1016/j.addr.2018.07.002
G.G. Yang, H. Zhang, D.Y. Zhang, Q. Cao, J. Yang, L.N. Ji, Z.W. Mao, Cancer-specific chemotherapeutic strategy based on the vitamin k3 mediated ros regenerative feedback and visualized drug release in vivo. Biomaterials 185, 73–85 (2018). https://doi.org/10.1016/j.biomaterials.2018.08.065
X. Xu, P.E. Saw, W. Tao, Y. Li, X. Ji et al., Ros-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv. Mater. 29, 1700141 (2017). https://doi.org/10.1002/adma.201700141
X. Lv, Y. Zhu, H. Ghandehari, A. Yu, Y. Wang, An ros-responsive and self-accelerating drug release nanoplatform for overcoming multidrug resistance. Chem. Commun. 55, 3383–3386 (2019). https://doi.org/10.1039/C9CC00358D
G. Saravanakumar, J. Kim, W.J. Kim, Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv. Sci. 4, 1600124 (2017). https://doi.org/10.1002/advs.201600124
L. Dai, X. Li, X. Duan, M. Li, P. Niu et al., A ph/ros cascade-responsive charge-reversal nanosystem with self-amplified drug release for synergistic oxidation-chemotherapy. Adv. Sci. 6, 1801807 (2019). https://doi.org/10.1002/advs.201801807
K.E. Broaders, S. Grandhe, J.M.J. Fréchet, A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J. Am. Chem. Soc. 133, 756–758 (2011). https://doi.org/10.1021/ja110468v
C. de Gracia Lux, S. Joshi-Barr, T. Nguyen, E. Mahmoud, E. Schopf, N. Fomina, A. Almutairi, Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J. Am. Chem. Soc. 134, 15758–15764 (2012). https://doi.org/10.1021/ja303372u
L. Schnipper, Clinical implications of tumor-cell heterogeneity. N. Engl. J. Med. 314, 1423–1431 (1986). https://doi.org/10.1056/NEJM198605293142206
L.F. Dong, P. Low, J.C. Dyason, X.F. Wang, L. Prochazka et al., Α-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 27, 4324–4335 (2008). https://doi.org/10.1038/onc.2008.69
J. Neuzil, Vitamin e succinate and cancer treatment: a vitamin e prototype for selective antitumour activity. Br. J. Cancer 89, 1822–1826 (2003). https://doi.org/10.1038/sj.bjc.6601360
L.F. Dong, V.J. Jameson, D. Tilly, J. Cerny, E. Mahdavian et al., Mitochondrial targeting of vitamin e succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J. Biol. Chem. 286, 3717–3728 (2011). https://doi.org/10.1074/jbc.M110.186643
T. Weber, M. Lu, L. Andera, H. Lahm, N. Gellert et al., Vitamin E succinate is a potent novel antineoplastic agent with high selectivity and cooperativity with tumor necrosis factor-related apoptosis-inducing ligand (apo2 ligand) in vivo. Clin. Cancer Res. 8, 863–869 (2002). https://doi.org/10.0000/PMID11895920
L.-F. Dong, R. Freeman, J. Liu, R. Zobalova, A. Marin-Hernandez et al., Suppression of tumor growth in vivo by the mitocan α-tocopheryl succinate requires respiratory complex II. Clin. Cancer Res. 15, 1593–1600 (2009). https://doi.org/10.1158/1078-0432.ccr-08-2439
L.F. Dong, E. Swettenham, J. Eliasson, X.F. Wang, M. Gold et al., Vitamin E analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress. Cancer Res. 67, 11906–11913 (2007). https://doi.org/10.1158/0008-5472.CAN-07-3034
X.R. Song, S.H. Li, H. Guo, W. You, D. Tu et al., Enhancing antitumor efficacy by simultaneous atp-responsive chemodrug release and cancer cell sensitization based on a smart nanoagent. Adv. Sci. 5, 1801201 (2018). https://doi.org/10.1002/advs.201801201
K. Mizusawa, Y. Takaoka, I. Hamachi, Specific cell surface protein imaging by extended self-assembling fluorescent turn-on nanoprobes. J. Am. Chem. Soc. 134, 13386–13395 (2012). https://doi.org/10.1021/ja304239g
Y. Li, J. Lin, Z. Cai, P. Wang, Q. Luo et al., Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy. J. Control. Release 321, 222–235 (2020). https://doi.org/10.1016/j.jconrel.2020.02.025
W. Lin, T. Sun, Z. Xie, J. Gu, X. Jing, A dual-responsive nanocapsule via disulfide-induced self-assembly for therapeutic agent delivery. Chem. Sci. 7, 1846–1852 (2016). https://doi.org/10.1039/C5SC03707G
Y. Wang, D. Liu, Q. Zheng, Q. Zhao, H. Zhang et al., Disulfide bond bridge insertion turns hydrophobic anticancer prodrugs into self-assembled nanomedicines. Nano Lett. 14, 5577–5583 (2014). https://doi.org/10.1021/nl502044x
H.L. Pu, W.L. Chiang, B. Maiti, Z.X. Liao, Y.C. Ho et al., Nanoparticles with dual responses to oxidative stress and reduced ph for drug release and anti-inflammatory applications. ACS Nano 8, 1213–1221 (2014). https://doi.org/10.1021/nn4058787
N. Kamaly, B. Yameen, J. Wu, O.C. Farokhzad, Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016). https://doi.org/10.1021/acs.chemrev.5b00346
D. Shao, M. Li, Z. Wang, X. Zheng, Y.H. Lao et al., Bioinspired diselenide-bridged mesoporous silica nanoparticles for dual-responsive protein delivery. Adv. Mater. 30, 1801198 (2018). https://doi.org/10.1002/adma.201801198
K. Liang, J.E. Chung, S.J. Gao, N. Yongvongsoontorn, M. Kurisawa, Highly augmented drug loading and stability of micellar nanocomplexes composed of doxorubicin and poly(ethylene glycol)-green tea catechin conjugate for cancer therapy. Adv. Mater. 30, 1706963 (2018). https://doi.org/10.1002/adma.201706963
Y. Li, J. Lin, P. Wang, Q. Luo, H. Lin et al., Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy. ACS Nano 13, 12912–12928 (2019). https://doi.org/10.1021/acsnano.9b05425
C.D. Walkey, J.B. Olsen, H. Guo, A. Emili, W.C. Chan, Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012). https://doi.org/10.1021/ja2084338
S.B. Lee, J. Lee, S.J. Cho, J. Chin, S.K. Kim et al., Crushed gold shell nanoparticles labeled with radioactive iodine as a theranostic nanoplatform for macrophage-mediated photothermal therapy. Nano-Micro Lett. 11, 36 (2019). https://doi.org/10.1007/s40820-019-0266-0
P. Mi, H. Cabral, K. Kataoka, Ligand-installed nanocarriers toward precision therapy. Adv. Mater. 32, 1902604–1902632 (2019). https://doi.org/10.1002/adma.201902604
S. Wang, E.E. Dormidontova, Selectivity of ligand-receptor interactions between nanoparticle and cell surfaces. Phys. Rev. Lett. 109, 238102 (2012). https://doi.org/10.1103/PhysRevLett.109.238102
Q. Guan, L.L. Zhou, Y.A. Li, W.Y. Li, S. Wang, C. Song, Y.B. Dong, Nanoscale covalent organic framework for combinatorial antitumor photodynamic and photothermal therapy. ACS Nano 13, 13304–13316 (2019). https://doi.org/10.1021/acsnano.9b06467
R.G. Tuguntaev, S. Chen, A.S. Eltahan, A. Mozhi, S. Jin et al., P-gp inhibition and mitochondrial impairment by dual-functional nanostructure based on vitamin e derivatives to overcome multidrug resistance. ACS Appl. Mater. Interfaces. 9, 16900–16912 (2017). https://doi.org/10.1021/acsami.7b03877
R. Wen, B. Banik, R.K. Pathak, A. Kumar, N. Kolishetti, S. Dhar, Nanotechnology inspired tools for mitochondrial dysfunction related diseases. Adv. Drug Deliv. Rev. 99, 52–69 (2016). https://doi.org/10.1016/j.addr.2015.12.024
S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, W.C.W. Chan, Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014–16025 (2016). https://doi.org/10.1038/natrevmats.2016.14