Spin Balance Over Janus Ir-Co Magnetic Atoms for Efficient Acidic Water Oxidation
Corresponding Author: Wensheng Yan
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 227
Abstract
Herein, spin regulation of the low-spin Ir4+ in Ca2IrO4 is realized via a novel spin balance strategy through a Janus Ir–Co structure using high-spin Co3+ dopants, achieving the intermediate-spin state of Ir and Co atoms and enhancing the acidic oxygen evolution reaction (OER) performance of the obtained catalysts (Co–CIO). The optimized 0.2Co–CIO catalyst, with a nominal Co/(Co + Ir) metal atom percentage of 20%, displays exceptional electrochemical water oxidation activity with an ultrasmall overpotential of ~ 200 mV at 10 mA cm−2, ultralarge mass activity of 1110 A gIr−1, and high turnover frequency of 2050 h‒1 under an overpotential of 300 mV in 1 M HClO4, outperforming most recently reported Ir–based oxides catalysts. Molecular and atomic characterizations via in situ X-ray absorption near-edge and Raman spectroscopy demonstrate the acceleration of bridged O‒O formation over the Janus Ir–Co units, indicating a preference for the superoxide path mechanism for Co–CIO. Furthermore, density functional theory calculations rationalize the promotion of the superoxide *O‒O intermediate over the spin-regulated Ir‒O‒Co units, thanks to optimized eg1 orbital and reduced t2g orbital occupancy. The study presents a rare example of Ir spin regulation via a Janus Ir–Co magnetic structure, thereby promoting acidic OER activity.
Highlights:
1 Monodisperse and substitute Co were doped into edge-sharing [IrO6] octahedra of Ca2IrO4 model catalyst, which usually present the intrinsic and strong stability for acid oxygen evolution reaction (OER)
2 The optimized Janus Co–Ir local structure triggers spin balance effect with optimal eg1 orbital and uneven t2g orbital despite the large crystal field of Ir, which co-promote the OER activity with a relatively stable crystal structure.
3 Different from the slowly kinetics of adsorbates evolution mechanism on Ca2IrO4, superoxide path mechanism occurs on Co doped Ca2IrO4 based on the assignment of *OO on dual active sites of Ir and Co.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Cheminform abstract: design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. ChemInform 46(25), chin.201525296 (2015). https://doi.org/10.1002/chin.201525296
- R. Schlögl, The role of chemistry in the energy challenge. Chemsuschem 3(2), 209–222 (2010). https://doi.org/10.1002/cssc.200900183
- M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38(12), 4901–4934 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.151
- N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017). https://doi.org/10.1039/c6cs00328a
- T. Reier, M. Oezaslan, P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanops and bulk materials. ACS Catal. 2(8), 1765–1772 (2012). https://doi.org/10.1021/cs3003098
- S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.-P. Grote et al., Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal. Today 262, 170–180 (2016). https://doi.org/10.1016/j.cattod.2015.08.014
- B. Tian, H. Shin, S. Liu, M. Fei, Z. Mu et al., Double-exchange-induced in situ conductivity in nickel-based oxyhydroxides: an effective descriptor for electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. 60(30), 16448–16456 (2021). https://doi.org/10.1002/anie.202101906
- S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin et al., Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1(12), 16184 (2016). https://doi.org/10.1038/nenergy.2016.184
- A.N. Nair, S. Fernandez, M. Marcos-Hernández, D.R. Romo, S.R. Singamaneni et al., Spin-selective oxygen evolution reaction in chiral iron oxide nanops: synergistic impact of inherent magnetic moment and chirality. Nano Lett. 23(19), 9042–9049 (2023). https://doi.org/10.1021/acs.nanolett.3c02752
- T. Wu, Y. Sun, X. Ren, J. Wang, J. Song et al., Reconstruction of thiospinel to active sites and spin channels for water oxidation. Adv. Mater. 35(2), 2207041 (2023). https://doi.org/10.1002/adma.202207041
- Z. Pavlovic, C. Ranjan, M. van Gastel, R. Schlögl, The active site for the water oxidising anodic iridium oxide probed through in situ Raman spectroscopy. Chem. Commun. 53(92), 12414–12417 (2017). https://doi.org/10.1039/c7cc05669a
- N. Li, L. Cai, G. Gao, Y. Lin, C. Wang et al., Operando direct observation of stable water-oxidation intermediates on Ca2–xIrO4 nanocrystals for efficient acidic oxygen evolution. Nano Lett. 22(17), 6988–6996 (2022). https://doi.org/10.1021/acs.nanolett.2c01777
- T. Wu, Z.J. Xu, Oxygen evolution in spin-sensitive pathways. Curr. Opin. Electrochem. 30, 100804 (2021). https://doi.org/10.1016/j.coelec.2021.100804
- C. Liang, R.R. Rao, K.L. Svane, J.H.L. Hadden, B. Moss et al., Unravelling the effects of active site density and energetics on the water oxidation activity of iridium oxides. Nat. Catal. 7(7), 763–775 (2024). https://doi.org/10.1038/s41929-024-01168-7
- Y. Tong, Y. Guo, P. Chen, H. Liu, M. Zhang et al., Spin-state regulation of perovskite cobaltite to realize enhanced oxygen evolution activity. Chem 3(5), 812–821 (2017). https://doi.org/10.1016/j.chempr.2017.09.003
- W.H. Lee, M.H. Han, Y.-J. Ko, B.K. Min, K.H. Chae et al., Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis. Nat. Commun. 13, 605 (2022). https://doi.org/10.1038/s41467-022-28260-5
- J.-H. Choy, D.-K. Kim, G. Demazeau, D.-Y. Jung, LIII-edge XANES study on unusually high valent iridium in a perovskite lattice. J. Phys. Chem. 98(25), 6258–6262 (1994). https://doi.org/10.1021/j100076a005
- C. Gao, J. Wang, R. Hübner, J. Zhan, M. Zhao et al., Spin effect to regulate the electronic structure of Ir─Fe aerogels for efficient acidic water oxidation. Small 20(33), 2400875 (2024). https://doi.org/10.1002/smll.202400875
- L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya et al., A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353(6303), 1011–1014 (2016). https://doi.org/10.1126/science.aaf5050
- Q. Qin, H. Jang, Y. Wang, L. Zhang, Z. Li et al., Gettering La effect from La3IrO7 as a highly efficient electrocatalyst for oxygen evolution reaction in acid media. Adv. Energy Mater. 11(5), 2003561 (2021). https://doi.org/10.1002/aenm.202003561
- C. Shang, C. Cao, D. Yu, Y. Yan, Y. Lin et al., Electron correlations engineer catalytic activity of pyrochlore iridates for acidic water oxidation. Adv. Mater. 31(6), 1805104 (2019). https://doi.org/10.1002/adma.201805104
- A. Grimaud, A. Demortière, M. Saubanère, W. Dachraoui, M. Duchamp et al., Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2, 16189 (2017). https://doi.org/10.1038/nenergy.2016.189
- A.L. Strickler, D. Higgins, T.F. Jaramillo, Crystalline strontium iridate p catalysts for enhanced oxygen evolution in acid. ACS Appl. Energy Mater. 2(8), 5490–5498 (2019). https://doi.org/10.1021/acsaem.9b00658
- C.W. Song, J. Lim, H.B. Bae, S.-Y. Chung, Discovery of crystal structure–stability correlation in iridates for oxygen evolution electrocatalysis in acid. Energy Environ. Sci. 13(11), 4178–4188 (2020). https://doi.org/10.1039/d0ee01389g
- O. Diaz-Morales, S. Raaijman, R. Kortlever, P.J. Kooyman, T. Wezendonk et al., Iridium-based double perovskites for efficient water oxidation in acid media. Nat. Commun. 7, 12363 (2016). https://doi.org/10.1038/ncomms12363
- L. Yang, G. Yu, X. Ai, W. Yan, H. Duan et al., Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 9, 5236 (2018). https://doi.org/10.1038/s41467-018-07678-w
- Y. Chen, H. Li, J. Wang, Y. Du, S. Xi et al., Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 10, 572 (2019). https://doi.org/10.1038/s41467-019-08532-3
- Y. Liu, L. Cai, Q. Ji, C. Wang, Z. Liu et al., Operando identification of dual active sites in Ca2IrO4 nanocrystals with yttrium substitutions boosting acidic oxygen evolution reaction. ACS Energy Lett. 7(11), 3798–3806 (2022). https://doi.org/10.1021/acsenergylett.2c01683
- X. Liang, L. Shi, Y. Liu, H. Chen, R. Si et al., Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions. Angew. Chem. Int. Ed. 58(23), 7631–7635 (2019). https://doi.org/10.1002/anie.201900796
- X. Zhang, H. Su, X. Sun, C. Yang, Y. Li et al., Quick evolution of edge-shared metal-oxygen octahedrons for boosting acidic water oxidation. Nano Energy 102, 107680 (2022). https://doi.org/10.1016/j.nanoen.2022.107680
- M. Newville, IFEFFIT : interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8(2), 322–324 (2001). https://doi.org/10.1107/s0909049500016964
- R.G. Jones, X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. Endeavour 12(4), 195 (1988). https://doi.org/10.1016/0160-9327(88)90177-9
- J.J. Rehr, R.C. Albers, Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72(3), 621–654 (2000). https://doi.org/10.1103/revmodphys.72.621
- Y. Joly, X-ray absorption near-edge structure calculations beyond the muffin-tin approximation. Phys. Rev. B 63(12), 125120 (2001). https://doi.org/10.1103/physrevb.63.125120
- O. Bunău, Y. Joly, Self-consistent aspects of X-ray absorption calculations. J. Phys. Condens. Matter 21(34), 345501 (2009). https://doi.org/10.1088/0953-8984/21/34/345501
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
- A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen et al., The atomic simulation environment: a Python library for working with atoms. J. Phys. Condens. Matter 29(27), 273002 (2017). https://doi.org/10.1088/1361-648X/aa680e
- J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004). https://doi.org/10.1021/jp047349j
- J. Wang, S.-J. Kim, J. Liu, Y. Gao, S. Choi et al., Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4(3), 212–222 (2021). https://doi.org/10.1038/s41929-021-00578-1
- X. Li, Y. Sun, Q. Wu, H. Liu, W. Gu et al., Optimized electronic configuration to improve the surface absorption and bulk conductivity for enhanced oxygen evolution reaction. J. Am. Chem. Soc. 141(7), 3121–3128 (2019). https://doi.org/10.1021/jacs.8b12299
- S.Y. Istomin, O.A. Tyablikov, S.M. Kazakov, E.V. Antipov, A.I. Kurbakov et al., An unusual high-spin ground state of Co3+ in octahedral coordination in brownmillerite-type cobalt oxide. Dalton Trans. 44(23), 10708–10713 (2015). https://doi.org/10.1039/c4dt03670k
- M.W. Haverkort, Z. Hu, J.C. Cezar, T. Burnus, H. Hartmann et al., Spin state transition in LaCoO3 studied using soft X-ray absorption spectroscopy and magnetic circular dichroism. Phys. Rev. Lett. 97(17), 176405 (2006). https://doi.org/10.1103/physrevlett.97.176405
- T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones et al., Molecular insight in structure and activity of highly efficient, low-Ir Ir–Ni oxide catalysts for electrochemical water splitting (OER). J. Am. Chem. Soc. 137(40), 13031–13040 (2015). https://doi.org/10.1021/jacs.5b07788
- F. Frati, M.O.J.Y. Hunault, F.M.F. de Groot, Oxygen K-edge X-ray absorption spectra. Chem. Rev. 120(9), 4056–4110 (2020). https://doi.org/10.1021/acs.chemrev.9b00439
- J. Wang, C. Cheng, Q. Yuan, H. Yang, F. Meng et al., Exceptionally active and stable RuO2 with interstitial carbon for water oxidation in acid. Chem 8(6), 1673–1687 (2022). https://doi.org/10.1016/j.chempr.2022.02.003
- R. Zhang, N. Dubouis, M. Ben Osman, W. Yin, M.T. Sougrati, D.A. Corte, D. Giaume, A. Grimaud, A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media. Angew. Chemie. 131(14), 4619–4623 (2019). https://doi.org/10.1002/anie.201814075
- M. Retuerto, L. Pascual, O. Piqué, P. Kayser, M. Abdel Salam et al., How oxidation state and lattice distortion influence the oxygen evolution activity in acid of iridium double perovskites. J. Mater. Chem. A 9(5), 2980–2990 (2021). https://doi.org/10.1039/d0ta10316k
- J. Edgington, N. Schweitzer, S. Alayoglu, L.C. Seitz, Constant change: exploring dynamic oxygen evolution reaction catalysis and material transformations in strontium zinc iridate perovskite in acid. J. Am. Chem. Soc. 143(26), 9961–9971 (2021). https://doi.org/10.1021/jacs.1c04332
- M.F. Labata, N. Kakati, G. Li, V. Altoe, P.A. Chuang, Exploring the structure–function relationship in iridium–cobalt oxide catalyst for oxygen evolution reaction across different electrolyte media. ACS Catal. 15(3), 1715–1726 (2025). https://doi.org/10.1021/acscatal.4c06814
- G. Li, A. Priyadarsini, Z. Xie, S. Kang, Y. Liu et al., Achieving higher activity of acidic oxygen evolution reaction using an atomically thin layer of IrOx over Co3O4. J. Am. Chem. Soc. 147(8), 7008–7016 (2025). https://doi.org/10.1021/jacs.4c17915
- M. Zhang, M. de Respinis, H. Frei, Time-resolved observations of water oxidation intermediates on a cobalt oxide nanop catalyst. Nat. Chem. 6(4), 362–367 (2014). https://doi.org/10.1038/nchem.1874
- C.-W. Tang, C.-B. Wang, S.-H. Chien, Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim. Acta 473(1–2), 68–73 (2008). https://doi.org/10.1016/j.tca.2008.04.015
- J. Wang, Y. Bao, C. Cui, Z. Zhang, S. Li et al., Fabrication of dispersive α-Co(OH)2 nanosheets on graphene nanoribbons for boosting their oxygen evolution performance. J. Mater. Sci. 54(10), 7692–7701 (2019). https://doi.org/10.1007/s10853-019-03421-y
- M. Abu Sayeed, T. Herd, A.P. O’Mullane, Direct electrochemical formation of nanostructured amorphous Co(OH)2 on gold electrodes with enhanced activity for the oxygen evolution reaction. J. Mater. Chem. A 4(3), 991–999 (2016). https://doi.org/10.1039/c5ta09125j
- J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu et al., Perovskites in catalysis and electrocatalysis. Science 358(6364), 751–756 (2017). https://doi.org/10.1126/science.aam7092
References
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Cheminform abstract: design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. ChemInform 46(25), chin.201525296 (2015). https://doi.org/10.1002/chin.201525296
R. Schlögl, The role of chemistry in the energy challenge. Chemsuschem 3(2), 209–222 (2010). https://doi.org/10.1002/cssc.200900183
M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38(12), 4901–4934 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.151
N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017). https://doi.org/10.1039/c6cs00328a
T. Reier, M. Oezaslan, P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanops and bulk materials. ACS Catal. 2(8), 1765–1772 (2012). https://doi.org/10.1021/cs3003098
S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.-P. Grote et al., Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal. Today 262, 170–180 (2016). https://doi.org/10.1016/j.cattod.2015.08.014
B. Tian, H. Shin, S. Liu, M. Fei, Z. Mu et al., Double-exchange-induced in situ conductivity in nickel-based oxyhydroxides: an effective descriptor for electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. 60(30), 16448–16456 (2021). https://doi.org/10.1002/anie.202101906
S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin et al., Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1(12), 16184 (2016). https://doi.org/10.1038/nenergy.2016.184
A.N. Nair, S. Fernandez, M. Marcos-Hernández, D.R. Romo, S.R. Singamaneni et al., Spin-selective oxygen evolution reaction in chiral iron oxide nanops: synergistic impact of inherent magnetic moment and chirality. Nano Lett. 23(19), 9042–9049 (2023). https://doi.org/10.1021/acs.nanolett.3c02752
T. Wu, Y. Sun, X. Ren, J. Wang, J. Song et al., Reconstruction of thiospinel to active sites and spin channels for water oxidation. Adv. Mater. 35(2), 2207041 (2023). https://doi.org/10.1002/adma.202207041
Z. Pavlovic, C. Ranjan, M. van Gastel, R. Schlögl, The active site for the water oxidising anodic iridium oxide probed through in situ Raman spectroscopy. Chem. Commun. 53(92), 12414–12417 (2017). https://doi.org/10.1039/c7cc05669a
N. Li, L. Cai, G. Gao, Y. Lin, C. Wang et al., Operando direct observation of stable water-oxidation intermediates on Ca2–xIrO4 nanocrystals for efficient acidic oxygen evolution. Nano Lett. 22(17), 6988–6996 (2022). https://doi.org/10.1021/acs.nanolett.2c01777
T. Wu, Z.J. Xu, Oxygen evolution in spin-sensitive pathways. Curr. Opin. Electrochem. 30, 100804 (2021). https://doi.org/10.1016/j.coelec.2021.100804
C. Liang, R.R. Rao, K.L. Svane, J.H.L. Hadden, B. Moss et al., Unravelling the effects of active site density and energetics on the water oxidation activity of iridium oxides. Nat. Catal. 7(7), 763–775 (2024). https://doi.org/10.1038/s41929-024-01168-7
Y. Tong, Y. Guo, P. Chen, H. Liu, M. Zhang et al., Spin-state regulation of perovskite cobaltite to realize enhanced oxygen evolution activity. Chem 3(5), 812–821 (2017). https://doi.org/10.1016/j.chempr.2017.09.003
W.H. Lee, M.H. Han, Y.-J. Ko, B.K. Min, K.H. Chae et al., Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis. Nat. Commun. 13, 605 (2022). https://doi.org/10.1038/s41467-022-28260-5
J.-H. Choy, D.-K. Kim, G. Demazeau, D.-Y. Jung, LIII-edge XANES study on unusually high valent iridium in a perovskite lattice. J. Phys. Chem. 98(25), 6258–6262 (1994). https://doi.org/10.1021/j100076a005
C. Gao, J. Wang, R. Hübner, J. Zhan, M. Zhao et al., Spin effect to regulate the electronic structure of Ir─Fe aerogels for efficient acidic water oxidation. Small 20(33), 2400875 (2024). https://doi.org/10.1002/smll.202400875
L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya et al., A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353(6303), 1011–1014 (2016). https://doi.org/10.1126/science.aaf5050
Q. Qin, H. Jang, Y. Wang, L. Zhang, Z. Li et al., Gettering La effect from La3IrO7 as a highly efficient electrocatalyst for oxygen evolution reaction in acid media. Adv. Energy Mater. 11(5), 2003561 (2021). https://doi.org/10.1002/aenm.202003561
C. Shang, C. Cao, D. Yu, Y. Yan, Y. Lin et al., Electron correlations engineer catalytic activity of pyrochlore iridates for acidic water oxidation. Adv. Mater. 31(6), 1805104 (2019). https://doi.org/10.1002/adma.201805104
A. Grimaud, A. Demortière, M. Saubanère, W. Dachraoui, M. Duchamp et al., Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2, 16189 (2017). https://doi.org/10.1038/nenergy.2016.189
A.L. Strickler, D. Higgins, T.F. Jaramillo, Crystalline strontium iridate p catalysts for enhanced oxygen evolution in acid. ACS Appl. Energy Mater. 2(8), 5490–5498 (2019). https://doi.org/10.1021/acsaem.9b00658
C.W. Song, J. Lim, H.B. Bae, S.-Y. Chung, Discovery of crystal structure–stability correlation in iridates for oxygen evolution electrocatalysis in acid. Energy Environ. Sci. 13(11), 4178–4188 (2020). https://doi.org/10.1039/d0ee01389g
O. Diaz-Morales, S. Raaijman, R. Kortlever, P.J. Kooyman, T. Wezendonk et al., Iridium-based double perovskites for efficient water oxidation in acid media. Nat. Commun. 7, 12363 (2016). https://doi.org/10.1038/ncomms12363
L. Yang, G. Yu, X. Ai, W. Yan, H. Duan et al., Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 9, 5236 (2018). https://doi.org/10.1038/s41467-018-07678-w
Y. Chen, H. Li, J. Wang, Y. Du, S. Xi et al., Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 10, 572 (2019). https://doi.org/10.1038/s41467-019-08532-3
Y. Liu, L. Cai, Q. Ji, C. Wang, Z. Liu et al., Operando identification of dual active sites in Ca2IrO4 nanocrystals with yttrium substitutions boosting acidic oxygen evolution reaction. ACS Energy Lett. 7(11), 3798–3806 (2022). https://doi.org/10.1021/acsenergylett.2c01683
X. Liang, L. Shi, Y. Liu, H. Chen, R. Si et al., Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions. Angew. Chem. Int. Ed. 58(23), 7631–7635 (2019). https://doi.org/10.1002/anie.201900796
X. Zhang, H. Su, X. Sun, C. Yang, Y. Li et al., Quick evolution of edge-shared metal-oxygen octahedrons for boosting acidic water oxidation. Nano Energy 102, 107680 (2022). https://doi.org/10.1016/j.nanoen.2022.107680
M. Newville, IFEFFIT : interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8(2), 322–324 (2001). https://doi.org/10.1107/s0909049500016964
R.G. Jones, X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. Endeavour 12(4), 195 (1988). https://doi.org/10.1016/0160-9327(88)90177-9
J.J. Rehr, R.C. Albers, Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72(3), 621–654 (2000). https://doi.org/10.1103/revmodphys.72.621
Y. Joly, X-ray absorption near-edge structure calculations beyond the muffin-tin approximation. Phys. Rev. B 63(12), 125120 (2001). https://doi.org/10.1103/physrevb.63.125120
O. Bunău, Y. Joly, Self-consistent aspects of X-ray absorption calculations. J. Phys. Condens. Matter 21(34), 345501 (2009). https://doi.org/10.1088/0953-8984/21/34/345501
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen et al., The atomic simulation environment: a Python library for working with atoms. J. Phys. Condens. Matter 29(27), 273002 (2017). https://doi.org/10.1088/1361-648X/aa680e
J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004). https://doi.org/10.1021/jp047349j
J. Wang, S.-J. Kim, J. Liu, Y. Gao, S. Choi et al., Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4(3), 212–222 (2021). https://doi.org/10.1038/s41929-021-00578-1
X. Li, Y. Sun, Q. Wu, H. Liu, W. Gu et al., Optimized electronic configuration to improve the surface absorption and bulk conductivity for enhanced oxygen evolution reaction. J. Am. Chem. Soc. 141(7), 3121–3128 (2019). https://doi.org/10.1021/jacs.8b12299
S.Y. Istomin, O.A. Tyablikov, S.M. Kazakov, E.V. Antipov, A.I. Kurbakov et al., An unusual high-spin ground state of Co3+ in octahedral coordination in brownmillerite-type cobalt oxide. Dalton Trans. 44(23), 10708–10713 (2015). https://doi.org/10.1039/c4dt03670k
M.W. Haverkort, Z. Hu, J.C. Cezar, T. Burnus, H. Hartmann et al., Spin state transition in LaCoO3 studied using soft X-ray absorption spectroscopy and magnetic circular dichroism. Phys. Rev. Lett. 97(17), 176405 (2006). https://doi.org/10.1103/physrevlett.97.176405
T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones et al., Molecular insight in structure and activity of highly efficient, low-Ir Ir–Ni oxide catalysts for electrochemical water splitting (OER). J. Am. Chem. Soc. 137(40), 13031–13040 (2015). https://doi.org/10.1021/jacs.5b07788
F. Frati, M.O.J.Y. Hunault, F.M.F. de Groot, Oxygen K-edge X-ray absorption spectra. Chem. Rev. 120(9), 4056–4110 (2020). https://doi.org/10.1021/acs.chemrev.9b00439
J. Wang, C. Cheng, Q. Yuan, H. Yang, F. Meng et al., Exceptionally active and stable RuO2 with interstitial carbon for water oxidation in acid. Chem 8(6), 1673–1687 (2022). https://doi.org/10.1016/j.chempr.2022.02.003
R. Zhang, N. Dubouis, M. Ben Osman, W. Yin, M.T. Sougrati, D.A. Corte, D. Giaume, A. Grimaud, A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media. Angew. Chemie. 131(14), 4619–4623 (2019). https://doi.org/10.1002/anie.201814075
M. Retuerto, L. Pascual, O. Piqué, P. Kayser, M. Abdel Salam et al., How oxidation state and lattice distortion influence the oxygen evolution activity in acid of iridium double perovskites. J. Mater. Chem. A 9(5), 2980–2990 (2021). https://doi.org/10.1039/d0ta10316k
J. Edgington, N. Schweitzer, S. Alayoglu, L.C. Seitz, Constant change: exploring dynamic oxygen evolution reaction catalysis and material transformations in strontium zinc iridate perovskite in acid. J. Am. Chem. Soc. 143(26), 9961–9971 (2021). https://doi.org/10.1021/jacs.1c04332
M.F. Labata, N. Kakati, G. Li, V. Altoe, P.A. Chuang, Exploring the structure–function relationship in iridium–cobalt oxide catalyst for oxygen evolution reaction across different electrolyte media. ACS Catal. 15(3), 1715–1726 (2025). https://doi.org/10.1021/acscatal.4c06814
G. Li, A. Priyadarsini, Z. Xie, S. Kang, Y. Liu et al., Achieving higher activity of acidic oxygen evolution reaction using an atomically thin layer of IrOx over Co3O4. J. Am. Chem. Soc. 147(8), 7008–7016 (2025). https://doi.org/10.1021/jacs.4c17915
M. Zhang, M. de Respinis, H. Frei, Time-resolved observations of water oxidation intermediates on a cobalt oxide nanop catalyst. Nat. Chem. 6(4), 362–367 (2014). https://doi.org/10.1038/nchem.1874
C.-W. Tang, C.-B. Wang, S.-H. Chien, Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim. Acta 473(1–2), 68–73 (2008). https://doi.org/10.1016/j.tca.2008.04.015
J. Wang, Y. Bao, C. Cui, Z. Zhang, S. Li et al., Fabrication of dispersive α-Co(OH)2 nanosheets on graphene nanoribbons for boosting their oxygen evolution performance. J. Mater. Sci. 54(10), 7692–7701 (2019). https://doi.org/10.1007/s10853-019-03421-y
M. Abu Sayeed, T. Herd, A.P. O’Mullane, Direct electrochemical formation of nanostructured amorphous Co(OH)2 on gold electrodes with enhanced activity for the oxygen evolution reaction. J. Mater. Chem. A 4(3), 991–999 (2016). https://doi.org/10.1039/c5ta09125j
J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu et al., Perovskites in catalysis and electrocatalysis. Science 358(6364), 751–756 (2017). https://doi.org/10.1126/science.aam7092