Heteroatoms Synergistic Anchoring Vacancies in Phosphorus-Doped CoSe2 Enable Ultrahigh Activity and Stability in Li–S Batteries
Corresponding Author: Shaochun Tang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 308
Abstract
Electrocatalyst activity and stability demonstrate a “seesaw” relationship. Introducing vacancies (Vo) enhances the activity by improving reactant affinity and increasing accessible active sites. However, deficient or excessive Vo reduces polysulfide adsorption and lowers catalytic stability. Herein, a novel “heteroatoms synergistic anchoring vacancies” strategy is proposed to address the trade-off between high activity and stability. Phosphorus-doped CoSe2 with remained rich selenium vacancies (P-CS-Vo-0.5) was synthesized by producing abundant selenium Vo followed by controlled P atom doping. Atomic-scale microstructure analysis elucidated a dynamic process of surface vacancy generation and the subsequent partial occupation of these vacancies by P atoms. Density functional theory simulations and in situ Raman tests revealed that the Se vacancies provide highly active catalytic sites, accelerating polysulfide conversion, while P incorporation effectively reduces the surface energy of Se vacancies and suppresses their inward migration, enhancing structural robustness. The battery with the optimal P-CS-Vo-0.5 separator delivers an initial discharge capacity of 1306.7 mAh g−1 at 0.2C, and maintain 5.04 mAh cm−2 at a high sulfur loading (5.7 mg cm−2, 5.0 μL mg−1), achieving 95.1% capacity retention after 80 cycles. This strategy of modifying local atomic environments offers a new route to designing highly active and stable catalysts.
Highlights:
1 A volcano-type relationship between catalytic activity and vacancy concentration is revealed based on systematic investigation on selenium-vacancy-rich CoSe2.
2 A novel “heteroatoms synergistic anchoring vacancies” tactic is firstly proposed to achieve P-doped CoSe2 with remained rich selenium vacancies (P-CS-Vo-0.5).
3 It has been demonstrated that P doping lowers Se vacancy surface energy and effectively “pins” active sites, markedly suppressing dynamic migration of vacancies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Li, I. Sami, J. Yang, J. Li, R.V. Kumar et al., Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. Nat. Energy 8(1), 84–93 (2023). https://doi.org/10.1038/s41560-022-01175-7
- Y.-W. Song, L. Shen, X.-Y. Li, C.-X. Zhao, J. Zhou et al., Phase equilibrium thermodynamics of lithium–sulfur batteries. Nat. Chem. Eng. 1(9), 588–596 (2024). https://doi.org/10.1038/s44286-024-00115-4
- Z. Han, R. Gao, T. Wang, S. Tao, Y. Jia et al., Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics. Nat. Catal. 6(11), 1073–1086 (2023). https://doi.org/10.1038/s41929-023-01041-z
- G. Zhou, H. Chen, Y. Cui, Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7(4), 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0
- D. Gueon, J. Yoon, J. Cho, J.H. Moon, Discovery of dual-functional amorphous titanium suboxide to promote polysulfide adsorption and regulate sulfide growth in Li–S batteries. Adv. Sci. 9(22), 2200958 (2022). https://doi.org/10.1002/advs.202200958
- Z. Yang, Z. Guo, X. Wang, W. Lu, Q. Wang et al., Bi-functional material SnSSe/rGO with anionic vacancies serves as a polysulfide shuttling blocker and lithium dendrite inhibitor. Energy Storage Mater. 67, 103276 (2024). https://doi.org/10.1016/j.ensm.2024.103276
- Z. Xiao, Y. Wang, Y.-C. Huang, Z. Wei, C.-L. Dong et al., Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 10(12), 2563–2569 (2017). https://doi.org/10.1039/C7EE01917C
- W. Yao, C. Tian, C. Yang, J. Xu, Y. Meng et al., P-doped NiTe2 with Te-vacancies in lithium–sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv. Mater. 34(11), 2106370 (2022). https://doi.org/10.1002/adma.202106370
- J. Guo, H. Zhao, Z. Yang, L. Wang, A. Wang et al., Bimetallic sulfides with vacancy modulation exhibit enhanced electrochemical performance. Adv. Funct. Mater. 34(28), 2315714 (2024). https://doi.org/10.1002/adfm.202315714
- L. Bao, S. Ali, C. Dai, Q. Zeng, C. Zeng et al., A full-spectrum ZnS photocatalyst with gradient distribution of atomic copper dopants and concomitant sulfur vacancies for highly efficient hydrogen evolution. ACS Nano 18(7), 5878–5889 (2024). https://doi.org/10.1021/acsnano.3c12773
- R. Sun, Y. Bai, Z. Bai, L. Peng, M. Luo et al., Phosphorus vacancies as effective polysulfide promoter for high-energy-density lithium–sulfur batteries. Adv. Energy Mater. 12(12), 2102739 (2022). https://doi.org/10.1002/aenm.202102739
- Y. Guo, J. Li, G. Yuan, J. Guo, Y. Zheng et al., Elucidating the volcanic-type catalytic behavior in lithium-sulfur batteries via defect engineering. ACS Nano 17(18), 18253–18265 (2023). https://doi.org/10.1021/acsnano.3c05269
- H.-J. Li, K. Xi, W. Wang, S. Liu, G.-R. Li et al., Quantitatively regulating defects of 2D tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery. Energy Storage Mater. 45, 1229–1237 (2022). https://doi.org/10.1016/j.ensm.2021.11.024
- S. Wu, H. Liu, Z. Huang, H. Xu, W. Shen, O-vacancy-rich porous MnO2 nanosheets as highly efficient catalysts for propane catalytic oxidation. Appl. Catal. B Environ. 312, 121387 (2022). https://doi.org/10.1016/j.apcatb.2022.121387
- H. Chen, Z. Zhang, Y. Li, L. Yu, F. Chen et al., Conductive polymer protection strategy to promote electrochemical nitrate reduction to ammonia in highly acidic condition over Cu-based catalyst. Chem. Eng. J. 481, 148596 (2024). https://doi.org/10.1016/j.cej.2024.148596
- Y. Zeng, C. Li, B. Li, J. Liang, M.J. Zachman et al., Tuning the thermal activation atmosphere breaks the activity–stability trade-off of Fe–N–C oxygen reduction fuel cell catalysts. Nat. Catal. 6(12), 1215–1227 (2023). https://doi.org/10.1038/s41929-023-01062-8
- R. Zheng, D. Du, Y. Yan, S. Liu, X. Wang et al., Cation vacancy modulated interfacial electronic interactions for enhanced electrocatalysis in lithium–oxygen batteries. Adv. Funct. Mater. 34(27), 2316440 (2024). https://doi.org/10.1002/adfm.202316440
- X. Zhou, W. Mao, X. Cao, S. He, P. Wang et al., Bidirectional tandem catalysis coupled with interface engineering and Se vacancies for accelerating the polysulfide conversion. Nano Energy 125, 109563 (2024). https://doi.org/10.1016/j.nanoen.2024.109563
- H. Xu, Q. Jiang, K.S. Hui, S. Wang, L. Liu et al., Interfacial “double-terminal binding sites” catalysts synergistically boosting the electrocatalytic Li2S redox for durable lithium-sulfur batteries. ACS Nano 18(12), 8839–8852 (2024). https://doi.org/10.1021/acsnano.3c11903
- S. Shen, Z. Wang, Z. Lin, K. Song, Q. Zhang et al., Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 34(13), 2110631 (2022). https://doi.org/10.1002/adma.202110631
- Y.-R. Zheng, P. Wu, M.-R. Gao, X.-L. Zhang, F.-Y. Gao et al., Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat. Commun. 9(1), 2533 (2018). https://doi.org/10.1038/s41467-018-04954-7
- Y. Li, T. Bo, S. Zuo, G. Zhang, X. Zhao et al., Reversely trapping isolated atoms in high oxidation state for accelerating the oxygen evolution reaction kinetics. Angew. Chem. Int. Ed. 62(41), e202309341 (2023). https://doi.org/10.1002/anie.202309341
- Y. Sun, X. Li, T. Zhang, K. Xu, Y. Yang et al., Nitrogen-doped cobalt diselenide with cubic phase maintained for enhanced alkaline hydrogen evolution. Angew. Chem. Int. Ed. 60(39), 21575–21582 (2021). https://doi.org/10.1002/anie.202109116
- C. Zhao, B. Jiang, Y. Huang, X. Sun, M. Wang et al., Highly active and stable oxygen vacancies via sulfur modification for efficient catalysis in lithium–sulfur batteries. Energy Environ. Sci. 16(11), 5490–5499 (2023). https://doi.org/10.1039/D3EE01774E
- Y. Wang, J. Hu, T. Ge, F. Chen, Y. Lu et al., Gradient cationic vacancies enabling inner-to-outer tandem homojunctions: strong local internal electric field and reformed basic sites boosting CO2 photoreduction. Adv. Mater. 35(31), 2302538 (2023). https://doi.org/10.1002/adma.202302538
- Z. Shen, X. Jin, J. Tian, M. Li, Y. Yuan et al., Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5(6), 555–563 (2022). https://doi.org/10.1038/s41929-022-00804-4
- W. Zhang, H. Pan, N. Han, S. Feng, X. Zhang et al., Balancing adsorption, catalysis, and desorption in cathode catalyst for Li–S batteries. Adv. Energy Mater. 13(43), 2301551 (2023). https://doi.org/10.1002/aenm.202301551
- Q. Liang, S. Wang, X. Lu, X. Jia, J. Yang et al., High-entropy MXene as bifunctional mediator toward advanced Li-S full batteries. ACS Nano 18(3), 2395–2408 (2024). https://doi.org/10.1021/acsnano.3c10731
- J. Qin, R. Wang, P. Xiao, D. Wang, Superlattice and defect engineering enabled NC@VS2–x as trifunctional promoter for polysulfides catalytic conversion. Nano Energy 117, 108889 (2023). https://doi.org/10.1016/j.nanoen.2023.108889
- Q. Zou, Q. Liang, H. Zhou, Y. Guo, J. Xue et al., Promoting Li2S nucleation/dissolution kinetics via multiple active sites over TiVCrMoC3Tx interface. Small 20(40), 2402344 (2024). https://doi.org/10.1002/smll.202402344
- Y. Zhang, C. Kang, W. Zhao, Y. Song, J. Zhu et al., d-p hybridization-induced “trapping-coupling-conversion” enables high-efficiency Nb single-atom catalysis for Li-S batteries. J. Am. Chem. Soc. 145(3), 1728–1739 (2023). https://doi.org/10.1021/jacs.2c10345
- H. Raza, J. Cheng, C. Lin, S. Majumder, G. Zheng et al., High-entropy stabilized oxides derived via a low-temperature template route for high-performance lithium-sulfur batteries. EcoMat 5(4), e12324 (2023). https://doi.org/10.1002/eom2.12324
- R. Guo, Z. Sun, J. He, R. He, D. Wang et al., Engineering the local micro-environment of active materials in rechargeable alkali metal based batteries. Coord. Chem. Rev. 533, 216525 (2025). https://doi.org/10.1016/j.ccr.2025.216525
- H. Raza, J. Cheng, J. Wang, S. Kandasamy, G. Zheng et al., Titanium-containing high entropy oxide (Ti-HEO): a redox expediting electrocatalyst towards lithium polysulfides for high performance Li-S batteries. Nano Res. Energy 3(3), e9120116 (2024). https://doi.org/10.26599/nre.2024.9120116
- C. Zhao, F. Huo, Y. Yang, J. Ruan, F. Chai et al., Development of synergistically efficient Ni–Co pair catalytic sites for enhanced polysulfide conversion in lithium–sulfur batteries. Adv. Funct. Mater. 34(37), 2402175 (2024). https://doi.org/10.1002/adfm.202402175
- H. Zhang, M. Zhang, R. Liu, T. He, L. Xiang et al., Fe3O4-doped mesoporous carbon cathode with a plumber’s nightmare structure for high-performance Li-S batteries. Nat. Commun. 15(1), 5451 (2024). https://doi.org/10.1038/s41467-024-49826-5
- C. Zhao, Y. Liu, F. Huo, Z. Guo, Y. Lu et al., Synergistic catalysts for lithium-sulfur batteries: Ni single atom and MoC nanoclusters composites. Angew. Chem. Int. Ed. 64(19), e202502177 (2025). https://doi.org/10.1002/anie.202502177
- Z. Sun, B. Sun, J. Xue, J. He, R. Zhao et al., ZIF-67/ZIF-8 and its derivatives for lithium sulfur batteries. Adv. Funct. Mater. 35(5), 2414671 (2025). https://doi.org/10.1002/adfm.202414671
- R. Soni, J.B. Robinson, P.R. Shearing, D.J.L. Brett, A.J.E. Rettie et al., Lithium-sulfur battery diagnostics through distribution of relaxation times analysis. Energy Storage Mater. 51, 97–107 (2022). https://doi.org/10.1016/j.ensm.2022.06.016
- H. Raza, S. Bai, J. Cheng, S. Majumder, H. Zhu et al., Li-S batteries: challenges, achievements and opportunities. Electrochem. Energy Rev. 6(1), 29 (2023). https://doi.org/10.1007/s41918-023-00188-4
- H. Raza, J. Cheng, J. Xu, L. An, J. Wang et al., Harnessing high entropy sulfide (HES) as a robust electrocatalyst for long-term cycling of lithium-sulfur batteries. Energy Environ Mater. (2025). https://doi.org/10.1002/eem2.70007
- H. Li, M. Chuai, X. Xiao, Y. Jia, B. Chen et al., Regulating the spin state configuration in bimetallic phosphorus trisulfides for promoting sulfur redox kinetics. J. Am. Chem. Soc. 145(41), 22516–22526 (2023). https://doi.org/10.1021/jacs.3c07213
References
Z. Li, I. Sami, J. Yang, J. Li, R.V. Kumar et al., Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. Nat. Energy 8(1), 84–93 (2023). https://doi.org/10.1038/s41560-022-01175-7
Y.-W. Song, L. Shen, X.-Y. Li, C.-X. Zhao, J. Zhou et al., Phase equilibrium thermodynamics of lithium–sulfur batteries. Nat. Chem. Eng. 1(9), 588–596 (2024). https://doi.org/10.1038/s44286-024-00115-4
Z. Han, R. Gao, T. Wang, S. Tao, Y. Jia et al., Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics. Nat. Catal. 6(11), 1073–1086 (2023). https://doi.org/10.1038/s41929-023-01041-z
G. Zhou, H. Chen, Y. Cui, Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7(4), 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0
D. Gueon, J. Yoon, J. Cho, J.H. Moon, Discovery of dual-functional amorphous titanium suboxide to promote polysulfide adsorption and regulate sulfide growth in Li–S batteries. Adv. Sci. 9(22), 2200958 (2022). https://doi.org/10.1002/advs.202200958
Z. Yang, Z. Guo, X. Wang, W. Lu, Q. Wang et al., Bi-functional material SnSSe/rGO with anionic vacancies serves as a polysulfide shuttling blocker and lithium dendrite inhibitor. Energy Storage Mater. 67, 103276 (2024). https://doi.org/10.1016/j.ensm.2024.103276
Z. Xiao, Y. Wang, Y.-C. Huang, Z. Wei, C.-L. Dong et al., Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 10(12), 2563–2569 (2017). https://doi.org/10.1039/C7EE01917C
W. Yao, C. Tian, C. Yang, J. Xu, Y. Meng et al., P-doped NiTe2 with Te-vacancies in lithium–sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv. Mater. 34(11), 2106370 (2022). https://doi.org/10.1002/adma.202106370
J. Guo, H. Zhao, Z. Yang, L. Wang, A. Wang et al., Bimetallic sulfides with vacancy modulation exhibit enhanced electrochemical performance. Adv. Funct. Mater. 34(28), 2315714 (2024). https://doi.org/10.1002/adfm.202315714
L. Bao, S. Ali, C. Dai, Q. Zeng, C. Zeng et al., A full-spectrum ZnS photocatalyst with gradient distribution of atomic copper dopants and concomitant sulfur vacancies for highly efficient hydrogen evolution. ACS Nano 18(7), 5878–5889 (2024). https://doi.org/10.1021/acsnano.3c12773
R. Sun, Y. Bai, Z. Bai, L. Peng, M. Luo et al., Phosphorus vacancies as effective polysulfide promoter for high-energy-density lithium–sulfur batteries. Adv. Energy Mater. 12(12), 2102739 (2022). https://doi.org/10.1002/aenm.202102739
Y. Guo, J. Li, G. Yuan, J. Guo, Y. Zheng et al., Elucidating the volcanic-type catalytic behavior in lithium-sulfur batteries via defect engineering. ACS Nano 17(18), 18253–18265 (2023). https://doi.org/10.1021/acsnano.3c05269
H.-J. Li, K. Xi, W. Wang, S. Liu, G.-R. Li et al., Quantitatively regulating defects of 2D tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery. Energy Storage Mater. 45, 1229–1237 (2022). https://doi.org/10.1016/j.ensm.2021.11.024
S. Wu, H. Liu, Z. Huang, H. Xu, W. Shen, O-vacancy-rich porous MnO2 nanosheets as highly efficient catalysts for propane catalytic oxidation. Appl. Catal. B Environ. 312, 121387 (2022). https://doi.org/10.1016/j.apcatb.2022.121387
H. Chen, Z. Zhang, Y. Li, L. Yu, F. Chen et al., Conductive polymer protection strategy to promote electrochemical nitrate reduction to ammonia in highly acidic condition over Cu-based catalyst. Chem. Eng. J. 481, 148596 (2024). https://doi.org/10.1016/j.cej.2024.148596
Y. Zeng, C. Li, B. Li, J. Liang, M.J. Zachman et al., Tuning the thermal activation atmosphere breaks the activity–stability trade-off of Fe–N–C oxygen reduction fuel cell catalysts. Nat. Catal. 6(12), 1215–1227 (2023). https://doi.org/10.1038/s41929-023-01062-8
R. Zheng, D. Du, Y. Yan, S. Liu, X. Wang et al., Cation vacancy modulated interfacial electronic interactions for enhanced electrocatalysis in lithium–oxygen batteries. Adv. Funct. Mater. 34(27), 2316440 (2024). https://doi.org/10.1002/adfm.202316440
X. Zhou, W. Mao, X. Cao, S. He, P. Wang et al., Bidirectional tandem catalysis coupled with interface engineering and Se vacancies for accelerating the polysulfide conversion. Nano Energy 125, 109563 (2024). https://doi.org/10.1016/j.nanoen.2024.109563
H. Xu, Q. Jiang, K.S. Hui, S. Wang, L. Liu et al., Interfacial “double-terminal binding sites” catalysts synergistically boosting the electrocatalytic Li2S redox for durable lithium-sulfur batteries. ACS Nano 18(12), 8839–8852 (2024). https://doi.org/10.1021/acsnano.3c11903
S. Shen, Z. Wang, Z. Lin, K. Song, Q. Zhang et al., Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 34(13), 2110631 (2022). https://doi.org/10.1002/adma.202110631
Y.-R. Zheng, P. Wu, M.-R. Gao, X.-L. Zhang, F.-Y. Gao et al., Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat. Commun. 9(1), 2533 (2018). https://doi.org/10.1038/s41467-018-04954-7
Y. Li, T. Bo, S. Zuo, G. Zhang, X. Zhao et al., Reversely trapping isolated atoms in high oxidation state for accelerating the oxygen evolution reaction kinetics. Angew. Chem. Int. Ed. 62(41), e202309341 (2023). https://doi.org/10.1002/anie.202309341
Y. Sun, X. Li, T. Zhang, K. Xu, Y. Yang et al., Nitrogen-doped cobalt diselenide with cubic phase maintained for enhanced alkaline hydrogen evolution. Angew. Chem. Int. Ed. 60(39), 21575–21582 (2021). https://doi.org/10.1002/anie.202109116
C. Zhao, B. Jiang, Y. Huang, X. Sun, M. Wang et al., Highly active and stable oxygen vacancies via sulfur modification for efficient catalysis in lithium–sulfur batteries. Energy Environ. Sci. 16(11), 5490–5499 (2023). https://doi.org/10.1039/D3EE01774E
Y. Wang, J. Hu, T. Ge, F. Chen, Y. Lu et al., Gradient cationic vacancies enabling inner-to-outer tandem homojunctions: strong local internal electric field and reformed basic sites boosting CO2 photoreduction. Adv. Mater. 35(31), 2302538 (2023). https://doi.org/10.1002/adma.202302538
Z. Shen, X. Jin, J. Tian, M. Li, Y. Yuan et al., Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5(6), 555–563 (2022). https://doi.org/10.1038/s41929-022-00804-4
W. Zhang, H. Pan, N. Han, S. Feng, X. Zhang et al., Balancing adsorption, catalysis, and desorption in cathode catalyst for Li–S batteries. Adv. Energy Mater. 13(43), 2301551 (2023). https://doi.org/10.1002/aenm.202301551
Q. Liang, S. Wang, X. Lu, X. Jia, J. Yang et al., High-entropy MXene as bifunctional mediator toward advanced Li-S full batteries. ACS Nano 18(3), 2395–2408 (2024). https://doi.org/10.1021/acsnano.3c10731
J. Qin, R. Wang, P. Xiao, D. Wang, Superlattice and defect engineering enabled NC@VS2–x as trifunctional promoter for polysulfides catalytic conversion. Nano Energy 117, 108889 (2023). https://doi.org/10.1016/j.nanoen.2023.108889
Q. Zou, Q. Liang, H. Zhou, Y. Guo, J. Xue et al., Promoting Li2S nucleation/dissolution kinetics via multiple active sites over TiVCrMoC3Tx interface. Small 20(40), 2402344 (2024). https://doi.org/10.1002/smll.202402344
Y. Zhang, C. Kang, W. Zhao, Y. Song, J. Zhu et al., d-p hybridization-induced “trapping-coupling-conversion” enables high-efficiency Nb single-atom catalysis for Li-S batteries. J. Am. Chem. Soc. 145(3), 1728–1739 (2023). https://doi.org/10.1021/jacs.2c10345
H. Raza, J. Cheng, C. Lin, S. Majumder, G. Zheng et al., High-entropy stabilized oxides derived via a low-temperature template route for high-performance lithium-sulfur batteries. EcoMat 5(4), e12324 (2023). https://doi.org/10.1002/eom2.12324
R. Guo, Z. Sun, J. He, R. He, D. Wang et al., Engineering the local micro-environment of active materials in rechargeable alkali metal based batteries. Coord. Chem. Rev. 533, 216525 (2025). https://doi.org/10.1016/j.ccr.2025.216525
H. Raza, J. Cheng, J. Wang, S. Kandasamy, G. Zheng et al., Titanium-containing high entropy oxide (Ti-HEO): a redox expediting electrocatalyst towards lithium polysulfides for high performance Li-S batteries. Nano Res. Energy 3(3), e9120116 (2024). https://doi.org/10.26599/nre.2024.9120116
C. Zhao, F. Huo, Y. Yang, J. Ruan, F. Chai et al., Development of synergistically efficient Ni–Co pair catalytic sites for enhanced polysulfide conversion in lithium–sulfur batteries. Adv. Funct. Mater. 34(37), 2402175 (2024). https://doi.org/10.1002/adfm.202402175
H. Zhang, M. Zhang, R. Liu, T. He, L. Xiang et al., Fe3O4-doped mesoporous carbon cathode with a plumber’s nightmare structure for high-performance Li-S batteries. Nat. Commun. 15(1), 5451 (2024). https://doi.org/10.1038/s41467-024-49826-5
C. Zhao, Y. Liu, F. Huo, Z. Guo, Y. Lu et al., Synergistic catalysts for lithium-sulfur batteries: Ni single atom and MoC nanoclusters composites. Angew. Chem. Int. Ed. 64(19), e202502177 (2025). https://doi.org/10.1002/anie.202502177
Z. Sun, B. Sun, J. Xue, J. He, R. Zhao et al., ZIF-67/ZIF-8 and its derivatives for lithium sulfur batteries. Adv. Funct. Mater. 35(5), 2414671 (2025). https://doi.org/10.1002/adfm.202414671
R. Soni, J.B. Robinson, P.R. Shearing, D.J.L. Brett, A.J.E. Rettie et al., Lithium-sulfur battery diagnostics through distribution of relaxation times analysis. Energy Storage Mater. 51, 97–107 (2022). https://doi.org/10.1016/j.ensm.2022.06.016
H. Raza, S. Bai, J. Cheng, S. Majumder, H. Zhu et al., Li-S batteries: challenges, achievements and opportunities. Electrochem. Energy Rev. 6(1), 29 (2023). https://doi.org/10.1007/s41918-023-00188-4
H. Raza, J. Cheng, J. Xu, L. An, J. Wang et al., Harnessing high entropy sulfide (HES) as a robust electrocatalyst for long-term cycling of lithium-sulfur batteries. Energy Environ Mater. (2025). https://doi.org/10.1002/eem2.70007
H. Li, M. Chuai, X. Xiao, Y. Jia, B. Chen et al., Regulating the spin state configuration in bimetallic phosphorus trisulfides for promoting sulfur redox kinetics. J. Am. Chem. Soc. 145(41), 22516–22526 (2023). https://doi.org/10.1021/jacs.3c07213