Beyond Conversion Chemistry: Unlocking a Cooperative Solid-Solution–Capacitive Sodium-Storage Mechanism in Nickel Phosphide
Corresponding Author: Yucheng Wu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 253
Abstract
Nickel-rich nickel phosphide (Ni2P) has emerged as a promising sodium-ion battery anode owing to its high theoretical capacity and intrinsic electronic conductivity, yet its charge storage chemistry remains controversial and is often oversimplified as a conversion reaction. Herein, we design a freestanding Ni2P composite electrode composed of ultrasmall Ni2P nanocrystals embedded within a phosphorus-doped, graphene-like porous carbon matrix. Comprehensive in-situ and ex-situ analyses unequivocally demonstrate an interstitial solid-solution mechanism, wherein Na+ ions reversibly occupy lattice interstitials via (111)-oriented interplanar channels, inducing reversible lattice breathing without phase transformation. This bulk intercalation process is synergistically coupled with a substantial pseudocapacitive contribution, establishing a cooperative dual-mode storage mechanism. Benefiting from this solid-solution–capacitive chemistry, the electrode delivers a high reversible capacity (≈560 mAh g−1), outstanding rate capability (135 mAh g−1 at 10 A g−1), and exceptional long-term stability (263 mAh g−1 after 2000 cycles). When paired with a Na3V2(PO4)3@C cathode, the full cell achieves a high-energy density of 245 Wh kg−1. This work establishes solid-solution–capacitive coupling as a general paradigm for designing high-rate and durable sodium-ion battery anodes.
Highlights:
1 A cooperative dual-mode sodium-storage mechanism, combining interstitial solid-solution intercalation and surface pseudocapacitance, is identified, diverging from the conventional conversion-dominated chemistry of nickel phosphides.
2 In-situ/ex-situ analyses provide direct evidence of reversible Na+ insertion into lattice interstitials through (111)-oriented interplanar channels, enabling low-strain lattice breathing without phase transformation.
3 The freestanding Ni2P composite electrode achieves exceptional performance, including high reversible capacity (≈560 mAh g−1), remarkable rate capability (135 mAh g−1 at 10 A g−1), and long-term stability over 2000 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Gan, Y. Huang, N. Hong, Y. Zhang, B. Xiong et al., Comprehensive understanding of closed pores in hard carbon anode for high-energy sodium-ion batteries. Nano-Micro Lett. 17(1), 325 (2025). https://doi.org/10.1007/s40820-025-01833-x
- Y. Gao, Q. Yu, H. Yang, J. Zhang, W. Wang, The enormous potential of sodium/potassium-ion batteries as the mainstream energy storage technology for large-scale commercial applications. Adv. Mater. 36(39), 2405989 (2024). https://doi.org/10.1002/adma.202405989
- H. Yang, D. Wang, Y. Liu, Y. Liu, B. Zhong et al., Improvement of cycle life for layered oxide cathodes in sodium-ion batteries. Energy Environ. Sci. 17(5), 1756–1780 (2024). https://doi.org/10.1039/D3EE02934D
- Z. Lin, Y. Cai, S. Zhang, J. Sun, Y. Liu et al., Wide-temperature electrolytes for aqueous alkali metal-ion batteries: challenges, progress, and prospects. Nano-Micro Lett. 18(1), 27 (2025). https://doi.org/10.1007/s40820-025-01865-3
- M. Wang, H. Zhang, B. Song, W. Zhang, E. Zhang et al., Sandwiched MnO2-Fe(CN)64–-doped PPy-MnO2 cathodes with tunable interlayer spaces and dual redox active sites for enhanced Na storage. Ind. Eng. Chem. Res. 63(21), 9600–9608 (2024). https://doi.org/10.1021/acs.iecr.4c00969
- P. Liang, D. Pan, X. Hu, K.R. Yang, Y. Liu et al., Se-regulated MnS porous nanocubes encapsulated in carbon nanofibers as high-performance anode for sodium-ion batteries. Nano-Micro Lett. 17(1), 237 (2025). https://doi.org/10.1007/s40820-025-01767-4
- X. Zhang, H. Qu, W. Yan, L. Yang, Y. Li et al., Sodium-based dual-ion battery: from materials to mechanism. Angew. Chem. Int. Ed. 64(48), e202510566 (2025). https://doi.org/10.1002/anie.202510566
- B. Pei, H. Yu, L. Zhang, G. Fang, J. Zhou et al., Hard carbon for sodium-ion batteries: from fundamental research to practical applications. Adv. Mater. 37(39), e2504574 (2025). https://doi.org/10.1002/adma.202504574
- X. Man, X. Min, Y. Yan, H. Gong, Y. Dai et al., Prospect of bismuth and its compounds in sodium-ion batteries: a review. Energy Storage Mater. 75, 104076 (2025). https://doi.org/10.1016/j.ensm.2025.104076
- Y. Liu, W. Zhou, S. Jiang, S. Song, Regulating cocatalyst spin-electronic structures for achieving solar-to-H2 of 7.32% in photothermal-catalytic H2O overall splitting. Small 21(41), e08219 (2025). https://doi.org/10.1002/smll.202508219
- L. Wang, Q. Li, Z. Chen, Y. Wang, Y. Li et al., Metal phosphide anodes in sodium-ion batteries: latest applications and progress. Small 20(26), 2310426 (2024). https://doi.org/10.1002/smll.202310426
- J. Liang, G. Zhu, Y. Zhang, H. Liang, W. Huang, Conversion of hydroxide into carbon-coated phosphide using plasma for sodium ion batteries. Nano Res. 15(3), 2023–2029 (2022). https://doi.org/10.1007/s12274-021-3738-8
- M. Ishaq, M. Jabeen, R. Haider, K. Nadir, F. Ilyas et al., Geometric design and electronic engineering of transition metal phosphides for key electrochemical energy technologies: nanoarchitectonics and application. Adv. Funct. Mater. 35(37), 2424141 (2025). https://doi.org/10.1002/adfm.202424141
- S. Liu, Q. Shi, X. Liu, M. Zhang, F. Lin et al., Rational tailoring the hetero-architectures of Ni2P/CoP2 for stable and high-power sodium-ion batteries. J. Energy Storage 126, 117026 (2025). https://doi.org/10.1016/j.est.2025.117026
- C. Dong, L. Guo, Y. He, C. Chen, Y. Qian et al., Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. Energy Storage Mater. 15, 234–241 (2018). https://doi.org/10.1016/j.ensm.2018.04.011
- F. Wang, T. Zhang, T. Zhang, T. He, F. Ran, Recent progress in improving rate performance of cellulose-derived carbon materials for sodium-ion batteries. Nano-Micro Lett. 16(1), 148 (2024). https://doi.org/10.1007/s40820-024-01351-2
- H. Wu, S. Luo, H. Wang, L. Li, Y. Fang et al., A review of anode materials for dual-ion batteries. Nano-Micro Lett. 16(1), 252 (2024). https://doi.org/10.1007/s40820-024-01470-w
- Y. Hao, J. Shao, Y. Yuan, X. Li, W. Xiao et al., Design of phosphide anodes harvesting superior sodium storage: progress, challenges, and perspectives. Adv. Funct. Mater. 33(13), 2212692 (2023). https://doi.org/10.1002/adfm.202212692
- Q. Zheng, S. Zhou, S. Tang, H. Zeng, Y. Tang et al., Unveiling atom migration abilities affected anode performance of sodium-ion batteries. Angew. Chem. Int. Ed. 62(27), e202303343 (2023). https://doi.org/10.1002/anie.202303343
- S. Liu, Q. Shi, X. Liu, J. Fan, L. Ren et al., Ni2P /Cu3P bimetallic phosphide embedded in nitrogen-doped carbon as SIB anode: constructed hetero interface promoting fast Na+ diffusion and storage performance. Chem. Eng. J. 502, 157889 (2024). https://doi.org/10.1016/j.cej.2024.157889
- M. Zhang, Y. Liang, F. Liu, X. An, J. Feng et al., Ni2P immobilized on N, P-codoped porous carbon sheets for alkali metal ion batteries and storage mechanism. J. Mater. Chem. A 11(15), 8162–8172 (2023). https://doi.org/10.1039/D2TA09890C
- H. Wu, G. Xia, X. Yu, Unlocking the potential of iron sulfides for sodium-ion batteries by ultrafine pulverization. Small 20(32), 2312190 (2024). https://doi.org/10.1002/smll.202312190
- J. Li, X. Chang, T. Huang, B. Wang, H. Zheng et al., Surface-controlled sodium-ion storage mechanism of Li4Ti5O12 anode. Energy Storage Mater. 54, 724–731 (2023). https://doi.org/10.1016/j.ensm.2022.11.017
- T. Li, D. Zhao, M. Shi, C. Tian, J. Yi et al., Quantum-size FeS2 with delocalized electronic regions enable high-performance sodium-ion batteries across wide temperatures. Nano-Micro Lett. 18(1), 15 (2025). https://doi.org/10.1007/s40820-025-01858-2
- D.D. Robertson, H. Cumberbatch, D.J. Pe, Y. Yao, S.H. Tolbert, Understanding how the suppression of insertion-induced phase transitions leads to fast charging in nanoscale LixMoO2. ACS Nano 18(1), 996–1012 (2024). https://doi.org/10.1021/acsnano.3c10169
- Z. Yan, D. Tang, S. Fan, X. Zou, X. Huang et al., Unifying electrochemically-driven multistep phase transformations of rutile TiO2 to rocksalt nanograins for reversible Li+ and Na+ storage. Adv. Mater. 37(11), e2419999 (2025). https://doi.org/10.1002/adma.202419999
- Y. Yun, B. Xi, F. Tian, W. Chen, W. Sun et al., Zero-strain structure for efficient potassium storage: nitrogen-enriched carbon dual-confinement CoP composite. Adv. Energy Mater. 12(3), 2103341 (2022). https://doi.org/10.1002/aenm.202103341
- J. Zhang, G. Kim, M. Park, J. Zhang, S. Lee et al., Nanostructuring-promoted non-equilibrium phase transformation of Bi anodes toward diffusion-controlled reaction for K-ion batteries. Adv. Energy Mater. 12(48), 2202446 (2022). https://doi.org/10.1002/aenm.202202446
- X. Zou, Z. Yan, D. Tang, S. Fan, D.-L. Peng et al., Intercalation pseudocapacitance of sodium-ion storage in TiO2(B). J. Mater. Chem. A 12(23), 13770–13777 (2024). https://doi.org/10.1039/D4TA02211D
- Q. Wei, X. Chang, D. Butts, R. DeBlock, K. Lan et al., Surface-redox sodium-ion storage in anatase titanium oxide. Nat. Commun. 14(1), 7 (2023). https://doi.org/10.1038/s41467-022-35617-3
- Y. Yao, H. Cumberbatch, D.D. Robertson, M.A. Chin, R. Lamkin et al., On the interplay between size and disorder in suppressing intercalation-induced phase transitions in pseudocapacitive nanostructured MoS2. Adv. Funct. Mater. 34(50), 2304896 (2024). https://doi.org/10.1002/adfm.202304896
- Z. Zeng, B.-A. Mei, G. Song, M. Hamza, Z. Yan et al., Physical interpretation of the electrochemical impedance spectroscopy (EIS) characteristics for diffusion-controlled intercalation and surface-redox charge storage behaviors. J. Energy Storage 102, 114021 (2024). https://doi.org/10.1016/j.est.2024.114021
- Z. Zhao, Y. Wu, R. Hu, J. Lu, D. Chen et al., Intercalation pseudocapacitance in 2D VS2/Ti3C2Tx MXene hybrids for all-climate and long-cycle sodium-ion batteries. Adv. Funct. Mater. 33(50), 2307794 (2023). https://doi.org/10.1002/adfm.202307794
- W. Meng, Z. Dang, D. Li, L. Jiang, D. Fang, Interface and defect engineered titanium-base oxide heterostructures synchronizing high-rate and ultrastable sodium storage. Adv. Energy Mater. 12(40), 2201531 (2022). https://doi.org/10.1002/aenm.202201531
- Z. Guo, Z. Xu, F. Xie, J. Jiang, K. Zheng et al., Investigating the superior performance of hard carbon anodes in sodium-ion compared with lithium- and potassium-ion batteries. Adv. Mater. 35(42), 2304091 (2023). https://doi.org/10.1002/adma.202304091
- H. Gao, W. Gao, M. Pumera, 3D-printed nanostructured copper substrate boosts the sodiated capability and stability of antimony anode for sodium-ion batteries. Adv. Funct. Mater. 34(19), 2310563 (2024). https://doi.org/10.1002/adfm.202310563
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- J.D. Pack, H.J. Monkhorst, Special points for Brillouin-zone integrations”: a reply. Phys. Rev. B 16(4), 1748–1749 (1977). https://doi.org/10.1103/physrevb.16.1748
- L. Yang, H. Pang, W. Ren, X. Wang, Y. Wei et al., Joule heating driven graphitization regulation and Ni single-atom modification in hard carbon for low-voltage and high-rate potassium-ion storage. Adv. Funct. Mater. e16237 (2025). https://doi.org/10.1002/adfm.202516237
- A.K. Nandi, D.P. Chatterjee, Hybrid polymer gels for energy applications. J. Mater. Chem. A 11(24), 12593–12642 (2023). https://doi.org/10.1039/d2ta09525d
- Y. Zhao, W.-J. Jiang, J. Zhang, E.C. Lovell, R. Amal et al., Anchoring sites engineering in single-atom catalysts for highly efficient electrochemical energy conversion reactions. Adv. Mater. 33(41), 2102801 (2021). https://doi.org/10.1002/adma.202102801
- G. Wu, X. Wu, X. Zhu, J. Xu, N. Bao, Two-dimensional hybrid nanosheet-based supercapacitors: from building block architecture, fiber assembly, and fabric construction to wearable applications. ACS Nano 16(7), 10130–10155 (2022). https://doi.org/10.1021/acsnano.2c02841
- D. Liu, J. Ma, S. Zheng, W. Shao, T. Zhang et al., High-performance and flexible co-planar integrated microsystem of carbon-based all-solid-state micro-supercapacitor and real-time temperature sensor. Energy Environ. Mater. 6(6), e12445 (2023). https://doi.org/10.1002/eem2.12445
- Y. Liu, J. Wang, Q. Shi, M. Yan, S. Zhao et al., A stress self-adaptive structure to suppress the chemo-mechanical degradation for high rate and ultralong cycle life sodium ion batteries. Angew. Chem. Int. Ed. 62(29), e202303875 (2023). https://doi.org/10.1002/anie.202303875
- X. Cui, J. Chen, Z. Sun, L. Wang, Q. Peng et al., A general route for encapsulating monodispersed transition metal phosphides into carbon multi-chambers toward high-efficient lithium-ion storage with underlying mechanism exploration. Adv. Funct. Mater. 33(15), 2212100 (2023). https://doi.org/10.1002/adfm.202212100
- D. Li, Z. Li, R. Zou, G. Shi, Y. Huang et al., Coupling overall water splitting and biomass oxidation via Fe-doped Ni2P@C nanosheets at large current density. Appl. Catal. B Environ. Energy 307, 121170 (2022). https://doi.org/10.1016/j.apcatb.2022.121170
- Y. Liang, N. Song, Z. Zhang, W. Chen, J. Feng et al., Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage. Adv. Mater. 34(28), 2202673 (2022). https://doi.org/10.1002/adma.202202673
- J. Xiao, Z. Cai, T. Muhmood, X. Hu, S. Lin, Tailoring ordered porous carbon embedded with Cu clusters for high-energy and long-lasting phosphorus anode. Small 18(11), 2106930 (2022). https://doi.org/10.1002/smll.202106930
- J. Bai, J.H. Jia, Y. Wang, C.C. Yang, Q. Jiang, Ideal bi-based hybrid anode material for ultrafast charging of sodium-ion batteries at extremely low temperatures. Nano-Micro Lett. 17(1), 60 (2024). https://doi.org/10.1007/s40820-024-01560-9
- H. Zhang, W. Liu, Z. Li, L. Qiao, K. Chi et al., Constructing CoP/Ni2P heterostructure confined Ru sub-nanoclusters for enhanced water splitting in wide pH conditions. Adv. Sci. 11(35), 2401398 (2024). https://doi.org/10.1002/advs.202401398
- Y. Liao, Y. Chen, L. Li, S. Luo, Y. Qing et al., Ultrafine homologous Ni2P–Co2P heterostructures via space-confined topological transformation for superior urea electrolysis. Adv. Funct. Mater. 33(42), 2303300 (2023). https://doi.org/10.1002/adfm.202303300
- J. Yuan, T. Sun, J. Chen, R. Zhou, J. Cao et al., Microbial surface confined growth strategy for the synthesis of highly loaded NiCoP nanops with hollow derived carbon shells for sodium ion capture. Adv. Sci. 12(1), 2407616 (2025). https://doi.org/10.1002/advs.202407616
- H. Feng, Z. Liu, F. Wang, L. Xue, L. Li et al., The C─S/C═S bonds synergistically modify porous hollow-carbon-nanocages anode for durable and fast sodium-ion storage. Adv. Funct. Mater. 34(33), 2400020 (2024). https://doi.org/10.1002/adfm.202400020
- C. Ding, S. Li, S. Yin, X. Zeng, W. Wang et al., Rationally designed Ni2P/C composite membrane with enhanced electrochemical reversibility and stability for lithium-ion storage. J. Power. Sources 579, 233300 (2023). https://doi.org/10.1016/j.jpowsour.2023.233300
- L. Li, A. Huang, H. Jiang, Y. Li, X. Pan et al., Encapsulation of Sn sub-nanoclusters in multichannel carbon matrix for high-performance potassium-ion batteries. Angew. Chem. Int. Ed. 63(45), e202412077 (2024). https://doi.org/10.1002/anie.202412077
- Y. Yang, J. Xia, X. Guan, Z. Wei, J. Yu et al., In situ growth of CoP nanosheet arrays on carbon cloth as binder-free electrode for high-performance flexible lithium-ion batteries. Small 18(51), 2204970 (2022). https://doi.org/10.1002/smll.202204970
- J. Yu, Y. He, J. Li, C. Dong, Y. Dai et al., In-situ rooting biconical-nanorods-like Co-doped FeP @carbon architectures toward enhanced lithium storage performance. Chem. Eng. J. 477, 146996 (2023). https://doi.org/10.1016/j.cej.2023.146996
- S. Lin, H. Zhang, C. Shu, W. Hua, X. Wang et al., Research progress and perspectives on pre-sodiation strategies for sodium-ion batteries. Adv. Funct. Mater. 34(51), 2409628 (2024). https://doi.org/10.1002/adfm.202409628
- J. Zong, Y. Liang, F. Liu, M. Zhang, J. Feng et al., Effect of combination model of MoTe2 and MXene layers on sodium ion storage. Adv. Mater. 37(34), 2503252 (2025). https://doi.org/10.1002/adma.202503252
- Q. Wei, Q. Li, Y. Jiang, Y. Zhao, S. Tan et al., High-energy and high-power pseudocapacitor-battery hybrid sodium-ion capacitor with Na+ intercalation pseudocapacitance anode. Nano-Micro Lett. 13(1), 55 (2021). https://doi.org/10.1007/s40820-020-00567-2
- R. Yang, X. Qiu, H. Xiong, Z. Cui, Y. Xue et al., Growth space engineering of closed pores in hard carbon for low-temperature sodium-ion batteries. Energy Storage Mater. 80, 104415 (2025). https://doi.org/10.1016/j.ensm.2025.104415
- P. Song, J. Yang, C. Wang, T. Wang, H. Gao et al., Interface engineering of Fe7S8/FeS2 heterostructure in situ encapsulated into nitrogen-doped carbon nanotubes for high power sodium-ion batteries. Nano-Micro Lett. 15(1), 118 (2023). https://doi.org/10.1007/s40820-023-01082-w
- C. Chen, Y. Tian, R. Ren, S. Duan, D. Wang et al., Regulating pores and carbonyl groups of biomass-derived hard carbon for enhanced sodium storage. Adv. Sci. 12(40), e10328 (2025). https://doi.org/10.1002/advs.202510328
- M. Li, R. Li, H. Ma, M. Yang, Y. Dai et al., An ultra-stable, high-energy and wide-temperature-range aqueous alkaline sodium-ion battery with the microporous C4N/rGO anode. Nano-Micro Lett. 17(1), 158 (2025). https://doi.org/10.1007/s40820-024-01589-w
- L. Wang, B. Liu, Y. Zhu, M. Yang, C. Du et al., General metal–organic framework-derived strategy to synthesize yolk-shell carbon-encapsulated nickelic spheres for sodium-ion batteries. J. Colloid Interface Sci. 613, 23–34 (2022). https://doi.org/10.1016/j.jcis.2021.12.157
References
S. Gan, Y. Huang, N. Hong, Y. Zhang, B. Xiong et al., Comprehensive understanding of closed pores in hard carbon anode for high-energy sodium-ion batteries. Nano-Micro Lett. 17(1), 325 (2025). https://doi.org/10.1007/s40820-025-01833-x
Y. Gao, Q. Yu, H. Yang, J. Zhang, W. Wang, The enormous potential of sodium/potassium-ion batteries as the mainstream energy storage technology for large-scale commercial applications. Adv. Mater. 36(39), 2405989 (2024). https://doi.org/10.1002/adma.202405989
H. Yang, D. Wang, Y. Liu, Y. Liu, B. Zhong et al., Improvement of cycle life for layered oxide cathodes in sodium-ion batteries. Energy Environ. Sci. 17(5), 1756–1780 (2024). https://doi.org/10.1039/D3EE02934D
Z. Lin, Y. Cai, S. Zhang, J. Sun, Y. Liu et al., Wide-temperature electrolytes for aqueous alkali metal-ion batteries: challenges, progress, and prospects. Nano-Micro Lett. 18(1), 27 (2025). https://doi.org/10.1007/s40820-025-01865-3
M. Wang, H. Zhang, B. Song, W. Zhang, E. Zhang et al., Sandwiched MnO2-Fe(CN)64–-doped PPy-MnO2 cathodes with tunable interlayer spaces and dual redox active sites for enhanced Na storage. Ind. Eng. Chem. Res. 63(21), 9600–9608 (2024). https://doi.org/10.1021/acs.iecr.4c00969
P. Liang, D. Pan, X. Hu, K.R. Yang, Y. Liu et al., Se-regulated MnS porous nanocubes encapsulated in carbon nanofibers as high-performance anode for sodium-ion batteries. Nano-Micro Lett. 17(1), 237 (2025). https://doi.org/10.1007/s40820-025-01767-4
X. Zhang, H. Qu, W. Yan, L. Yang, Y. Li et al., Sodium-based dual-ion battery: from materials to mechanism. Angew. Chem. Int. Ed. 64(48), e202510566 (2025). https://doi.org/10.1002/anie.202510566
B. Pei, H. Yu, L. Zhang, G. Fang, J. Zhou et al., Hard carbon for sodium-ion batteries: from fundamental research to practical applications. Adv. Mater. 37(39), e2504574 (2025). https://doi.org/10.1002/adma.202504574
X. Man, X. Min, Y. Yan, H. Gong, Y. Dai et al., Prospect of bismuth and its compounds in sodium-ion batteries: a review. Energy Storage Mater. 75, 104076 (2025). https://doi.org/10.1016/j.ensm.2025.104076
Y. Liu, W. Zhou, S. Jiang, S. Song, Regulating cocatalyst spin-electronic structures for achieving solar-to-H2 of 7.32% in photothermal-catalytic H2O overall splitting. Small 21(41), e08219 (2025). https://doi.org/10.1002/smll.202508219
L. Wang, Q. Li, Z. Chen, Y. Wang, Y. Li et al., Metal phosphide anodes in sodium-ion batteries: latest applications and progress. Small 20(26), 2310426 (2024). https://doi.org/10.1002/smll.202310426
J. Liang, G. Zhu, Y. Zhang, H. Liang, W. Huang, Conversion of hydroxide into carbon-coated phosphide using plasma for sodium ion batteries. Nano Res. 15(3), 2023–2029 (2022). https://doi.org/10.1007/s12274-021-3738-8
M. Ishaq, M. Jabeen, R. Haider, K. Nadir, F. Ilyas et al., Geometric design and electronic engineering of transition metal phosphides for key electrochemical energy technologies: nanoarchitectonics and application. Adv. Funct. Mater. 35(37), 2424141 (2025). https://doi.org/10.1002/adfm.202424141
S. Liu, Q. Shi, X. Liu, M. Zhang, F. Lin et al., Rational tailoring the hetero-architectures of Ni2P/CoP2 for stable and high-power sodium-ion batteries. J. Energy Storage 126, 117026 (2025). https://doi.org/10.1016/j.est.2025.117026
C. Dong, L. Guo, Y. He, C. Chen, Y. Qian et al., Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. Energy Storage Mater. 15, 234–241 (2018). https://doi.org/10.1016/j.ensm.2018.04.011
F. Wang, T. Zhang, T. Zhang, T. He, F. Ran, Recent progress in improving rate performance of cellulose-derived carbon materials for sodium-ion batteries. Nano-Micro Lett. 16(1), 148 (2024). https://doi.org/10.1007/s40820-024-01351-2
H. Wu, S. Luo, H. Wang, L. Li, Y. Fang et al., A review of anode materials for dual-ion batteries. Nano-Micro Lett. 16(1), 252 (2024). https://doi.org/10.1007/s40820-024-01470-w
Y. Hao, J. Shao, Y. Yuan, X. Li, W. Xiao et al., Design of phosphide anodes harvesting superior sodium storage: progress, challenges, and perspectives. Adv. Funct. Mater. 33(13), 2212692 (2023). https://doi.org/10.1002/adfm.202212692
Q. Zheng, S. Zhou, S. Tang, H. Zeng, Y. Tang et al., Unveiling atom migration abilities affected anode performance of sodium-ion batteries. Angew. Chem. Int. Ed. 62(27), e202303343 (2023). https://doi.org/10.1002/anie.202303343
S. Liu, Q. Shi, X. Liu, J. Fan, L. Ren et al., Ni2P /Cu3P bimetallic phosphide embedded in nitrogen-doped carbon as SIB anode: constructed hetero interface promoting fast Na+ diffusion and storage performance. Chem. Eng. J. 502, 157889 (2024). https://doi.org/10.1016/j.cej.2024.157889
M. Zhang, Y. Liang, F. Liu, X. An, J. Feng et al., Ni2P immobilized on N, P-codoped porous carbon sheets for alkali metal ion batteries and storage mechanism. J. Mater. Chem. A 11(15), 8162–8172 (2023). https://doi.org/10.1039/D2TA09890C
H. Wu, G. Xia, X. Yu, Unlocking the potential of iron sulfides for sodium-ion batteries by ultrafine pulverization. Small 20(32), 2312190 (2024). https://doi.org/10.1002/smll.202312190
J. Li, X. Chang, T. Huang, B. Wang, H. Zheng et al., Surface-controlled sodium-ion storage mechanism of Li4Ti5O12 anode. Energy Storage Mater. 54, 724–731 (2023). https://doi.org/10.1016/j.ensm.2022.11.017
T. Li, D. Zhao, M. Shi, C. Tian, J. Yi et al., Quantum-size FeS2 with delocalized electronic regions enable high-performance sodium-ion batteries across wide temperatures. Nano-Micro Lett. 18(1), 15 (2025). https://doi.org/10.1007/s40820-025-01858-2
D.D. Robertson, H. Cumberbatch, D.J. Pe, Y. Yao, S.H. Tolbert, Understanding how the suppression of insertion-induced phase transitions leads to fast charging in nanoscale LixMoO2. ACS Nano 18(1), 996–1012 (2024). https://doi.org/10.1021/acsnano.3c10169
Z. Yan, D. Tang, S. Fan, X. Zou, X. Huang et al., Unifying electrochemically-driven multistep phase transformations of rutile TiO2 to rocksalt nanograins for reversible Li+ and Na+ storage. Adv. Mater. 37(11), e2419999 (2025). https://doi.org/10.1002/adma.202419999
Y. Yun, B. Xi, F. Tian, W. Chen, W. Sun et al., Zero-strain structure for efficient potassium storage: nitrogen-enriched carbon dual-confinement CoP composite. Adv. Energy Mater. 12(3), 2103341 (2022). https://doi.org/10.1002/aenm.202103341
J. Zhang, G. Kim, M. Park, J. Zhang, S. Lee et al., Nanostructuring-promoted non-equilibrium phase transformation of Bi anodes toward diffusion-controlled reaction for K-ion batteries. Adv. Energy Mater. 12(48), 2202446 (2022). https://doi.org/10.1002/aenm.202202446
X. Zou, Z. Yan, D. Tang, S. Fan, D.-L. Peng et al., Intercalation pseudocapacitance of sodium-ion storage in TiO2(B). J. Mater. Chem. A 12(23), 13770–13777 (2024). https://doi.org/10.1039/D4TA02211D
Q. Wei, X. Chang, D. Butts, R. DeBlock, K. Lan et al., Surface-redox sodium-ion storage in anatase titanium oxide. Nat. Commun. 14(1), 7 (2023). https://doi.org/10.1038/s41467-022-35617-3
Y. Yao, H. Cumberbatch, D.D. Robertson, M.A. Chin, R. Lamkin et al., On the interplay between size and disorder in suppressing intercalation-induced phase transitions in pseudocapacitive nanostructured MoS2. Adv. Funct. Mater. 34(50), 2304896 (2024). https://doi.org/10.1002/adfm.202304896
Z. Zeng, B.-A. Mei, G. Song, M. Hamza, Z. Yan et al., Physical interpretation of the electrochemical impedance spectroscopy (EIS) characteristics for diffusion-controlled intercalation and surface-redox charge storage behaviors. J. Energy Storage 102, 114021 (2024). https://doi.org/10.1016/j.est.2024.114021
Z. Zhao, Y. Wu, R. Hu, J. Lu, D. Chen et al., Intercalation pseudocapacitance in 2D VS2/Ti3C2Tx MXene hybrids for all-climate and long-cycle sodium-ion batteries. Adv. Funct. Mater. 33(50), 2307794 (2023). https://doi.org/10.1002/adfm.202307794
W. Meng, Z. Dang, D. Li, L. Jiang, D. Fang, Interface and defect engineered titanium-base oxide heterostructures synchronizing high-rate and ultrastable sodium storage. Adv. Energy Mater. 12(40), 2201531 (2022). https://doi.org/10.1002/aenm.202201531
Z. Guo, Z. Xu, F. Xie, J. Jiang, K. Zheng et al., Investigating the superior performance of hard carbon anodes in sodium-ion compared with lithium- and potassium-ion batteries. Adv. Mater. 35(42), 2304091 (2023). https://doi.org/10.1002/adma.202304091
H. Gao, W. Gao, M. Pumera, 3D-printed nanostructured copper substrate boosts the sodiated capability and stability of antimony anode for sodium-ion batteries. Adv. Funct. Mater. 34(19), 2310563 (2024). https://doi.org/10.1002/adfm.202310563
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
J.D. Pack, H.J. Monkhorst, Special points for Brillouin-zone integrations”: a reply. Phys. Rev. B 16(4), 1748–1749 (1977). https://doi.org/10.1103/physrevb.16.1748
L. Yang, H. Pang, W. Ren, X. Wang, Y. Wei et al., Joule heating driven graphitization regulation and Ni single-atom modification in hard carbon for low-voltage and high-rate potassium-ion storage. Adv. Funct. Mater. e16237 (2025). https://doi.org/10.1002/adfm.202516237
A.K. Nandi, D.P. Chatterjee, Hybrid polymer gels for energy applications. J. Mater. Chem. A 11(24), 12593–12642 (2023). https://doi.org/10.1039/d2ta09525d
Y. Zhao, W.-J. Jiang, J. Zhang, E.C. Lovell, R. Amal et al., Anchoring sites engineering in single-atom catalysts for highly efficient electrochemical energy conversion reactions. Adv. Mater. 33(41), 2102801 (2021). https://doi.org/10.1002/adma.202102801
G. Wu, X. Wu, X. Zhu, J. Xu, N. Bao, Two-dimensional hybrid nanosheet-based supercapacitors: from building block architecture, fiber assembly, and fabric construction to wearable applications. ACS Nano 16(7), 10130–10155 (2022). https://doi.org/10.1021/acsnano.2c02841
D. Liu, J. Ma, S. Zheng, W. Shao, T. Zhang et al., High-performance and flexible co-planar integrated microsystem of carbon-based all-solid-state micro-supercapacitor and real-time temperature sensor. Energy Environ. Mater. 6(6), e12445 (2023). https://doi.org/10.1002/eem2.12445
Y. Liu, J. Wang, Q. Shi, M. Yan, S. Zhao et al., A stress self-adaptive structure to suppress the chemo-mechanical degradation for high rate and ultralong cycle life sodium ion batteries. Angew. Chem. Int. Ed. 62(29), e202303875 (2023). https://doi.org/10.1002/anie.202303875
X. Cui, J. Chen, Z. Sun, L. Wang, Q. Peng et al., A general route for encapsulating monodispersed transition metal phosphides into carbon multi-chambers toward high-efficient lithium-ion storage with underlying mechanism exploration. Adv. Funct. Mater. 33(15), 2212100 (2023). https://doi.org/10.1002/adfm.202212100
D. Li, Z. Li, R. Zou, G. Shi, Y. Huang et al., Coupling overall water splitting and biomass oxidation via Fe-doped Ni2P@C nanosheets at large current density. Appl. Catal. B Environ. Energy 307, 121170 (2022). https://doi.org/10.1016/j.apcatb.2022.121170
Y. Liang, N. Song, Z. Zhang, W. Chen, J. Feng et al., Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage. Adv. Mater. 34(28), 2202673 (2022). https://doi.org/10.1002/adma.202202673
J. Xiao, Z. Cai, T. Muhmood, X. Hu, S. Lin, Tailoring ordered porous carbon embedded with Cu clusters for high-energy and long-lasting phosphorus anode. Small 18(11), 2106930 (2022). https://doi.org/10.1002/smll.202106930
J. Bai, J.H. Jia, Y. Wang, C.C. Yang, Q. Jiang, Ideal bi-based hybrid anode material for ultrafast charging of sodium-ion batteries at extremely low temperatures. Nano-Micro Lett. 17(1), 60 (2024). https://doi.org/10.1007/s40820-024-01560-9
H. Zhang, W. Liu, Z. Li, L. Qiao, K. Chi et al., Constructing CoP/Ni2P heterostructure confined Ru sub-nanoclusters for enhanced water splitting in wide pH conditions. Adv. Sci. 11(35), 2401398 (2024). https://doi.org/10.1002/advs.202401398
Y. Liao, Y. Chen, L. Li, S. Luo, Y. Qing et al., Ultrafine homologous Ni2P–Co2P heterostructures via space-confined topological transformation for superior urea electrolysis. Adv. Funct. Mater. 33(42), 2303300 (2023). https://doi.org/10.1002/adfm.202303300
J. Yuan, T. Sun, J. Chen, R. Zhou, J. Cao et al., Microbial surface confined growth strategy for the synthesis of highly loaded NiCoP nanops with hollow derived carbon shells for sodium ion capture. Adv. Sci. 12(1), 2407616 (2025). https://doi.org/10.1002/advs.202407616
H. Feng, Z. Liu, F. Wang, L. Xue, L. Li et al., The C─S/C═S bonds synergistically modify porous hollow-carbon-nanocages anode for durable and fast sodium-ion storage. Adv. Funct. Mater. 34(33), 2400020 (2024). https://doi.org/10.1002/adfm.202400020
C. Ding, S. Li, S. Yin, X. Zeng, W. Wang et al., Rationally designed Ni2P/C composite membrane with enhanced electrochemical reversibility and stability for lithium-ion storage. J. Power. Sources 579, 233300 (2023). https://doi.org/10.1016/j.jpowsour.2023.233300
L. Li, A. Huang, H. Jiang, Y. Li, X. Pan et al., Encapsulation of Sn sub-nanoclusters in multichannel carbon matrix for high-performance potassium-ion batteries. Angew. Chem. Int. Ed. 63(45), e202412077 (2024). https://doi.org/10.1002/anie.202412077
Y. Yang, J. Xia, X. Guan, Z. Wei, J. Yu et al., In situ growth of CoP nanosheet arrays on carbon cloth as binder-free electrode for high-performance flexible lithium-ion batteries. Small 18(51), 2204970 (2022). https://doi.org/10.1002/smll.202204970
J. Yu, Y. He, J. Li, C. Dong, Y. Dai et al., In-situ rooting biconical-nanorods-like Co-doped FeP @carbon architectures toward enhanced lithium storage performance. Chem. Eng. J. 477, 146996 (2023). https://doi.org/10.1016/j.cej.2023.146996
S. Lin, H. Zhang, C. Shu, W. Hua, X. Wang et al., Research progress and perspectives on pre-sodiation strategies for sodium-ion batteries. Adv. Funct. Mater. 34(51), 2409628 (2024). https://doi.org/10.1002/adfm.202409628
J. Zong, Y. Liang, F. Liu, M. Zhang, J. Feng et al., Effect of combination model of MoTe2 and MXene layers on sodium ion storage. Adv. Mater. 37(34), 2503252 (2025). https://doi.org/10.1002/adma.202503252
Q. Wei, Q. Li, Y. Jiang, Y. Zhao, S. Tan et al., High-energy and high-power pseudocapacitor-battery hybrid sodium-ion capacitor with Na+ intercalation pseudocapacitance anode. Nano-Micro Lett. 13(1), 55 (2021). https://doi.org/10.1007/s40820-020-00567-2
R. Yang, X. Qiu, H. Xiong, Z. Cui, Y. Xue et al., Growth space engineering of closed pores in hard carbon for low-temperature sodium-ion batteries. Energy Storage Mater. 80, 104415 (2025). https://doi.org/10.1016/j.ensm.2025.104415
P. Song, J. Yang, C. Wang, T. Wang, H. Gao et al., Interface engineering of Fe7S8/FeS2 heterostructure in situ encapsulated into nitrogen-doped carbon nanotubes for high power sodium-ion batteries. Nano-Micro Lett. 15(1), 118 (2023). https://doi.org/10.1007/s40820-023-01082-w
C. Chen, Y. Tian, R. Ren, S. Duan, D. Wang et al., Regulating pores and carbonyl groups of biomass-derived hard carbon for enhanced sodium storage. Adv. Sci. 12(40), e10328 (2025). https://doi.org/10.1002/advs.202510328
M. Li, R. Li, H. Ma, M. Yang, Y. Dai et al., An ultra-stable, high-energy and wide-temperature-range aqueous alkaline sodium-ion battery with the microporous C4N/rGO anode. Nano-Micro Lett. 17(1), 158 (2025). https://doi.org/10.1007/s40820-024-01589-w
L. Wang, B. Liu, Y. Zhu, M. Yang, C. Du et al., General metal–organic framework-derived strategy to synthesize yolk-shell carbon-encapsulated nickelic spheres for sodium-ion batteries. J. Colloid Interface Sci. 613, 23–34 (2022). https://doi.org/10.1016/j.jcis.2021.12.157