RBC Membrane Camouflaged Semiconducting Polymer Nanoparticles for Near-Infrared Photoacoustic Imaging and Photothermal Therapy
Corresponding Author: Xiaolong Liu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 94
Abstract
Semiconducting conjugated polymer nanoparticles (SPNs) represent an emerging class of phototheranostic materials with great promise for cancer treatment. In this report, low-bandgap electron donor–acceptor (D–A)-conjugated SPNs with surface cloaked by red blood cell membrane (RBCM) are developed for highly effective photoacoustic imaging and photothermal therapy. The resulting RBCM-coated SPN (SPN@RBCM) displays remarkable near-infrared light absorption and good photostability, as well as high photothermal conversion efficiency for photoacoustic imaging and photothermal therapy. Particularly, due to the small size (< 5 nm), SPN@RBCM has the advantages of deep tumor penetration and rapid clearance from the body with no appreciable toxicity. The RBCM endows the SPNs with prolonged systematic circulation time, less reticuloendothelial system uptake and reduced immune-recognition, hence improving tumor accumulation after intravenous injection, which provides strong photoacoustic signals and exerts excellent photothermal therapeutic effects. Thus, this work provides a valuable paradigm for safe and highly efficient tumor photoacoustic imaging and photothermal therapy for further clinical translation.
Highlights:
1 A narrow bandgap electron donor–acceptor (D–A) semiconducting polymer nanoparticle (SPN) coated with red blood cell membrane (RBCM) for photoacoustic imaging and photothermal therapy.
2 The D–A structure endows SPN with excellent near-infrared absorbance, high photothermal conversion ability, and good photothermal stability.
3 The RBCM endows SPN with good biocompatibility, prolonged blood circulation, and improved tumor accumulation, while the small size structure endows SPN with deep tumor penetration and rapid clearance from body.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Chang, Y. Liu, D. Hu, Q. Qi, D. Gao et al., Highly stable conjugated polymer dots as multifunctional agents for photoacoustic imaging-guided photothermal therapy. ACS Appl. Mater. Interfaces 10, 7012–7021 (2018). https://doi.org/10.1021/acsami.8b00759
- M. Wu, L. Wu, J. Li, D. Zhang, S. Lan et al., Self-luminescing theranostic nanoreactors with intraparticle relayed energy transfer for tumor microenvironment activated imaging and photodynamic therapy. Theranostics 9, 20–33 (2019). https://doi.org/10.7150/thno.2885
- K.K. Ng, G. Zheng, Molecular interactions in organic nanoparticles for phototheranostic applications. Chem. Rev. 115, 11012–11042 (2015). https://doi.org/10.1021/acs.chemrev.5b00140
- R. Vankayala, K. Hwang, Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment. Adv. Mater. 30, e1706320 (2018). https://doi.org/10.1002/adma.201706320
- Y. Lyu, Y. Fang, Q. Miao, X. Zhen, D. Ding, K. Pu, Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano 10, 4472–4481 (2016). https://doi.org/10.1021/acsnano.6b00168
- J. Zhang, C. Yang, R. Zhang, R. Chen, Z. Zhang et al., Biocompatible D-A semiconducting polymer nanoparticle with light-harvesting unit for highly effective photoacoustic imaging guided photothermal therapy. Adv. Funct. Mater. 27, 1605094 (2017). https://doi.org/10.1002/adfm.201605094
- Q. Wang, Y. Dai, J. Xu, J. Cai, X. Niu et al., All-in-one phototheranostics: single laser triggers NIR-II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy. Adv. Funct. Mater. 29, 1901480 (2019). https://doi.org/10.1002/adfm.201901480
- X. Hu, Y. Tang, Y. Hu, F. Lu, X. Lu et al., Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/NIR-II fluorescence imaging-guided cancer photothermal therapy. Theranostics 9, 4168–4181 (2019). https://doi.org/10.7150/thno.34390
- Q. Miao, Y. Lyu, D. Ding, K. Pu, Semiconducting oligomer nanoparticles as an activatable photoacoustic probe with amplified brightness for in vivo imaging of pH. Adv. Mater. 28, 3662–3668 (2016). https://doi.org/10.1002/adma.201505681
- K. Pu, A.J. Shuhendler, J.V. Jokerst, J. Mei, S.S. Gambhir, Z. Bao, J. Rao, Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nano 9, 233–239 (2014). https://doi.org/10.1038/nnano.2013.302
- K. Pu, J. Mei, J.V. Jokerst, G. Hong, A.L. Antaris et al., Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacoustic imaging. Adv. Mater. 27, 5184–5190 (2015). https://doi.org/10.1002/adma.201502285
- Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu et al., Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. ACS Nano 10, 3453–3460 (2016). https://doi.org/10.1021/acsnano.5b07521
- D. Zhang, H. Xu, X. Zhang, Y. Liu, M. Wu et al., Self-quenched metal-organic particles as dual-mode therapeutic agents for photoacoustic imaging-guided second near-infrared window photochemotherapy. ACS Appl. Mater. Interfaces 10, 25203–25212 (2018). https://doi.org/10.1021/acsami.8b08419
- M. Wu, Q. Wang, D. Zhang, N. Liao, L. Wu, A. Huang, X. Liu, Magnetite nanocluster@poly(dopamine)-peg@ indocyanine green nanobead with magnetic field-targeting enhanced mr imaging and photothermal therapy in vivo. Colloids Surf. B 141, 467–475 (2016). https://doi.org/10.1016/j.colsurfb.2016.02.022
- Q. Wang, L. Tian, J. Xu, B. Xia, J. Li et al., Multifunctional supramolecular vesicles for combined photothermal/photodynamic/hypoxia-activated chemotherapy. Chem. Commun. 54, 10328–10331 (2018). https://doi.org/10.1039/C8CC05560B
- Q. Wang, P. Zhang, J. Xu, B. Xia, L. Tian et al., NIR-absorbing dye functionalized supramolecular vesicles for chemo-photothermal synergistic therapy. ACS Appl. Bio Mater. 1, 70–78 (2018). https://doi.org/10.1021/acsabm.8b00014
- C.S. Jin, J.F. Lovell, J. Chen, G. Zheng, Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 7, 2541–2550 (2013). https://doi.org/10.1021/nn3058642
- P. Huang, J. Lin, X. Wang, Z. Wang, C. Zhang et al., Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 24, 5104–5110 (2012). https://doi.org/10.1002/adma.201200650
- H. Zhu, Y. Fang, Q. Miao, X. Qi, D. Ding, P. Chen, K. Pu, Regulating near-infrared photodynamic properties of semiconducting polymer nanotheranostics for optimized cancer therapy. ACS Nano 11, 8998–9009 (2017). https://doi.org/10.1021/acsnano.7b03507
- Y. Cao, J.-H. Dou, N.-J. Zhao, S. Zhang, Y.-Q. Zheng et al., Highly efficient NIR-II photothermal conversion based on an organic conjugated polymer. Chem. Mater. 29, 718–725 (2017). https://doi.org/10.1021/acs.chemmater.6b04405
- Z. Chen, P. Zhao, Z. Luo, M. Zheng, H. Tian et al., Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 10, 10049–10057 (2016). https://doi.org/10.1021/acsnano.6b04695
- S. Li, H. Cheng, B. Xie, W. Qiu, J. Zeng et al., Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 11, 7006–7018 (2017). https://doi.org/10.1021/acsnano.7b02533
- K. Knop, R. Hoogenboom, D. Fischer, U.S. Schubert, Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49, 6288–6308 (2010). https://doi.org/10.1002/anie.200902672
- Y. Chen, Y. Xianyu, X. Jiang, Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc. Chem. Res. 50, 310–319 (2017). https://doi.org/10.1021/acs.accounts.6b00506
- Y. Wang, K. Zhang, X. Qin, T. Li, J. Qiu et al., Biomimetic nanotherapies: red blood cell based core-shell structured nanocomplexes for atherosclerosis management. Adv. Sci. 6, 1900172 (2019). https://doi.org/10.1002/advs.201900172
- Z. Cao, S. Cheng, X. Wang, Y. Pang, J. Liu, Camouflaging bacteria by wrapping with cell membranes. Nat. Commun. 10, 3452 (2019). https://doi.org/10.1038/s41467-019-11390-8
- Z. Liu, J. Wang, K. Qiu, X. Liao, T.W. Rees, L. Ji, H. Chao, Fabrication of red blood cell membrane-camouflaged Cu2-xSe nanoparticles for phototherapy in the second near-infrared window. Chem. Commun. 55, 6523–6526 (2019). https://doi.org/10.1039/C9CC03148K
- J. Li, X. Wang, D. Zheng, X. Lin, Z. Wei et al., Cancer cell membrane-coated magnetic nanoparticles for MR/NIR fluorescence dual-modal imaging and photodynamic therapy. Biomater. Sci. 6, 1834–1845 (2018). https://doi.org/10.1039/C8BM00343B
- L. Rao, B. Cai, L. Bu, Q. Liao, S. Guo, X. Zhao, W. Dong, W. Liu, Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 11, 3496–3505 (2017). https://doi.org/10.1021/acsnano.7b00133
- M. Gao, C. Liang, X. Song, Q. Chen, Q. Jin, C. Wang, Z. Liu, Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater. 29, 1701429 (2017). https://doi.org/10.1002/adma.201701429
- J. Piao, L. Wang, F. Gao, Y. You, Y. Xiong, L. Yang, Erythrocyte-membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano 8, 10414–10425 (2014). https://doi.org/10.1021/nn503779d
- B. Liu, W. Wang, J. Fan, Y. Long, F. Xiao et al., RBC membrane camouflaged prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer. Biomaterials 217, 119301 (2019). https://doi.org/10.1016/j.biomaterials.2019.119301
- Z. Chai, D. Ran, L. Lu, C. Zhan, H. Ruan et al., Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to glioma. ACS Nano 13, 5591–5601 (2019). https://doi.org/10.1021/acsnano.9b00661
- P. Zhang, G. Liu, X. Chen, Nanobiotechnology: cell membrane-based delivery systems. Nano Today 13, 7–9 (2017). https://doi.org/10.1016/j.nantod.2016.10.008
- J. Li, X. Zhen, Y. Lyu, Y. Jiang, J. Huang, K. Pu, Cell membrane coated semiconducting polymer nanoparticles for enhanced multimodal cancer phototheranostics. ACS Nano 12, 8520–8530 (2018). https://doi.org/10.1021/acsnano.8b04066
- Y. Wang, Y. Xie, J. Li, Z.-H. Peng, Y. Sheinin, J. Zhou, D. Oupický, Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy. ACS Nano 11, 2227–2238 (2017). https://doi.org/10.1021/acsnano.6b08731
- J. Li, X. Zhen, Y. Yu, Y. Jiang, J. Huang, K. Pu, Sequential intra-intercellular nanoparticle delivery system for deep tumor penetration. Angew. Chem. Int. Ed. 53, 6253–6258 (2014). https://doi.org/10.1002/anie.201311227
- D. Zhang, M. Wu, Z. Cai, N. Liao, K. Ke et al., Chemotherapeutic drug based metal-organic particles for microvesicle-mediated deep penetration and programmable PH/NIR/hypoxia activated cancer photochemotherapy. Adv. Sci. 5, 1700648 (2018). https://doi.org/10.1002/advs.201700648
- M. Yu, J. Xu, J. Zheng, Renal clearable luminescent gold nanoparticles: from the bench to the clinic. Angew. Chem. Int. Ed. 58, 4112–4128 (2019). https://doi.org/10.1002/ange.201807847
- Vasculature and acidity effects, M. Yu, C. Zhen, L. Liu, S. Zhang, S. Sun, H. Julia, X. Sun, J. Zheng, Interactions of renal-clearable gold nanoparticles with tumor microenvironments. Angew. Chem. Int. Ed. 56, 4314–4319 (2017). https://doi.org/10.1002/anie.201612647
- Y. Zhang, L. Zhang, Z. Wang, F. Wang, L. Kang, F. Cao, K. Dong, J. Ren, X. Qu, Renal-clearable ultrasmall covalent organic framework nanodots as photodynamic agents for effective cancer therapy. Biomaterials 223, 119462 (2019). https://doi.org/10.1016/j.biomaterials.2019.119462
- H. Cabral, Y. Matsumoto, K. Mizuno, Q. Chen, M. Murakami et al., Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6, 815–823 (2011). https://doi.org/10.1038/nnano.2011.166
- G. Yang, S.Z.F. Phua, W.Q. Lim, R. Zhang, L. Feng et al., A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy. Adv. Mater. 31, 1901513 (2019). https://doi.org/10.1002/adma.201901513
- T. Liu, L. Tong, N. Lv, X. Ge, Q. Fu, S. Gao, Q. Ma, J. Song, Two-stage size decrease and enhanced photoacoustic performance of stimuli-responsive polymer-gold nanorod assembly for increased tumor penetration. Adv. Funct. Mater. 29, 1806429 (2019). https://doi.org/10.1002/adfm.201806429
- T. Guo, Y. Wu, Y. Lin, X. Xu, H. Lian, G. Huang, J.-Z. Liu, X. Wu, H.-H. Yang, Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy. Small 14, 1702815 (2018). https://doi.org/10.1002/smll.201702815
- L. Cheng, D. Jiang, A. Kamkaew, H. Valdovinos, H. Im et al., Renal-clearable pegylated porphyrin nanoparticles for image-guided photodynamic cancer therapy. Adv. Funct. Mater. 27, 1702928 (2017). https://doi.org/10.1002/adfm.201702928
- H. Wang, D. Yu, J. Fang, C. Cao, Z. Liu, J. Ren, X. Qu, Renal-clearable porphyrinic metal-organic framework nanodots for enhanced photodynamic therapy. ACS Nano 13, 9206–9217 (2019). https://doi.org/10.1021/acsnano.9b03531
- D. Zhang, M. Wu, Y. Zeng, L. Wu, Q. Wang, X. Han, X. Liu, J. Liu, Chlorin e6 conjugated poly(dopamine) nanospheres as PDT/PTT dual-modal therapeutic agents for enhanced cancer therapy. ACS Appl. Mater. Interfaces 7, 8176–8187 (2015). https://doi.org/10.1021/acsami.5b01027
- Z. Wei, M. Wu, S. Lan, J. Li, X. Zhang, D. Zhang, X. Liu, J. Liu, Semiconducting polymer-based nanoparticles for photothermal therapy at the second near-infrared window. Chem. Commun. 54, 13599–13602 (2018). https://doi.org/10.1039/C8CC07583B
- D.K. Roper, W. Ahn, M. Hoepfner, Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 111, 3636–3641 (2007). https://doi.org/10.1021/jp064341w
- Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen et al., Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 5, 9761–9771 (2011). https://doi.org/10.1021/nn203293t
- Z. Sun, H. Xie, S. Tang, X.F. Yu, Z. Guo et al., Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. 54, 11526–11530 (2015). https://doi.org/10.1002/ange.201507435
- Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, L. Lu, Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 25, 1353–1359 (2013). https://doi.org/10.1002/adma.201204683
- X. Zhen, C. Xie, Y. Jiang, X. Ai, B. Xing, K. Pu, Semiconducting photothermal nanoagonist for remote-controlled specific cancer therapy. Nano Lett. 18, 1498–1505 (2018). https://doi.org/10.1021/acs.nanolett.7b05292
- D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751 (2007). https://doi.org/10.1038/nnano.2007.387
References
K. Chang, Y. Liu, D. Hu, Q. Qi, D. Gao et al., Highly stable conjugated polymer dots as multifunctional agents for photoacoustic imaging-guided photothermal therapy. ACS Appl. Mater. Interfaces 10, 7012–7021 (2018). https://doi.org/10.1021/acsami.8b00759
M. Wu, L. Wu, J. Li, D. Zhang, S. Lan et al., Self-luminescing theranostic nanoreactors with intraparticle relayed energy transfer for tumor microenvironment activated imaging and photodynamic therapy. Theranostics 9, 20–33 (2019). https://doi.org/10.7150/thno.2885
K.K. Ng, G. Zheng, Molecular interactions in organic nanoparticles for phototheranostic applications. Chem. Rev. 115, 11012–11042 (2015). https://doi.org/10.1021/acs.chemrev.5b00140
R. Vankayala, K. Hwang, Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment. Adv. Mater. 30, e1706320 (2018). https://doi.org/10.1002/adma.201706320
Y. Lyu, Y. Fang, Q. Miao, X. Zhen, D. Ding, K. Pu, Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano 10, 4472–4481 (2016). https://doi.org/10.1021/acsnano.6b00168
J. Zhang, C. Yang, R. Zhang, R. Chen, Z. Zhang et al., Biocompatible D-A semiconducting polymer nanoparticle with light-harvesting unit for highly effective photoacoustic imaging guided photothermal therapy. Adv. Funct. Mater. 27, 1605094 (2017). https://doi.org/10.1002/adfm.201605094
Q. Wang, Y. Dai, J. Xu, J. Cai, X. Niu et al., All-in-one phototheranostics: single laser triggers NIR-II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy. Adv. Funct. Mater. 29, 1901480 (2019). https://doi.org/10.1002/adfm.201901480
X. Hu, Y. Tang, Y. Hu, F. Lu, X. Lu et al., Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/NIR-II fluorescence imaging-guided cancer photothermal therapy. Theranostics 9, 4168–4181 (2019). https://doi.org/10.7150/thno.34390
Q. Miao, Y. Lyu, D. Ding, K. Pu, Semiconducting oligomer nanoparticles as an activatable photoacoustic probe with amplified brightness for in vivo imaging of pH. Adv. Mater. 28, 3662–3668 (2016). https://doi.org/10.1002/adma.201505681
K. Pu, A.J. Shuhendler, J.V. Jokerst, J. Mei, S.S. Gambhir, Z. Bao, J. Rao, Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nano 9, 233–239 (2014). https://doi.org/10.1038/nnano.2013.302
K. Pu, J. Mei, J.V. Jokerst, G. Hong, A.L. Antaris et al., Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacoustic imaging. Adv. Mater. 27, 5184–5190 (2015). https://doi.org/10.1002/adma.201502285
Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu et al., Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. ACS Nano 10, 3453–3460 (2016). https://doi.org/10.1021/acsnano.5b07521
D. Zhang, H. Xu, X. Zhang, Y. Liu, M. Wu et al., Self-quenched metal-organic particles as dual-mode therapeutic agents for photoacoustic imaging-guided second near-infrared window photochemotherapy. ACS Appl. Mater. Interfaces 10, 25203–25212 (2018). https://doi.org/10.1021/acsami.8b08419
M. Wu, Q. Wang, D. Zhang, N. Liao, L. Wu, A. Huang, X. Liu, Magnetite nanocluster@poly(dopamine)-peg@ indocyanine green nanobead with magnetic field-targeting enhanced mr imaging and photothermal therapy in vivo. Colloids Surf. B 141, 467–475 (2016). https://doi.org/10.1016/j.colsurfb.2016.02.022
Q. Wang, L. Tian, J. Xu, B. Xia, J. Li et al., Multifunctional supramolecular vesicles for combined photothermal/photodynamic/hypoxia-activated chemotherapy. Chem. Commun. 54, 10328–10331 (2018). https://doi.org/10.1039/C8CC05560B
Q. Wang, P. Zhang, J. Xu, B. Xia, L. Tian et al., NIR-absorbing dye functionalized supramolecular vesicles for chemo-photothermal synergistic therapy. ACS Appl. Bio Mater. 1, 70–78 (2018). https://doi.org/10.1021/acsabm.8b00014
C.S. Jin, J.F. Lovell, J. Chen, G. Zheng, Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 7, 2541–2550 (2013). https://doi.org/10.1021/nn3058642
P. Huang, J. Lin, X. Wang, Z. Wang, C. Zhang et al., Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 24, 5104–5110 (2012). https://doi.org/10.1002/adma.201200650
H. Zhu, Y. Fang, Q. Miao, X. Qi, D. Ding, P. Chen, K. Pu, Regulating near-infrared photodynamic properties of semiconducting polymer nanotheranostics for optimized cancer therapy. ACS Nano 11, 8998–9009 (2017). https://doi.org/10.1021/acsnano.7b03507
Y. Cao, J.-H. Dou, N.-J. Zhao, S. Zhang, Y.-Q. Zheng et al., Highly efficient NIR-II photothermal conversion based on an organic conjugated polymer. Chem. Mater. 29, 718–725 (2017). https://doi.org/10.1021/acs.chemmater.6b04405
Z. Chen, P. Zhao, Z. Luo, M. Zheng, H. Tian et al., Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 10, 10049–10057 (2016). https://doi.org/10.1021/acsnano.6b04695
S. Li, H. Cheng, B. Xie, W. Qiu, J. Zeng et al., Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 11, 7006–7018 (2017). https://doi.org/10.1021/acsnano.7b02533
K. Knop, R. Hoogenboom, D. Fischer, U.S. Schubert, Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49, 6288–6308 (2010). https://doi.org/10.1002/anie.200902672
Y. Chen, Y. Xianyu, X. Jiang, Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc. Chem. Res. 50, 310–319 (2017). https://doi.org/10.1021/acs.accounts.6b00506
Y. Wang, K. Zhang, X. Qin, T. Li, J. Qiu et al., Biomimetic nanotherapies: red blood cell based core-shell structured nanocomplexes for atherosclerosis management. Adv. Sci. 6, 1900172 (2019). https://doi.org/10.1002/advs.201900172
Z. Cao, S. Cheng, X. Wang, Y. Pang, J. Liu, Camouflaging bacteria by wrapping with cell membranes. Nat. Commun. 10, 3452 (2019). https://doi.org/10.1038/s41467-019-11390-8
Z. Liu, J. Wang, K. Qiu, X. Liao, T.W. Rees, L. Ji, H. Chao, Fabrication of red blood cell membrane-camouflaged Cu2-xSe nanoparticles for phototherapy in the second near-infrared window. Chem. Commun. 55, 6523–6526 (2019). https://doi.org/10.1039/C9CC03148K
J. Li, X. Wang, D. Zheng, X. Lin, Z. Wei et al., Cancer cell membrane-coated magnetic nanoparticles for MR/NIR fluorescence dual-modal imaging and photodynamic therapy. Biomater. Sci. 6, 1834–1845 (2018). https://doi.org/10.1039/C8BM00343B
L. Rao, B. Cai, L. Bu, Q. Liao, S. Guo, X. Zhao, W. Dong, W. Liu, Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 11, 3496–3505 (2017). https://doi.org/10.1021/acsnano.7b00133
M. Gao, C. Liang, X. Song, Q. Chen, Q. Jin, C. Wang, Z. Liu, Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater. 29, 1701429 (2017). https://doi.org/10.1002/adma.201701429
J. Piao, L. Wang, F. Gao, Y. You, Y. Xiong, L. Yang, Erythrocyte-membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano 8, 10414–10425 (2014). https://doi.org/10.1021/nn503779d
B. Liu, W. Wang, J. Fan, Y. Long, F. Xiao et al., RBC membrane camouflaged prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer. Biomaterials 217, 119301 (2019). https://doi.org/10.1016/j.biomaterials.2019.119301
Z. Chai, D. Ran, L. Lu, C. Zhan, H. Ruan et al., Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to glioma. ACS Nano 13, 5591–5601 (2019). https://doi.org/10.1021/acsnano.9b00661
P. Zhang, G. Liu, X. Chen, Nanobiotechnology: cell membrane-based delivery systems. Nano Today 13, 7–9 (2017). https://doi.org/10.1016/j.nantod.2016.10.008
J. Li, X. Zhen, Y. Lyu, Y. Jiang, J. Huang, K. Pu, Cell membrane coated semiconducting polymer nanoparticles for enhanced multimodal cancer phototheranostics. ACS Nano 12, 8520–8530 (2018). https://doi.org/10.1021/acsnano.8b04066
Y. Wang, Y. Xie, J. Li, Z.-H. Peng, Y. Sheinin, J. Zhou, D. Oupický, Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy. ACS Nano 11, 2227–2238 (2017). https://doi.org/10.1021/acsnano.6b08731
J. Li, X. Zhen, Y. Yu, Y. Jiang, J. Huang, K. Pu, Sequential intra-intercellular nanoparticle delivery system for deep tumor penetration. Angew. Chem. Int. Ed. 53, 6253–6258 (2014). https://doi.org/10.1002/anie.201311227
D. Zhang, M. Wu, Z. Cai, N. Liao, K. Ke et al., Chemotherapeutic drug based metal-organic particles for microvesicle-mediated deep penetration and programmable PH/NIR/hypoxia activated cancer photochemotherapy. Adv. Sci. 5, 1700648 (2018). https://doi.org/10.1002/advs.201700648
M. Yu, J. Xu, J. Zheng, Renal clearable luminescent gold nanoparticles: from the bench to the clinic. Angew. Chem. Int. Ed. 58, 4112–4128 (2019). https://doi.org/10.1002/ange.201807847
Vasculature and acidity effects, M. Yu, C. Zhen, L. Liu, S. Zhang, S. Sun, H. Julia, X. Sun, J. Zheng, Interactions of renal-clearable gold nanoparticles with tumor microenvironments. Angew. Chem. Int. Ed. 56, 4314–4319 (2017). https://doi.org/10.1002/anie.201612647
Y. Zhang, L. Zhang, Z. Wang, F. Wang, L. Kang, F. Cao, K. Dong, J. Ren, X. Qu, Renal-clearable ultrasmall covalent organic framework nanodots as photodynamic agents for effective cancer therapy. Biomaterials 223, 119462 (2019). https://doi.org/10.1016/j.biomaterials.2019.119462
H. Cabral, Y. Matsumoto, K. Mizuno, Q. Chen, M. Murakami et al., Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6, 815–823 (2011). https://doi.org/10.1038/nnano.2011.166
G. Yang, S.Z.F. Phua, W.Q. Lim, R. Zhang, L. Feng et al., A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy. Adv. Mater. 31, 1901513 (2019). https://doi.org/10.1002/adma.201901513
T. Liu, L. Tong, N. Lv, X. Ge, Q. Fu, S. Gao, Q. Ma, J. Song, Two-stage size decrease and enhanced photoacoustic performance of stimuli-responsive polymer-gold nanorod assembly for increased tumor penetration. Adv. Funct. Mater. 29, 1806429 (2019). https://doi.org/10.1002/adfm.201806429
T. Guo, Y. Wu, Y. Lin, X. Xu, H. Lian, G. Huang, J.-Z. Liu, X. Wu, H.-H. Yang, Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy. Small 14, 1702815 (2018). https://doi.org/10.1002/smll.201702815
L. Cheng, D. Jiang, A. Kamkaew, H. Valdovinos, H. Im et al., Renal-clearable pegylated porphyrin nanoparticles for image-guided photodynamic cancer therapy. Adv. Funct. Mater. 27, 1702928 (2017). https://doi.org/10.1002/adfm.201702928
H. Wang, D. Yu, J. Fang, C. Cao, Z. Liu, J. Ren, X. Qu, Renal-clearable porphyrinic metal-organic framework nanodots for enhanced photodynamic therapy. ACS Nano 13, 9206–9217 (2019). https://doi.org/10.1021/acsnano.9b03531
D. Zhang, M. Wu, Y. Zeng, L. Wu, Q. Wang, X. Han, X. Liu, J. Liu, Chlorin e6 conjugated poly(dopamine) nanospheres as PDT/PTT dual-modal therapeutic agents for enhanced cancer therapy. ACS Appl. Mater. Interfaces 7, 8176–8187 (2015). https://doi.org/10.1021/acsami.5b01027
Z. Wei, M. Wu, S. Lan, J. Li, X. Zhang, D. Zhang, X. Liu, J. Liu, Semiconducting polymer-based nanoparticles for photothermal therapy at the second near-infrared window. Chem. Commun. 54, 13599–13602 (2018). https://doi.org/10.1039/C8CC07583B
D.K. Roper, W. Ahn, M. Hoepfner, Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 111, 3636–3641 (2007). https://doi.org/10.1021/jp064341w
Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen et al., Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 5, 9761–9771 (2011). https://doi.org/10.1021/nn203293t
Z. Sun, H. Xie, S. Tang, X.F. Yu, Z. Guo et al., Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. 54, 11526–11530 (2015). https://doi.org/10.1002/ange.201507435
Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, L. Lu, Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 25, 1353–1359 (2013). https://doi.org/10.1002/adma.201204683
X. Zhen, C. Xie, Y. Jiang, X. Ai, B. Xing, K. Pu, Semiconducting photothermal nanoagonist for remote-controlled specific cancer therapy. Nano Lett. 18, 1498–1505 (2018). https://doi.org/10.1021/acs.nanolett.7b05292
D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751 (2007). https://doi.org/10.1038/nnano.2007.387