Bioinspired Injection Therapy for Spent LiFePO4 Batteries: A Non-Invasive Strategy for Capacity Regeneration and Longevity Enhancement
Corresponding Author: Xiaodong Shi
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 245
Abstract
The widespread deployment of lithium iron phosphate (LiFePO4, LFP) batteries has intensified the imperative to address the disposal challenges associated with retired LFP batteries, given their rapidly growing volumes. However, existing regeneration techniques remain constrained by their inherent complexity, high energy demands, and limited scalability, posing significant barriers to achieving efficient and economically viable solutions. Herein, inspired by medical injection therapy, a novel, non-invasive strategy for direct capacity rejuvenation is proposed by injecting recovery reagents into spent LFP batteries, circumventing the need for disassembly. This innovative approach leverages the I3−/I− redox couple to activate residual/dead lithium on the graphite anode and selectively re-engineer the solid electrolyte interphase (SEI), preserving its functional components while optimizing interfacial dynamics. The restored lithium from the anode serves as an intrinsic source to replenish lithium deficits and rectify Li–Fe antisite defects within the degraded LFP cathode. The resulting regenerated pouch cells demonstrate remarkable recovery of electrochemical capacity, accompanied by superior kinetics performance and significantly extended cycle life. This pioneering strategy not only delivers an energy-efficient and cost-effective pathway for LFP battery regeneration but also holds transformative potential to redefine sustainable practices in lithium-ion battery reuse, thereby advancing their practical applications and prolonging their service life.
Highlights:
1 An effective and facile injection strategy based on iodine redox chemistry is proposed to restore lost lithium component in spent LiFePO4 battery.
2 In-situ spectroscopic characterization is conducted to unveil the underlying redox mechanism of iodine-mediated lithium reactivation, elucidating its impact on both the cathode and anode.
3 Regenerated LiFePO4 cells exhibit ~ 7% capacity recovery, fast charge transfer behavior, and extended cycle life beyond 300 cycles at 1C, outperforming conventional direct recycling methods while maintaining superior cyclic stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang et al., Sustainable recycling technology for Li–ion batteries and beyond: challenges and future prospects. Chem. Rev. 120(14), 7020–7063 (2020). https://doi.org/10.1021/acs.chemrev.9b00535
- X.-G. Yang, T. Liu, C.-Y. Wang, Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat. Energy 6(2), 176–185 (2021). https://doi.org/10.1038/s41560-020-00757-7
- J. Xu, W.-L. Wong, H. Du, Y. Kang, Y. Zhao et al., Upcycling the cathodes of spent lithium ion batteries into high-performance cathodes. Nano Res. Energy 4(3), e9120174 (2025). https://doi.org/10.26599/nre.2025.9120174
- J. Li, Z.-F. Ma, Past and present of LiFePO4: from fundamental research to industrial applications. Chem 5(1), 3–6 (2019). https://doi.org/10.1016/j.chempr.2018.12.012
- Z. Lin, K. Fan, T. Liu, Z. Xu, G. Chen et al., Mitigating lattice distortion of high-voltage LiCoO2 via core-shell structure induced by cationic heterogeneous co-doping for lithium-ion batteries. Nano-Micro Lett. 16(1), 48 (2023). https://doi.org/10.1007/s40820-023-01269-1
- F. Yang, X. Chen, G. Qu, Q. Nie, G. Liu et al., Electrode separation via water electrolysis for sustainable battery recycling. Nat. Sustain. 8, 520–529 (2025). https://doi.org/10.1038/s41893-025-01539-3
- G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater et al., Recycling lithium-ion batteries from electric vehicles. Nature 575(7781), 75–86 (2019). https://doi.org/10.1038/s41586-019-1682-5
- Z. Liang, C. Cai, G. Peng, J. Hu, H. Hou et al., Hydrometallurgical recovery of spent lithium ion batteries: environmental strategies and sustainability evaluation. ACS Sustain. Chem. Eng. 9(17), 5750–5767 (2021). https://doi.org/10.1021/acssuschemeng.1c00942
- A. Zhu, X. Bian, W. Han, Y. Wen, K. Ye et al., Microwave-ultra-fast recovery of valuable metals from spent lithium-ion batteries by deep eutectic solvents. Waste Manag. 156, 139–147 (2023). https://doi.org/10.1016/j.wasman.2022.11.035
- D. Yang, Z. Fang, Y. Ji, Y. Yang, J. Hou et al., A room-temperature lithium-restocking strategy for the direct reuse of degraded LiFePO4 electrodes. Angew. Chem. Int. Ed. 63(49), e202409929 (2024). https://doi.org/10.1002/anie.202409929
- T. Wang, H. Luo, Y. Bai, J. Li, I. Belharouak et al., Direct recycling of spent NCM cathodes through ionothermal lithiation. Adv. Energy Mater. 10(30), 2001204 (2020). https://doi.org/10.1002/aenm.202001204
- Y. Shi, M. Zhang, Y.S. Meng, Z. Chen, Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0 < x < 1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes. Adv. Energy Mater. 9(20), 1900454 (2019). https://doi.org/10.1002/aenm.201900454
- J. Wang, H. Ji, J. Li, Z. Liang, W. Chen et al., Direct recycling of spent cathode material at ambient conditions via spontaneous lithiation. Nat. Sustain. 7(10), 1283–1293 (2024). https://doi.org/10.1038/s41893-024-01412-9
- M.R. Palacín, Understanding ageing in Li–ion batteries: a chemical issue. Chem. Soc. Rev. 47(13), 4924–4933 (2018). https://doi.org/10.1039/c7cs00889a
- J.S. Edge, S. O’Kane, R. Prosser, N.D. Kirkaldy, A.N. Patel et al., Lithium ion battery degradation: what you need to know. Phys. Chem. Chem. Phys. 23(14), 8200–8221 (2021). https://doi.org/10.1039/D1CP00359C
- Y.-Y. Wang, X.-Q. Zhang, M.-Y. Zhou, J.-Q. Huang, Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Res. Energy 2, e9120046 (2023). https://doi.org/10.26599/nre.2023.9120046
- F. Liu, R. Xu, Y. Wu, D.T. Boyle, A. Yang et al., Dynamic spatial progression of isolated lithium during battery operations. Nature 600(7890), 659–663 (2021). https://doi.org/10.1038/s41586-021-04168-w
- M. Zheng, T. Liu, J. Wu, X. Tao, Z. Li et al., Voltage-induced bromide redox enables capacity restoration of fast-charging batteries. Adv. Mater. 37(7), e2414207 (2025). https://doi.org/10.1002/adma.202414207
- C.-J. Huang, B. Thirumalraj, H.-C. Tao, K.N. Shitaw, H. Sutiono et al., Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nat. Commun. 12(1), 1452 (2021). https://doi.org/10.1038/s41467-021-21683-6
- C.R. Birkl, M.R. Roberts, E. McTurk, P.G. Bruce, D.A. Howey, Degradation diagnostics for lithium ion cells. J. Power. Sources 341, 373–386 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.011
- S. Chen, G. Wu, H. Jiang, J. Wang, T. Chen et al., External Li supply reshapes Li deficiency and lifetime limit of batteries. Nature 638(8051), 676–683 (2025). https://doi.org/10.1038/s41586-024-08465-y
- J. Lin, X. Chen, E. Fan, X. Zhang, R. Chen et al., A green repair pathway for spent spinel cathode material: coupled mechanochemistry and solid-phase reactions. eScience 3(3), 100110 (2023). https://doi.org/10.1016/j.esci.2023.100110
- K.-Y. Park, I. Park, H. Kim, H.-D. Lim, J. Hong et al., Anti-site reordering in LiFePO4: defect annihilation on charge carrier injection. Chem. Mater. 26(18), 5345–5351 (2014). https://doi.org/10.1021/cm502432q
- K. Jia, J. Ma, J. Wang, Z. Liang, G. Ji et al., Long-life regenerated LiFePO4 from spent cathode by elevating the d-band center of Fe. Adv. Mater. 35(5), e2208034 (2023). https://doi.org/10.1002/adma.202208034
- M. Fan, Q. Meng, X. Chang, C.-F. Gu, X.-H. Meng et al., In situ electrochemical regeneration of degraded LiFePO4 electrode with functionalized prelithiation separator. Adv. Energy Mater. 12(18), 2103630 (2022). https://doi.org/10.1002/aenm.202103630
- N. Ogihara, K. Nagaya, H. Yamaguchi, Y. Kondo, Y. Yamada et al., Direct capacity regeneration for spent Li–ion batteries. Joule 8(5), 1364–1379 (2024). https://doi.org/10.1016/j.joule.2024.02.010
- S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016). https://doi.org/10.1016/j.carbon.2016.04.008
- B. Markey, M. Zhang, I. Robb, P. Xu, H. Gao et al., Effective upcycling of graphite anode: healing and doping enabled direct regeneration. J. Electrochem. Soc. 167(16), 160511 (2020). https://doi.org/10.1149/1945-7111/abcc2f
- W. Zhang, P. Sayavong, X. Xiao, S.T. Oyakhire, S.B. Shuchi et al., Recovery of isolated lithium through discharged state calendar ageing. Nature 626(7998), 306–312 (2024). https://doi.org/10.1038/s41586-023-06992-8
- Y. Kong, L. Yuan, Y. Liao, Y. Shao, S. Hao et al., Efficient separation and selective Li recycling of spent LiFePO4 cathode. Energy Mater. 3(6), 300053 (2023). https://doi.org/10.20517/energymater.2023.57
- M. Huang, M. Wang, L. Yang, Z. Wang, H. Yu et al., Direct regeneration of spent lithium-ion battery cathodes: from theoretical study to production practice. Nano-Micro Lett. 16(1), 207 (2024). https://doi.org/10.1007/s40820-024-01434-0
- Y.E. Ejorh, W.H. Ilsley, B.G. Ooi, Elucidating the chemisorption phenomena in SERS studies via computational modeling. Opt. Photonics J. 8(6), 212–234 (2018). https://doi.org/10.4236/opj.2018.86019
- K. Raghavachari, Perspective on “Density functional thermochemistry. III. The role of exact exchange”. In: Theoretical Chemistry Accounts. Springer, (2000). pp. 361–363.https://doi.org/10.1007/978-3-662-10421-7_60
- F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297 (2005). https://doi.org/10.1039/b508541a
- F. Weigend, Accurate coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8(9), 1057–1065 (2006). https://doi.org/10.1039/b515623h
- C. Jin, T. Liu, O. Sheng, M. Li, T. Liu et al., Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6(4), 378–387 (2021). https://doi.org/10.1038/s41560-021-00789-7
- Y. Li, C. Li, F. Hu, W. Yu, H. Dong et al., Direct regeneration of spent LiFePO4 cathode materials through Li+ supplementation and Sm doping. Nano Res. Energy 4(4), e9120190 (2025). https://doi.org/10.26599/nre.2025.9120190
- C.-B. Jin, X.-Q. Zhang, O.-W. Sheng, S.-Y. Sun, L.-P. Hou et al., Reclaiming inactive lithium with a triiodide/iodide redox couple for practical lithium metal batteries. Angew. Chem. Int. Ed. 60(42), 22990–22995 (2021). https://doi.org/10.1002/anie.202110589
- Q. Huang, J. Yang, C.B. Ng, C. Jia, Q. Wang, A redox flow lithium battery based on the redox targeting reactions between LiFePO4 and iodide. Energy Environ. Sci. 9(3), 917–921 (2016). https://doi.org/10.1039/c5ee03764f
- Y. Zhao, L. Wang, H.R. Byon, High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 4, 1896 (2013). https://doi.org/10.1038/ncomms2907
- S. Weng, G. Yang, S. Zhang, X. Liu, X. Zhang et al., Kinetic limits of graphite anode for fast-charging lithium-ion batteries. Nano-Micro Letters 15(1), 215 (2023). https://doi.org/10.1007/s40820-023-01183-6
- Q. Zhao, Y. Lu, Z. Zhu, Z. Tao, J. Chen, Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 15(9), 5982–5987 (2015). https://doi.org/10.1021/acs.nanolett.5b02116
- Y. Ji, H. Zhang, D. Yang, Y. Pan, Z. Zhu et al., Regenerated graphite electrodes with reconstructed solid electrolyte interface and enclosed active lithium toward >100% initial coulombic efficiency. Adv. Mater. 36(19), e2312548 (2024). https://doi.org/10.1002/adma.202312548
- S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson et al., An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60(7), 3661–3671 (2021). https://doi.org/10.1002/anie.202012005
- S. Dong, Y. Song, K. Ye, J. Yan, G. Wang et al., Ultra-fast, low-cost, and green regeneration of graphite anode using flash joule heating method. EcoMat 4(5), e12212 (2022). https://doi.org/10.1002/eom2.12212
- C. Ling, R. Zhang, K. Takechi, F. Mizuno, Intrinsic barrier to electrochemically decompose Li2CO3 and LiOH. J. Phys. Chem. C 118(46), 26591–26598 (2014). https://doi.org/10.1021/jp5093306
- Z. Wen, W. Fang, X. Wu, Z. Qin, H. Kang et al., High-concentration additive and triiodide/iodide redox couple stabilize lithium metal anode and rejuvenate the inactive lithium in carbonate-based electrolyte. Adv. Funct. Mater. 32(35), 2204768 (2022). https://doi.org/10.1002/adfm.202204768
- J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi et al., Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5(5), 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
- L. Dong, Y. Liu, D. Chen, Y. Han, Y. Ji et al., Stabilization of high-voltage lithium metal batteries using a sulfone-based electrolyte with bi-electrode affinity and LiSO2F-rich interphases. Energy Storage Mater. 44, 527–536 (2022). https://doi.org/10.1016/j.ensm.2021.10.045
- L. Dong, S. Zhong, B. Yuan, Y. Li, J. Liu et al., Reconstruction of solid electrolyte interphase with SrI2 reactivates dead Li for durable anode-free Li-metal batteries. Angew. Chem. Int. Ed. 62(23), e202301073 (2023). https://doi.org/10.1002/anie.202301073
- Y. Lin, Z. Wen, J. Liu, D. Wu, P. Zhang et al., Constructing a uniform lithium iodide layer for stabilizing lithium metal anode. J. Energy Chem. 55, 129–135 (2021). https://doi.org/10.1016/j.jechem.2020.07.003
- Q. Zhang, H. Wang, X. Kong, Y. Wu, Y. Mao et al., Tailoring inner Helmholtz layer via the lewis acid–base theory endow an elastic SEI for dendrites-free lithium metal anode. Adv. Energy Mater. 16(1), e04697 (2026). https://doi.org/10.1002/aenm.202504697
- Q. Liu, Y. Li, Y. Su, Y. Fan, F. Hu et al., Challenges and strategic approaches to constructing the full life cycle value chain of layered cathode materials for sodium-ion batteries. Nano Res. Energy 5(1), e9120177 (2026). https://doi.org/10.26599/nre.2025.9120177
- L. Castro, R. Dedryvère, M. El Khalifi, P.-E. Lippens, J. Bréger et al., The spin-polarized electronic structure of LiFePO4 and FePO4 evidenced by in-lab XPS. J. Phys. Chem. C 114(41), 17995–18000 (2010). https://doi.org/10.1021/jp106631v
- Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6(6), 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
- D. Juarez-Robles, A.A. Vyas, C. Fear, J.A. Jeevarajan, P.P. Mukherjee, Overdischarge and aging analytics of Li–ion cells. J. Electrochem. Soc. 167(9), 090558 (2020). https://doi.org/10.1149/1945-7111/aba00a
- J.-A. Lee, H. Kang, S. Kim, K. Lee, J.H. Byun et al., Unveiling degradation mechanisms of anode-free Li-metal batteries. Energy Storage Mater. 73, 103826 (2024). https://doi.org/10.1016/j.ensm.2024.103826
- K.-H. Chen, K.N. Wood, E. Kazyak, W.S. LePage, A.L. Davis et al., Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5(23), 11671–11681 (2017). https://doi.org/10.1039/c7ta00371d
- G. Wang, G. Wang, L. Fei, L. Zhao, H. Zhang, Structural engineering of anode materials for low-temperature lithium-ion batteries: mechanisms, strategies, and prospects. Nano-Micro Lett. 16(1), 150 (2024). https://doi.org/10.1007/s40820-024-01363-y
References
E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang et al., Sustainable recycling technology for Li–ion batteries and beyond: challenges and future prospects. Chem. Rev. 120(14), 7020–7063 (2020). https://doi.org/10.1021/acs.chemrev.9b00535
X.-G. Yang, T. Liu, C.-Y. Wang, Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat. Energy 6(2), 176–185 (2021). https://doi.org/10.1038/s41560-020-00757-7
J. Xu, W.-L. Wong, H. Du, Y. Kang, Y. Zhao et al., Upcycling the cathodes of spent lithium ion batteries into high-performance cathodes. Nano Res. Energy 4(3), e9120174 (2025). https://doi.org/10.26599/nre.2025.9120174
J. Li, Z.-F. Ma, Past and present of LiFePO4: from fundamental research to industrial applications. Chem 5(1), 3–6 (2019). https://doi.org/10.1016/j.chempr.2018.12.012
Z. Lin, K. Fan, T. Liu, Z. Xu, G. Chen et al., Mitigating lattice distortion of high-voltage LiCoO2 via core-shell structure induced by cationic heterogeneous co-doping for lithium-ion batteries. Nano-Micro Lett. 16(1), 48 (2023). https://doi.org/10.1007/s40820-023-01269-1
F. Yang, X. Chen, G. Qu, Q. Nie, G. Liu et al., Electrode separation via water electrolysis for sustainable battery recycling. Nat. Sustain. 8, 520–529 (2025). https://doi.org/10.1038/s41893-025-01539-3
G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater et al., Recycling lithium-ion batteries from electric vehicles. Nature 575(7781), 75–86 (2019). https://doi.org/10.1038/s41586-019-1682-5
Z. Liang, C. Cai, G. Peng, J. Hu, H. Hou et al., Hydrometallurgical recovery of spent lithium ion batteries: environmental strategies and sustainability evaluation. ACS Sustain. Chem. Eng. 9(17), 5750–5767 (2021). https://doi.org/10.1021/acssuschemeng.1c00942
A. Zhu, X. Bian, W. Han, Y. Wen, K. Ye et al., Microwave-ultra-fast recovery of valuable metals from spent lithium-ion batteries by deep eutectic solvents. Waste Manag. 156, 139–147 (2023). https://doi.org/10.1016/j.wasman.2022.11.035
D. Yang, Z. Fang, Y. Ji, Y. Yang, J. Hou et al., A room-temperature lithium-restocking strategy for the direct reuse of degraded LiFePO4 electrodes. Angew. Chem. Int. Ed. 63(49), e202409929 (2024). https://doi.org/10.1002/anie.202409929
T. Wang, H. Luo, Y. Bai, J. Li, I. Belharouak et al., Direct recycling of spent NCM cathodes through ionothermal lithiation. Adv. Energy Mater. 10(30), 2001204 (2020). https://doi.org/10.1002/aenm.202001204
Y. Shi, M. Zhang, Y.S. Meng, Z. Chen, Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0 < x < 1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes. Adv. Energy Mater. 9(20), 1900454 (2019). https://doi.org/10.1002/aenm.201900454
J. Wang, H. Ji, J. Li, Z. Liang, W. Chen et al., Direct recycling of spent cathode material at ambient conditions via spontaneous lithiation. Nat. Sustain. 7(10), 1283–1293 (2024). https://doi.org/10.1038/s41893-024-01412-9
M.R. Palacín, Understanding ageing in Li–ion batteries: a chemical issue. Chem. Soc. Rev. 47(13), 4924–4933 (2018). https://doi.org/10.1039/c7cs00889a
J.S. Edge, S. O’Kane, R. Prosser, N.D. Kirkaldy, A.N. Patel et al., Lithium ion battery degradation: what you need to know. Phys. Chem. Chem. Phys. 23(14), 8200–8221 (2021). https://doi.org/10.1039/D1CP00359C
Y.-Y. Wang, X.-Q. Zhang, M.-Y. Zhou, J.-Q. Huang, Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Res. Energy 2, e9120046 (2023). https://doi.org/10.26599/nre.2023.9120046
F. Liu, R. Xu, Y. Wu, D.T. Boyle, A. Yang et al., Dynamic spatial progression of isolated lithium during battery operations. Nature 600(7890), 659–663 (2021). https://doi.org/10.1038/s41586-021-04168-w
M. Zheng, T. Liu, J. Wu, X. Tao, Z. Li et al., Voltage-induced bromide redox enables capacity restoration of fast-charging batteries. Adv. Mater. 37(7), e2414207 (2025). https://doi.org/10.1002/adma.202414207
C.-J. Huang, B. Thirumalraj, H.-C. Tao, K.N. Shitaw, H. Sutiono et al., Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nat. Commun. 12(1), 1452 (2021). https://doi.org/10.1038/s41467-021-21683-6
C.R. Birkl, M.R. Roberts, E. McTurk, P.G. Bruce, D.A. Howey, Degradation diagnostics for lithium ion cells. J. Power. Sources 341, 373–386 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.011
S. Chen, G. Wu, H. Jiang, J. Wang, T. Chen et al., External Li supply reshapes Li deficiency and lifetime limit of batteries. Nature 638(8051), 676–683 (2025). https://doi.org/10.1038/s41586-024-08465-y
J. Lin, X. Chen, E. Fan, X. Zhang, R. Chen et al., A green repair pathway for spent spinel cathode material: coupled mechanochemistry and solid-phase reactions. eScience 3(3), 100110 (2023). https://doi.org/10.1016/j.esci.2023.100110
K.-Y. Park, I. Park, H. Kim, H.-D. Lim, J. Hong et al., Anti-site reordering in LiFePO4: defect annihilation on charge carrier injection. Chem. Mater. 26(18), 5345–5351 (2014). https://doi.org/10.1021/cm502432q
K. Jia, J. Ma, J. Wang, Z. Liang, G. Ji et al., Long-life regenerated LiFePO4 from spent cathode by elevating the d-band center of Fe. Adv. Mater. 35(5), e2208034 (2023). https://doi.org/10.1002/adma.202208034
M. Fan, Q. Meng, X. Chang, C.-F. Gu, X.-H. Meng et al., In situ electrochemical regeneration of degraded LiFePO4 electrode with functionalized prelithiation separator. Adv. Energy Mater. 12(18), 2103630 (2022). https://doi.org/10.1002/aenm.202103630
N. Ogihara, K. Nagaya, H. Yamaguchi, Y. Kondo, Y. Yamada et al., Direct capacity regeneration for spent Li–ion batteries. Joule 8(5), 1364–1379 (2024). https://doi.org/10.1016/j.joule.2024.02.010
S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016). https://doi.org/10.1016/j.carbon.2016.04.008
B. Markey, M. Zhang, I. Robb, P. Xu, H. Gao et al., Effective upcycling of graphite anode: healing and doping enabled direct regeneration. J. Electrochem. Soc. 167(16), 160511 (2020). https://doi.org/10.1149/1945-7111/abcc2f
W. Zhang, P. Sayavong, X. Xiao, S.T. Oyakhire, S.B. Shuchi et al., Recovery of isolated lithium through discharged state calendar ageing. Nature 626(7998), 306–312 (2024). https://doi.org/10.1038/s41586-023-06992-8
Y. Kong, L. Yuan, Y. Liao, Y. Shao, S. Hao et al., Efficient separation and selective Li recycling of spent LiFePO4 cathode. Energy Mater. 3(6), 300053 (2023). https://doi.org/10.20517/energymater.2023.57
M. Huang, M. Wang, L. Yang, Z. Wang, H. Yu et al., Direct regeneration of spent lithium-ion battery cathodes: from theoretical study to production practice. Nano-Micro Lett. 16(1), 207 (2024). https://doi.org/10.1007/s40820-024-01434-0
Y.E. Ejorh, W.H. Ilsley, B.G. Ooi, Elucidating the chemisorption phenomena in SERS studies via computational modeling. Opt. Photonics J. 8(6), 212–234 (2018). https://doi.org/10.4236/opj.2018.86019
K. Raghavachari, Perspective on “Density functional thermochemistry. III. The role of exact exchange”. In: Theoretical Chemistry Accounts. Springer, (2000). pp. 361–363.https://doi.org/10.1007/978-3-662-10421-7_60
F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297 (2005). https://doi.org/10.1039/b508541a
F. Weigend, Accurate coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8(9), 1057–1065 (2006). https://doi.org/10.1039/b515623h
C. Jin, T. Liu, O. Sheng, M. Li, T. Liu et al., Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6(4), 378–387 (2021). https://doi.org/10.1038/s41560-021-00789-7
Y. Li, C. Li, F. Hu, W. Yu, H. Dong et al., Direct regeneration of spent LiFePO4 cathode materials through Li+ supplementation and Sm doping. Nano Res. Energy 4(4), e9120190 (2025). https://doi.org/10.26599/nre.2025.9120190
C.-B. Jin, X.-Q. Zhang, O.-W. Sheng, S.-Y. Sun, L.-P. Hou et al., Reclaiming inactive lithium with a triiodide/iodide redox couple for practical lithium metal batteries. Angew. Chem. Int. Ed. 60(42), 22990–22995 (2021). https://doi.org/10.1002/anie.202110589
Q. Huang, J. Yang, C.B. Ng, C. Jia, Q. Wang, A redox flow lithium battery based on the redox targeting reactions between LiFePO4 and iodide. Energy Environ. Sci. 9(3), 917–921 (2016). https://doi.org/10.1039/c5ee03764f
Y. Zhao, L. Wang, H.R. Byon, High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 4, 1896 (2013). https://doi.org/10.1038/ncomms2907
S. Weng, G. Yang, S. Zhang, X. Liu, X. Zhang et al., Kinetic limits of graphite anode for fast-charging lithium-ion batteries. Nano-Micro Letters 15(1), 215 (2023). https://doi.org/10.1007/s40820-023-01183-6
Q. Zhao, Y. Lu, Z. Zhu, Z. Tao, J. Chen, Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 15(9), 5982–5987 (2015). https://doi.org/10.1021/acs.nanolett.5b02116
Y. Ji, H. Zhang, D. Yang, Y. Pan, Z. Zhu et al., Regenerated graphite electrodes with reconstructed solid electrolyte interface and enclosed active lithium toward >100% initial coulombic efficiency. Adv. Mater. 36(19), e2312548 (2024). https://doi.org/10.1002/adma.202312548
S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson et al., An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60(7), 3661–3671 (2021). https://doi.org/10.1002/anie.202012005
S. Dong, Y. Song, K. Ye, J. Yan, G. Wang et al., Ultra-fast, low-cost, and green regeneration of graphite anode using flash joule heating method. EcoMat 4(5), e12212 (2022). https://doi.org/10.1002/eom2.12212
C. Ling, R. Zhang, K. Takechi, F. Mizuno, Intrinsic barrier to electrochemically decompose Li2CO3 and LiOH. J. Phys. Chem. C 118(46), 26591–26598 (2014). https://doi.org/10.1021/jp5093306
Z. Wen, W. Fang, X. Wu, Z. Qin, H. Kang et al., High-concentration additive and triiodide/iodide redox couple stabilize lithium metal anode and rejuvenate the inactive lithium in carbonate-based electrolyte. Adv. Funct. Mater. 32(35), 2204768 (2022). https://doi.org/10.1002/adfm.202204768
J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi et al., Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5(5), 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
L. Dong, Y. Liu, D. Chen, Y. Han, Y. Ji et al., Stabilization of high-voltage lithium metal batteries using a sulfone-based electrolyte with bi-electrode affinity and LiSO2F-rich interphases. Energy Storage Mater. 44, 527–536 (2022). https://doi.org/10.1016/j.ensm.2021.10.045
L. Dong, S. Zhong, B. Yuan, Y. Li, J. Liu et al., Reconstruction of solid electrolyte interphase with SrI2 reactivates dead Li for durable anode-free Li-metal batteries. Angew. Chem. Int. Ed. 62(23), e202301073 (2023). https://doi.org/10.1002/anie.202301073
Y. Lin, Z. Wen, J. Liu, D. Wu, P. Zhang et al., Constructing a uniform lithium iodide layer for stabilizing lithium metal anode. J. Energy Chem. 55, 129–135 (2021). https://doi.org/10.1016/j.jechem.2020.07.003
Q. Zhang, H. Wang, X. Kong, Y. Wu, Y. Mao et al., Tailoring inner Helmholtz layer via the lewis acid–base theory endow an elastic SEI for dendrites-free lithium metal anode. Adv. Energy Mater. 16(1), e04697 (2026). https://doi.org/10.1002/aenm.202504697
Q. Liu, Y. Li, Y. Su, Y. Fan, F. Hu et al., Challenges and strategic approaches to constructing the full life cycle value chain of layered cathode materials for sodium-ion batteries. Nano Res. Energy 5(1), e9120177 (2026). https://doi.org/10.26599/nre.2025.9120177
L. Castro, R. Dedryvère, M. El Khalifi, P.-E. Lippens, J. Bréger et al., The spin-polarized electronic structure of LiFePO4 and FePO4 evidenced by in-lab XPS. J. Phys. Chem. C 114(41), 17995–18000 (2010). https://doi.org/10.1021/jp106631v
Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6(6), 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
D. Juarez-Robles, A.A. Vyas, C. Fear, J.A. Jeevarajan, P.P. Mukherjee, Overdischarge and aging analytics of Li–ion cells. J. Electrochem. Soc. 167(9), 090558 (2020). https://doi.org/10.1149/1945-7111/aba00a
J.-A. Lee, H. Kang, S. Kim, K. Lee, J.H. Byun et al., Unveiling degradation mechanisms of anode-free Li-metal batteries. Energy Storage Mater. 73, 103826 (2024). https://doi.org/10.1016/j.ensm.2024.103826
K.-H. Chen, K.N. Wood, E. Kazyak, W.S. LePage, A.L. Davis et al., Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5(23), 11671–11681 (2017). https://doi.org/10.1039/c7ta00371d
G. Wang, G. Wang, L. Fei, L. Zhao, H. Zhang, Structural engineering of anode materials for low-temperature lithium-ion batteries: mechanisms, strategies, and prospects. Nano-Micro Lett. 16(1), 150 (2024). https://doi.org/10.1007/s40820-024-01363-y