Exposing Zn(002) Texture with Sucralose Additive for Stable and Dendrite-Free Aqueous Zinc-Ion Batteries
Corresponding Author: Yucheng Wu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 107
Abstract
Aqueous zinc-ion batteries (AZIBs) are currently confronted with the challenge of achieving long-term cyclic stability under high current densities. This issue is primarily attributed to the excessive growth of dendrites and the occurrence of significant side reactions. Herein, sucralose (SCL), as an electrolyte additive, has been used to promote the exposure of the Zn(002) texture. The introduction of SCL can adjust the Zn2+ nucleation and diffusion along different crystal facets, promoting the exposure of the Zn(002) texture. By substituting water molecules in the [Zn(H2O)6]2+, SCL reconfigures the hydrogen bond network in the electrolyte, reconstructing the solvation structure and suppressing the hydrogen evolution reaction. Consequently, the Zn//Zn symmetric battery exhibits long-term cycling stability of over 4900 h at 1 mA cm−2–1 mAh cm−2. Even at a harsh condition of 30 mA cm−2–30 mAh cm−2 (DOD = 73.3%), it can stably cycle for 171 h. The CE of the Zn//Cu half battery reaches 99.61% at 0.2 mA cm−2 with 0.2 mAh cm−2. Employing the optimized electrolyte, after 500 cycles, a high specific capacity of 420 mAh g−1 can be retained for the NH4V4O10//Zn full battery at 500 mA g−1, corresponding to a capacity retention of 90.7%.
Highlights:
1 Sucralose (SCL) has been unveiled as an electrolyte additive to promote the exposure of the Zn(002) texture.
2 SCL has been verified to disrupt the solvation structure around zinc ions and reduce water activity on Zn anode.
3 After adding SCL additives, Zn//Zn battery achieves the cycling lifespan of 171 h at 30 mA cm−2–30 mAh cm−2 (DOD = 73.3%). Zn//Cu battery achieves a high Coulombic efficiency of 99.61% at 0.2 mA cm−2 with 0.2 mAh cm−2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Yi, H. Fu, A.M. Rao, Y. Zhang, J. Zhou et al., Safe electrolyte for long-cycling alkali-ion batteries. Nat. Sustain. 7(3), 326–337 (2024). https://doi.org/10.1038/s41893-024-01275-0
- Z. Hu, J. Hao, D. Shen, C. Gao, Z. Liu et al., Electro-spraying/spinning: a novel battery manufacturing technology. Green Energy Environ. 9(1), 81–88 (2024). https://doi.org/10.1016/j.gee.2022.05.004
- Z. Li, Y. Ren, L. Mo, C. Liu, K. Hsu et al., Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 14(5), 5581–5589 (2020). https://doi.org/10.1021/acsnano.9b09963
- Z. Wu, F. Ye, Q. Liu, R. Pang, Y. Liu et al., Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage. Adv. Energy Mater. 12(23), 2200654 (2022). https://doi.org/10.1002/aenm.202200654
- H. Niu, H. Liu, L. Yang, T. Kang, T. Shen et al., Impacts of distorted local chemical coordination on electrochemical performance in hydrated vanadium pentoxide. Nat. Commun. 15(1), 9421 (2024). https://doi.org/10.1038/s41467-024-53785-2
- Q. Zong, Y. Zhuang, C. Liu, Q. Kang, Y. Wu et al., Dual effects of metal and organic ions co-intercalation boosting the kinetics and stability of hydrated vanadate cathodes for aqueous zinc-ion batteries. Adv. Energy Mater. 13(31), 2301480 (2023). https://doi.org/10.1002/aenm.202301480
- H. Tian, G. Feng, Q. Wang, Z. Li, W. Zhang et al., Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes. Nat. Commun. 13(1), 7922 (2022). https://doi.org/10.1038/s41467-022-35618-2
- Y. Zhu, H. Li, X. Sun, A. Chen, R. Hou et al., Minimizing Zn loss through dual regulation for reversible zinc anode beyond 90% utilization ratio. Small 21(10), 2411986 (2025). https://doi.org/10.1002/smll.202411986
- K. Guan, W. Chen, Y. Yang, F. Ye, Y. Hong et al., A dual salt/dual solvent electrolyte enables ultrahigh utilization of zinc metal anode for aqueous batteries. Adv. Mater. 36(38), 2405889 (2024). https://doi.org/10.1002/adma.202405889
- Y. Gao, N. Yang, F. Bu, Q. Cao, J. Pu et al., Double-sided engineering for space-confined reversible Zn anodes. Energy Environ. Sci. 17(5), 1894–1903 (2024). https://doi.org/10.1039/d3ee04292h
- R. Wang, Y. Jia, Z. Kong, W. Wang, Y. Hu et al., Stabilization strategies for zinc anode interfaces under high discharge depth. J. Energy Storage 105, 114642 (2025). https://doi.org/10.1016/j.est.2024.114642
- S. Chen, K. Ouyang, Y. Liu, M. Cui, G. Pu et al., Non-epitaxial electrodeposition of overall 99 % (002) plane achieves extreme and direct utilization of 95% Zn anode and by-product as cathode. Angew. Chem. Int. Ed. 63(42), e202409303 (2024). https://doi.org/10.1002/anie.202409303
- S.D. Pu, B. Hu, Z. Li, Y. Yuan, C. Gong et al., Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries. Joule 7(2), 366–379 (2023). https://doi.org/10.1016/j.joule.2023.01.010
- Z. Huang, Z. Li, Y. Wang, J. Cong, X. Wu et al., Regulating Zn(002) deposition toward long cycle life for Zn metal batteries. ACS Energy Lett. 8(1), 372–380 (2023). https://doi.org/10.1021/acsenergylett.2c02359
- X. Li, Z. Chen, P. Ruan, X. Hu, B. Lu et al., Inducing preferential growth of the Zn (002) plane by using a multifunctional chelator for achieving highly reversible Zn anodes. Nanoscale 16(6), 2923–2930 (2024). https://doi.org/10.1039/d3nr05699f
- W. Xie, K. Zhu, W. Jiang, H. Yang, M. Ma et al., Highly 002-oriented dendrite-free anode achieved by enhanced interfacial electrostatic adsorption for aqueous zinc-ion batteries. ACS Nano 18(32), 21184–21197 (2024). https://doi.org/10.1021/acsnano.4c04181
- X. Chen, Z. Zhai, T. Yu, X. Liang, R. Huang et al., Constructing a 3D zinc anode exposing the Zn(002) plane for ultralong life zinc-ion batteries. Small 20(35), 2401386 (2024). https://doi.org/10.1002/smll.202401386
- Q. Zong, B. Lv, Y. Yu, Q. Zhang, S. Zhou et al., Close-packed growth and buffer action enabling stable and reversible Zn anode. Nano Energy 136, 110725 (2025). https://doi.org/10.1016/j.nanoen.2025.110725
- Y. Li, X. Ma, X. Zhang, F. Zhang, Q. Wang et al., High Zn(002)-preferential orientation enabled by a proton additive for dendrite-free zinc anodes. Energy Environ. Sci. 17(23), 9205–9214 (2024). https://doi.org/10.1039/D4EE03276D
- X. Song, L. Bai, C. Wang, D. Wang, K. Xu et al., Synergistic cooperation of Zn(002) texture and amorphous zinc phosphate for dendrite-free Zn anodes. ACS Nano 17(15), 15113–15124 (2023). https://doi.org/10.1021/acsnano.3c04343
- W. Yuan, X. Nie, G. Ma, M. Liu, Y. Wang et al., Realizing textured zinc metal anodes through regulating electrodeposition current for aqueous zinc batteries. Angew. Chem. Int. Ed. 62(10), e202218386 (2023). https://doi.org/10.1002/anie.202218386
- T.C. Li, C. Lin, M. Luo, P. Wang, D.-S. Li et al., Interfacial molecule engineering for reversible Zn electrochemistry. ACS Energy Lett. 8(8), 3258–3268 (2023). https://doi.org/10.1021/acsenergylett.3c00859
- Y. Xiong, W. Teng, Z. Zhao, S. Xu, Y. Ma et al., Effective control of the solution environment in aqueous Zinc-ion batteries for promoting (002)-textured zinc growth by a bio-electrolyte additive. Energy Storage Mater. 74, 103959 (2025). https://doi.org/10.1016/j.ensm.2024.103959
- T. Xue, Y. Mu, Z. Zhang, J. Guan, J. Qiu et al., Enhanced zinc deposition and dendrite suppression in aqueous zinc-ion batteries via citric acid-aspartame electrolyte additives. Adv. Energy Mater. 15(26), 2500674 (2025). https://doi.org/10.1002/aenm.202500674
- Y. Ding, L. Yin, T. Du, Y. Wang, Z. He et al., A trifunctional electrolyte enables aqueous zinc ion batteries with long cycling performance. Adv. Funct. Mater. 34(30), 2314388 (2024). https://doi.org/10.1002/adfm.202314388
- T. Wei, Y. Peng, L. Mo, S. Chen, R. Ghadari et al., Modulated bonding interaction in propanediol electrolytes toward stable aqueous zinc-ion batteries. Sci. China Mater. 65(5), 1156–1164 (2022). https://doi.org/10.1007/s40843-021-1841-5
- C. Ji, Y. Luo, G. Guo, X. Li, C. Sun et al., Regulating the inner Helmholtz plane with an electrophilic cation additive enabled stacked stratiform growth for highly reversible Zn anodes. Energy Storage Mater. 71, 103615 (2024). https://doi.org/10.1016/j.ensm.2024.103615
- D. Luo, Z. Zhang, R. Sun, J. Ma, Z. Li et al., Environmentally friendly additives for crystal surface modulation and suppression of dendrites for aqueous zinc-ion batteries. J. Energy Storage 87, 111375 (2024). https://doi.org/10.1016/j.est.2024.111375
- X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao et al., Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc ion battery. Nano Micro Lett. 16(1), 270 (2024). https://doi.org/10.1007/s40820-024-01475-5
- X. Zhu, Y. Wang, Y. Peng, H. Zhang, X. Zhang et al., Supramolecular interface buffer layer for stable zinc anode. Small Methods 9(7), 2401865 (2025). https://doi.org/10.1002/smtd.202401865
- C. Fan, W. Meng, J. Han, T. Li, D. Zuo et al., Self-regulating shielding layer induces (002) plane directional deposition of zinc metal anode. Energy Storage Mater. 71, 103554 (2024). https://doi.org/10.1016/j.ensm.2024.103554
- P. Wang, Y. Zhong, J. Wang, H. Zhou, G. Sun et al., Boosting the anode and cathode stability simultaneously by interfacial engineering via electrolyte solvation structure regulation toward practical aqueous Zn-ion battery. Adv. Funct. Mater. 35(5), 2414563 (2025). https://doi.org/10.1002/adfm.202414563
- J. Chen, S. Bai, X. Zhang, J. Qiu, Z. Liu et al., Self-adsorbing electrolyte additive promoting Zn(002) deposition on Zn anode for aqueous zinc-ion battery. J. Colloid Interface Sci. 696, 137870 (2025). https://doi.org/10.1016/j.jcis.2025.137870
- F. Wu, J. Zhang, L. Ma, P. Ruan, Y. Chen et al., Directing Zn growth with biased adsorption of straight-chain molecules for superior Zn anode stability. Angew. Chem. Int. Ed. 64(11), e202421787 (2025). https://doi.org/10.1002/anie.202421787
- J. Wan, R. Wang, Z. Liu, L. Zhang, F. Liang et al., A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries. ACS Nano 17(2), 1610–1621 (2023). https://doi.org/10.1021/acsnano.2c11357
- Y. Wang, L.-E. Mo, X. Zhang, Y. Ren, T. Wei et al., Regulating water activity for all-climate aqueous zinc-ion batteries. Adv. Energy Mater. 14(33), 2402041 (2024). https://doi.org/10.1002/aenm.202402041
- Q. Zhao, W. Liu, X. Ni, H. Yu, C. Zhang et al., Steering interfacial renovation with highly electronegative Cl modulated trinity effect for exceptional durable zinc anode. Adv. Funct. Mater. 34(41), 2404219 (2024). https://doi.org/10.1002/adfm.202404219
- X. Chen, S. Li, K. Wang, H. Zhao, G. He et al., Halogenated solvation structure and preferred Zn (002) deposition via trace additive towards high reversibility for aqueous zinc-ion batteries. Energy Storage Mater. 73, 103869 (2024). https://doi.org/10.1016/j.ensm.2024.103869
- Y. Qin, H. Li, C. Han, F. Mo, X. Wang, Chemical welding of the electrode–electrolyte interface by Zn-metal-initiated in situ gelation for ultralong-life Zn-ion batteries. Adv. Mater. 34(44), 2207118 (2022). https://doi.org/10.1002/adma.202207118
- H. Zhang, Y. Zhong, J. Li, Y. Liao, J. Zeng et al., Inducing the preferential growth of Zn (002) plane for long cycle aqueous Zn-ion batteries. Adv. Energy Mater. 13(1), 2203254 (2023). https://doi.org/10.1002/aenm.202203254
- T. Wei, Y. Ren, Y. Wang, L.-E. Mo, Z. Li et al., Addition of dioxane in electrolyte promotes (002)-textured zinc growth and suppressed side reactions in zinc-ion batteries. ACS Nano 17(4), 3765–3775 (2023). https://doi.org/10.1021/acsnano.2c11516
- T. Wei, H. Zhang, Y. Ren, L.-E. Mo, Y. He et al., Building near-unity stacked (002) texture for high-stable zinc anode. Adv. Funct. Mater. 34(14), 2312506 (2024). https://doi.org/10.1002/adfm.202312506
- H. Wang, A. Zhou, X. Hu, Z. Song, B. Zhang et al., Facilitating oriented dense deposition: utilizing crystal plane end-capping reagent to construct dendrite-free and highly corrosion-resistant (100) crystal plane zinc anode. Adv. Mater. 36(41), 2407145 (2024). https://doi.org/10.1002/adma.202407145
- M. Liu, W. Yuan, X. Qu, X. Ru, X. Li et al., Superhydrophobic and robust hetero-metal-polymer hybrid interphase enables deep-cycling zinc metal anodes. Energy Environ. Sci. 17(24), 9611–9622 (2024). https://doi.org/10.1039/d4ee04122d
- T. Wei, Y. Ren, Z. Li, X. Zhang, D. Ji et al., Bonding interaction regulation in hydrogel electrolyte enable dendrite-free aqueous zinc-ion batteries from −20 to 60 °C. Chem. Eng. J. 434, 134646 (2022). https://doi.org/10.1016/j.cej.2022.134646
- Z. Jiang, Y. Wang, S. Zhai, C. Liu, A.Q. Zarifzoda et al., Guanidinium chloride as multifunctional electrolyte additives for highly reversible aqueous zinc batteries. Chem. Eng. J. 504, 158924 (2025). https://doi.org/10.1016/j.cej.2024.158924
- H. Jiang, L. Tang, Y. Fu, S. Wang, S.K. Sandstrom et al., Chloride electrolyte enabled practical zinc metal battery with a near-unity coulombic efficiency. Nat. Sustain. 6(7), 806–815 (2023). https://doi.org/10.1038/s41893-023-01092-x
References
X. Yi, H. Fu, A.M. Rao, Y. Zhang, J. Zhou et al., Safe electrolyte for long-cycling alkali-ion batteries. Nat. Sustain. 7(3), 326–337 (2024). https://doi.org/10.1038/s41893-024-01275-0
Z. Hu, J. Hao, D. Shen, C. Gao, Z. Liu et al., Electro-spraying/spinning: a novel battery manufacturing technology. Green Energy Environ. 9(1), 81–88 (2024). https://doi.org/10.1016/j.gee.2022.05.004
Z. Li, Y. Ren, L. Mo, C. Liu, K. Hsu et al., Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 14(5), 5581–5589 (2020). https://doi.org/10.1021/acsnano.9b09963
Z. Wu, F. Ye, Q. Liu, R. Pang, Y. Liu et al., Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage. Adv. Energy Mater. 12(23), 2200654 (2022). https://doi.org/10.1002/aenm.202200654
H. Niu, H. Liu, L. Yang, T. Kang, T. Shen et al., Impacts of distorted local chemical coordination on electrochemical performance in hydrated vanadium pentoxide. Nat. Commun. 15(1), 9421 (2024). https://doi.org/10.1038/s41467-024-53785-2
Q. Zong, Y. Zhuang, C. Liu, Q. Kang, Y. Wu et al., Dual effects of metal and organic ions co-intercalation boosting the kinetics and stability of hydrated vanadate cathodes for aqueous zinc-ion batteries. Adv. Energy Mater. 13(31), 2301480 (2023). https://doi.org/10.1002/aenm.202301480
H. Tian, G. Feng, Q. Wang, Z. Li, W. Zhang et al., Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes. Nat. Commun. 13(1), 7922 (2022). https://doi.org/10.1038/s41467-022-35618-2
Y. Zhu, H. Li, X. Sun, A. Chen, R. Hou et al., Minimizing Zn loss through dual regulation for reversible zinc anode beyond 90% utilization ratio. Small 21(10), 2411986 (2025). https://doi.org/10.1002/smll.202411986
K. Guan, W. Chen, Y. Yang, F. Ye, Y. Hong et al., A dual salt/dual solvent electrolyte enables ultrahigh utilization of zinc metal anode for aqueous batteries. Adv. Mater. 36(38), 2405889 (2024). https://doi.org/10.1002/adma.202405889
Y. Gao, N. Yang, F. Bu, Q. Cao, J. Pu et al., Double-sided engineering for space-confined reversible Zn anodes. Energy Environ. Sci. 17(5), 1894–1903 (2024). https://doi.org/10.1039/d3ee04292h
R. Wang, Y. Jia, Z. Kong, W. Wang, Y. Hu et al., Stabilization strategies for zinc anode interfaces under high discharge depth. J. Energy Storage 105, 114642 (2025). https://doi.org/10.1016/j.est.2024.114642
S. Chen, K. Ouyang, Y. Liu, M. Cui, G. Pu et al., Non-epitaxial electrodeposition of overall 99 % (002) plane achieves extreme and direct utilization of 95% Zn anode and by-product as cathode. Angew. Chem. Int. Ed. 63(42), e202409303 (2024). https://doi.org/10.1002/anie.202409303
S.D. Pu, B. Hu, Z. Li, Y. Yuan, C. Gong et al., Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries. Joule 7(2), 366–379 (2023). https://doi.org/10.1016/j.joule.2023.01.010
Z. Huang, Z. Li, Y. Wang, J. Cong, X. Wu et al., Regulating Zn(002) deposition toward long cycle life for Zn metal batteries. ACS Energy Lett. 8(1), 372–380 (2023). https://doi.org/10.1021/acsenergylett.2c02359
X. Li, Z. Chen, P. Ruan, X. Hu, B. Lu et al., Inducing preferential growth of the Zn (002) plane by using a multifunctional chelator for achieving highly reversible Zn anodes. Nanoscale 16(6), 2923–2930 (2024). https://doi.org/10.1039/d3nr05699f
W. Xie, K. Zhu, W. Jiang, H. Yang, M. Ma et al., Highly 002-oriented dendrite-free anode achieved by enhanced interfacial electrostatic adsorption for aqueous zinc-ion batteries. ACS Nano 18(32), 21184–21197 (2024). https://doi.org/10.1021/acsnano.4c04181
X. Chen, Z. Zhai, T. Yu, X. Liang, R. Huang et al., Constructing a 3D zinc anode exposing the Zn(002) plane for ultralong life zinc-ion batteries. Small 20(35), 2401386 (2024). https://doi.org/10.1002/smll.202401386
Q. Zong, B. Lv, Y. Yu, Q. Zhang, S. Zhou et al., Close-packed growth and buffer action enabling stable and reversible Zn anode. Nano Energy 136, 110725 (2025). https://doi.org/10.1016/j.nanoen.2025.110725
Y. Li, X. Ma, X. Zhang, F. Zhang, Q. Wang et al., High Zn(002)-preferential orientation enabled by a proton additive for dendrite-free zinc anodes. Energy Environ. Sci. 17(23), 9205–9214 (2024). https://doi.org/10.1039/D4EE03276D
X. Song, L. Bai, C. Wang, D. Wang, K. Xu et al., Synergistic cooperation of Zn(002) texture and amorphous zinc phosphate for dendrite-free Zn anodes. ACS Nano 17(15), 15113–15124 (2023). https://doi.org/10.1021/acsnano.3c04343
W. Yuan, X. Nie, G. Ma, M. Liu, Y. Wang et al., Realizing textured zinc metal anodes through regulating electrodeposition current for aqueous zinc batteries. Angew. Chem. Int. Ed. 62(10), e202218386 (2023). https://doi.org/10.1002/anie.202218386
T.C. Li, C. Lin, M. Luo, P. Wang, D.-S. Li et al., Interfacial molecule engineering for reversible Zn electrochemistry. ACS Energy Lett. 8(8), 3258–3268 (2023). https://doi.org/10.1021/acsenergylett.3c00859
Y. Xiong, W. Teng, Z. Zhao, S. Xu, Y. Ma et al., Effective control of the solution environment in aqueous Zinc-ion batteries for promoting (002)-textured zinc growth by a bio-electrolyte additive. Energy Storage Mater. 74, 103959 (2025). https://doi.org/10.1016/j.ensm.2024.103959
T. Xue, Y. Mu, Z. Zhang, J. Guan, J. Qiu et al., Enhanced zinc deposition and dendrite suppression in aqueous zinc-ion batteries via citric acid-aspartame electrolyte additives. Adv. Energy Mater. 15(26), 2500674 (2025). https://doi.org/10.1002/aenm.202500674
Y. Ding, L. Yin, T. Du, Y. Wang, Z. He et al., A trifunctional electrolyte enables aqueous zinc ion batteries with long cycling performance. Adv. Funct. Mater. 34(30), 2314388 (2024). https://doi.org/10.1002/adfm.202314388
T. Wei, Y. Peng, L. Mo, S. Chen, R. Ghadari et al., Modulated bonding interaction in propanediol electrolytes toward stable aqueous zinc-ion batteries. Sci. China Mater. 65(5), 1156–1164 (2022). https://doi.org/10.1007/s40843-021-1841-5
C. Ji, Y. Luo, G. Guo, X. Li, C. Sun et al., Regulating the inner Helmholtz plane with an electrophilic cation additive enabled stacked stratiform growth for highly reversible Zn anodes. Energy Storage Mater. 71, 103615 (2024). https://doi.org/10.1016/j.ensm.2024.103615
D. Luo, Z. Zhang, R. Sun, J. Ma, Z. Li et al., Environmentally friendly additives for crystal surface modulation and suppression of dendrites for aqueous zinc-ion batteries. J. Energy Storage 87, 111375 (2024). https://doi.org/10.1016/j.est.2024.111375
X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao et al., Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc ion battery. Nano Micro Lett. 16(1), 270 (2024). https://doi.org/10.1007/s40820-024-01475-5
X. Zhu, Y. Wang, Y. Peng, H. Zhang, X. Zhang et al., Supramolecular interface buffer layer for stable zinc anode. Small Methods 9(7), 2401865 (2025). https://doi.org/10.1002/smtd.202401865
C. Fan, W. Meng, J. Han, T. Li, D. Zuo et al., Self-regulating shielding layer induces (002) plane directional deposition of zinc metal anode. Energy Storage Mater. 71, 103554 (2024). https://doi.org/10.1016/j.ensm.2024.103554
P. Wang, Y. Zhong, J. Wang, H. Zhou, G. Sun et al., Boosting the anode and cathode stability simultaneously by interfacial engineering via electrolyte solvation structure regulation toward practical aqueous Zn-ion battery. Adv. Funct. Mater. 35(5), 2414563 (2025). https://doi.org/10.1002/adfm.202414563
J. Chen, S. Bai, X. Zhang, J. Qiu, Z. Liu et al., Self-adsorbing electrolyte additive promoting Zn(002) deposition on Zn anode for aqueous zinc-ion battery. J. Colloid Interface Sci. 696, 137870 (2025). https://doi.org/10.1016/j.jcis.2025.137870
F. Wu, J. Zhang, L. Ma, P. Ruan, Y. Chen et al., Directing Zn growth with biased adsorption of straight-chain molecules for superior Zn anode stability. Angew. Chem. Int. Ed. 64(11), e202421787 (2025). https://doi.org/10.1002/anie.202421787
J. Wan, R. Wang, Z. Liu, L. Zhang, F. Liang et al., A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries. ACS Nano 17(2), 1610–1621 (2023). https://doi.org/10.1021/acsnano.2c11357
Y. Wang, L.-E. Mo, X. Zhang, Y. Ren, T. Wei et al., Regulating water activity for all-climate aqueous zinc-ion batteries. Adv. Energy Mater. 14(33), 2402041 (2024). https://doi.org/10.1002/aenm.202402041
Q. Zhao, W. Liu, X. Ni, H. Yu, C. Zhang et al., Steering interfacial renovation with highly electronegative Cl modulated trinity effect for exceptional durable zinc anode. Adv. Funct. Mater. 34(41), 2404219 (2024). https://doi.org/10.1002/adfm.202404219
X. Chen, S. Li, K. Wang, H. Zhao, G. He et al., Halogenated solvation structure and preferred Zn (002) deposition via trace additive towards high reversibility for aqueous zinc-ion batteries. Energy Storage Mater. 73, 103869 (2024). https://doi.org/10.1016/j.ensm.2024.103869
Y. Qin, H. Li, C. Han, F. Mo, X. Wang, Chemical welding of the electrode–electrolyte interface by Zn-metal-initiated in situ gelation for ultralong-life Zn-ion batteries. Adv. Mater. 34(44), 2207118 (2022). https://doi.org/10.1002/adma.202207118
H. Zhang, Y. Zhong, J. Li, Y. Liao, J. Zeng et al., Inducing the preferential growth of Zn (002) plane for long cycle aqueous Zn-ion batteries. Adv. Energy Mater. 13(1), 2203254 (2023). https://doi.org/10.1002/aenm.202203254
T. Wei, Y. Ren, Y. Wang, L.-E. Mo, Z. Li et al., Addition of dioxane in electrolyte promotes (002)-textured zinc growth and suppressed side reactions in zinc-ion batteries. ACS Nano 17(4), 3765–3775 (2023). https://doi.org/10.1021/acsnano.2c11516
T. Wei, H. Zhang, Y. Ren, L.-E. Mo, Y. He et al., Building near-unity stacked (002) texture for high-stable zinc anode. Adv. Funct. Mater. 34(14), 2312506 (2024). https://doi.org/10.1002/adfm.202312506
H. Wang, A. Zhou, X. Hu, Z. Song, B. Zhang et al., Facilitating oriented dense deposition: utilizing crystal plane end-capping reagent to construct dendrite-free and highly corrosion-resistant (100) crystal plane zinc anode. Adv. Mater. 36(41), 2407145 (2024). https://doi.org/10.1002/adma.202407145
M. Liu, W. Yuan, X. Qu, X. Ru, X. Li et al., Superhydrophobic and robust hetero-metal-polymer hybrid interphase enables deep-cycling zinc metal anodes. Energy Environ. Sci. 17(24), 9611–9622 (2024). https://doi.org/10.1039/d4ee04122d
T. Wei, Y. Ren, Z. Li, X. Zhang, D. Ji et al., Bonding interaction regulation in hydrogel electrolyte enable dendrite-free aqueous zinc-ion batteries from −20 to 60 °C. Chem. Eng. J. 434, 134646 (2022). https://doi.org/10.1016/j.cej.2022.134646
Z. Jiang, Y. Wang, S. Zhai, C. Liu, A.Q. Zarifzoda et al., Guanidinium chloride as multifunctional electrolyte additives for highly reversible aqueous zinc batteries. Chem. Eng. J. 504, 158924 (2025). https://doi.org/10.1016/j.cej.2024.158924
H. Jiang, L. Tang, Y. Fu, S. Wang, S.K. Sandstrom et al., Chloride electrolyte enabled practical zinc metal battery with a near-unity coulombic efficiency. Nat. Sustain. 6(7), 806–815 (2023). https://doi.org/10.1038/s41893-023-01092-x