Engineering Spin States of Isolated Copper Species in a Metal–Organic Framework Improves Urea Electrosynthesis
Corresponding Author: Xi Wang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 158
Abstract
The catalytic activities are generally believed to be relevant to the electronic states of their active center, but understanding this relationship is usually difficult. Here, we design two types of catalysts for electrocatalytic urea via a coordination strategy in a metal–organic frameworks: CuIII-HHTP and CuII-HHTP. CuIII-HHTP exhibits an improved urea production rate of 7.78 mmol h−1 g−1 and an enhanced Faradaic efficiency of 23.09% at − 0.6 V vs. reversible hydrogen electrode, in sharp contrast to CuII-HHTP. Isolated CuIII species with S = 0 spin ground state are demonstrated as the active center in CuIII-HHTP, different from CuII with S = 1/2 in CuII-HHTP. We further demonstrate that isolated CuIII with an empty d0x2-y2 orbital in CuIII-HHTP experiences a single-electron migration path with a lower energy barrier in the C–N coupling process, while CuII with a single-spin state (d1x2-y2) in CuII-HHTP undergoes a two-electron migration pathway.
Highlights:
1 The single-atom Cu species with S = 0 spin ground state in CuIII-HHTP have been fabricated.
2 The CuIII-HHTP exhibits remarkable performance with a high urea yield of 7.780 mmol h−1 g−1 with the corresponding Faradaic efficiency of 23.09% at − 0.6 V (vs. RHE).
3 Low spin state and empty (d0x2-y2) orbitals are favorable to enhance the production urea of C–N coupling process.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Chen, X. Zhu, X. Wen, Y. Zhou, L. Zhou et al., Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12(8), 717–724 (2020). https://doi.org/10.1038/s41557-020-0481-9
- C. Guo, W. Zhou, X. Lan, Y. Wang, T. Li et al., Electrochemical upgrading of formic acid to formamide via coupling nitrite co-reduction. J. Am. Chem. Soc. 144(35), 16006–16011 (2022). https://doi.org/10.1021/jacs.2c05660
- J. Yang, H. Qi, A. Li, X. Liu, X. Yang et al., Potential-driven restructuring of Cu single atoms to nanops for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 144(27), 12062–12071 (2022). https://doi.org/10.1021/jacs.2c02262
- X. Zhang, X. Zhu, S. Bo, C. Chen, M. Qiu et al., Identifying and tailoring C-N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst. Nat. Commun. 13(1), 5337 (2022). https://doi.org/10.1038/s41467-022-33066-6
- X. Zhu, X. Zhou, Y. Jing, Y. Li, Electrochemical synthesis of urea on mbenes. Nat. Commun. 12(1), 4080 (2021). https://doi.org/10.1038/s41467-021-24400-5
- J. Geng, S. Ji, M. Jin, C. Zhang, M. Xu et al., Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites. Angew. Chem. Int. Ed. 62(6), e202210958 (2023). https://doi.org/10.1002/anie.202210958
- S.-K. Geng, Y. Zheng, S.-Q. Li, H. Su, X. Zhao et al., Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 6(9), 904–912 (2021). https://doi.org/10.1038/s41560-021-00899-2
- C. Lv, L. Zhong, H. Liu, Z. Fang, C. Yan et al., Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 4(10), 868–876 (2021). https://doi.org/10.1038/s41893-021-00741-3
- X. Wei, X. Wen, Y. Liu, C. Chen, C. Xie et al., Oxygen vacancy-mediated selective C–N coupling toward electrocatalytic urea synthesis. J. Am. Chem. Soc. 144(26), 11530–11535 (2022). https://doi.org/10.1021/jacs.2c03452
- M. Yuan, J. Chen, Y. Bai, Z. Liu, J. Zhang et al., Unveiling electrochemical urea synthesis by co-activation of CO2 and N2 with mott-schottky heterostructure catalysts. Angew. Chem. Int. Ed. 60(19), 10910–10918 (2021). https://doi.org/10.1002/anie.202101275
- M. Xia, C. Mao, A. Gu, A.A. Tountas, C. Qiu et al., Solar urea: towards a sustainable fertilizer industry. Angew. Chem. Int. Ed. 61(1), e202110158 (2022). https://doi.org/10.1002/anie.202110158
- S. Al Shehimy, O. Baydoun, S. Denis-Quanquin, J.-C. Mulatier, L. Khrouz et al., Ni-centered coordination-induced spin-state switching triggered by electrical stimulation. J. Am. Chem. Soc. 144(39), 17955–17965 (2022). https://doi.org/10.1021/jacs.2c07196
- Y.-N. Gong, W. Zhong, Y. Li, Y. Qiu, L. Zheng et al., Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J. Am. Chem. Soc. 142(39), 16723–16731 (2020). https://doi.org/10.1021/jacs.0c07206
- G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu et al., Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 12(1), 1734 (2021). https://doi.org/10.1038/s41467-021-21919-5
- Y. Jia, Z. Xue, J. Yang, Q. Liu, J. Xian et al., Tailoring the electronic structure of an atomically dispersed zinc electrocatalyst: Coordination environment regulation for high selectivity oxygen reduction. Angew. Chem. Int. Ed. 61(2), e202110838 (2022). https://doi.org/10.1002/anie.202110838
- S. Luo, K. Elouarzaki, Z.J. Xu, Electrochemistry in magnetic fields. Angew. Chem. Int. Ed. 61(27), e202203564 (2022). https://doi.org/10.1002/anie.202203564
- F. Lu, W. Xie, D. Yi, Y. Wang, F. Zhang et al., Revealing the role of d orbitals of transition-metal-doped titanium oxide on high-efficient oxygen reduction. CCS Chem. 3(11), 180–188 (2021). https://doi.org/10.31635/ccschem.020.202000659
- D. Yi, F. Lu, F. Zhang, S. Liu, B. Zhou et al., Regulating charge transfer of lattice oxygen in single-atom-doped titania for hydrogen evolution. Angew. Chem. Int. Ed. 59(37), 15855–15859 (2020). https://doi.org/10.1002/anie.202004510
- S. Chen, W.-H. Li, W. Jiang, J. Yang, J. Zhu et al., MOF encapsulating n-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem. Int. Ed. 61(4), e202114450 (2022). https://doi.org/10.1002/anie.202114450
- Y. Chen, P. Wang, H. Hao, J. Hong, H. Li et al., Thermal atomization of platinum nanops into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 143(44), 18643–18651 (2021). https://doi.org/10.1021/jacs.1c08581
- H. Kim, D. Shin, W. Yang, D.H. Won, H.-S. Oh et al., Identification of single-atom Ni site active toward electrochemical CO2 conversion to CO. J. Am. Chem. Soc. 143(2), 925–933 (2021). https://doi.org/10.1021/jacs.0c11008
- S. Zhao, Y. Yang, Z. Tang, Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts. Angew. Chem. Int. Ed. 61(11), e202110186 (2022). https://doi.org/10.1002/anie.202110186
- L. Wang, C. Zhu, M. Xu, C. Zhao, J. Gu et al., Boosting activity and stability of metal single-atom catalysts via regulation of coordination number and local composition. J. Am. Chem. Soc. 143(45), 18854–18858 (2021). https://doi.org/10.1021/jacs.1c09498
- C. Pan, F. Wu, J. Mao, W. Wu, G. Zhao et al., Highly stable and selective sensing of hydrogen sulfide in living mouse brain with NiN4 single-atom catalyst-based galvanic redox potentiometry. J. Am. Chem. Soc. 144(32), 14678–14686 (2022). https://doi.org/10.1021/jacs.2c04695
- M. Chung, K. Jin, J.S. Zeng, T.N. Ton, K. Manthiram, Tuning single-atom dopants on manganese oxide for selective electrocatalytic cyclooctene epoxidation. J. Am. Chem. Soc. 144(38), 17416–17422 (2022). https://doi.org/10.1021/jacs.2c04711
- J. Qin, H. Liu, P. Zou, R. Zhang, C. Wang et al., Altering ligand fields in single-atom sites through second-shell anion modulation boosts the oxygen reduction reaction. J. Am. Chem. Soc. 144(5), 2197–2207 (2022). https://doi.org/10.1021/jacs.1c11331
- B.L. Geoghegan, Y. Liu, S. Peredkov, S. Dechert, F. Meyer et al., Combining valence-to-core x-ray emission and Cu k-edge x-ray absorption spectroscopies to experimentally assess oxidation state in organometallic Cu(I)/(II)/(III) complexes. J. Am. Chem. Soc. 144(6), 2520–2534 (2022). https://doi.org/10.1021/jacs.1c09505
- X. Bai, X. Zhao, Y. Zhang, C. Ling, Y. Zhou et al., Dynamic stability of copper single-atom catalysts under working conditions. J. Am. Chem. Soc. 144(37), 17140–17148 (2022). https://doi.org/10.1021/jacs.2c07178
- H. Gu, G. Shi, L. Zhong, L. Liu, H. Zhang et al., A two-dimensional van der waals heterostructure with isolated electron-deficient cobalt sites toward high-efficiency CO2 electroreduction. J. Am. Chem. Soc. 144(47), 21502–21511 (2022). https://doi.org/10.1021/jacs.2c07601
- Y. Deng, Y. Guo, Z. Jia, J.-C. Liu, J. Guo et al., Few-atom Pt ensembles enable efficient catalytic cyclohexane dehydrogenation for hydrogen production. J. Am. Chem. Soc. 144(8), 3535–3542 (2022). https://doi.org/10.1021/jacs.1c12261
- C.T. Kelly, S. Dunne, I.A. Kühne, A. Barker, K. Esien et al., Proton-induced spin state switching in an feiii complex. Angew. Chem. Int. Ed. 62, e202217388 (2023). https://doi.org/10.1002/anie.202217388
- P. Li, X. Zhang, J. Wang, Y. Xue, Y. Yao et al., Engineering O-O species in boron nitrous nanotubes increases olefins for propane oxidative dehydrogenation. J. Am. Chem. Soc. 144(13), 5930–5936 (2022). https://doi.org/10.1021/jacs.1c13563
- T. He, Y. Chen, Q. Liu, B. Lu, X. Song et al., Theory-guided regulation of FeN4 spin state by neighboring Cu atoms for enhanced oxygen reduction electrocatalysis in flexible metal–air batteries. Angew. Chem. Int. Ed. 61(27), e202201007 (2022). https://doi.org/10.1002/anie.202201007
- J. Hao, S. Xie, Q. Huang, Z. Ding, H. Sheng et al., Spin-enhanced C-C coupling in CO2 electroreduction with oxide-derived copper. CCS Chem. (2022). https://doi.org/10.31635/ccschem.022.202202263
- Y. Gao, Q. Yin, Q. Wang, Z. Li, J. Cai et al., Spontaneous (anti)meron chains in the domain walls of van der waals ferromagnetic Fe5−xGeTe2. Adv. Mater. 32(48), 2005228 (2020). https://doi.org/10.1002/adma.202005228
- R.W. Day, D.K. Bediako, M. Rezaee, L.R. Parent, G. Skorupskii et al., Single crystals of electrically conductive two-dimensional metal–organic frameworks: structural and electrical transport properties. ACS Cent. Sci. 5(12), 1959–1964 (2019). https://doi.org/10.1021/acscentsci.9b01006
- A.N. Pham, G. Xing, C.J. Miller, T.D. Waite, Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J. Catal. 301, 54–64 (2013). https://doi.org/10.1016/j.jc-at.2013.01.025
- Y. Sun, Z. Deng, X.-M. Song, H. Li, Z. Huang et al., Bismuth-based free-standing electrodes for ambient-condition ammonia production in neutral media. Nano-Micro Lett. 12(1), 133 (2020). https://doi.org/10.1007/s40820-020-00444-y
- M. Yuan, J. Chen, H. Zhang, Q. Li, L. Zhou et al., Host–guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal–organic framework. Energy Environ. Sci. 15, 2084–2095 (2022). https://doi.org/10.1039/d1ee03918k
- X. Su, Z. Jiang, J. Zhou, H. Liu, D. Zhou et al., Complementary operando spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 13(1), 1322 (2022). https://doi.org/10.1038/s41467-022-29035-8
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- Z. Shen, Y. Yu, Z. Zhao, M.A. Mushtaq, Q. Ji et al., N, O trans-coordinating silver single-atom catalyst for robust and efficient ammonia electrosynthesis from nitrate. Appl. Catal. B 331, 122687 (2023). https://doi.org/10.1016/j.apcatb.2023.122687
- Y. Zhao, F. Li, W. Li, Y. Li, C. Liu et al., Identification of M-NH2-NH2 intermediate and rate determining step for nitrogen reduction with bioinspired sulfur-bonded few catalyst. Angew. Chem. Int. Ed. 60(37), 20331–20341 (2021). https://doi.org/10.1002/anie.202104-918
- Y. Deng, B.S. Yeo, Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy. ACS Catal. 7(11), 7873–7889 (2017). https://doi.org/10.1021/acscatal.7b02561
References
C. Chen, X. Zhu, X. Wen, Y. Zhou, L. Zhou et al., Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12(8), 717–724 (2020). https://doi.org/10.1038/s41557-020-0481-9
C. Guo, W. Zhou, X. Lan, Y. Wang, T. Li et al., Electrochemical upgrading of formic acid to formamide via coupling nitrite co-reduction. J. Am. Chem. Soc. 144(35), 16006–16011 (2022). https://doi.org/10.1021/jacs.2c05660
J. Yang, H. Qi, A. Li, X. Liu, X. Yang et al., Potential-driven restructuring of Cu single atoms to nanops for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 144(27), 12062–12071 (2022). https://doi.org/10.1021/jacs.2c02262
X. Zhang, X. Zhu, S. Bo, C. Chen, M. Qiu et al., Identifying and tailoring C-N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst. Nat. Commun. 13(1), 5337 (2022). https://doi.org/10.1038/s41467-022-33066-6
X. Zhu, X. Zhou, Y. Jing, Y. Li, Electrochemical synthesis of urea on mbenes. Nat. Commun. 12(1), 4080 (2021). https://doi.org/10.1038/s41467-021-24400-5
J. Geng, S. Ji, M. Jin, C. Zhang, M. Xu et al., Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites. Angew. Chem. Int. Ed. 62(6), e202210958 (2023). https://doi.org/10.1002/anie.202210958
S.-K. Geng, Y. Zheng, S.-Q. Li, H. Su, X. Zhao et al., Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 6(9), 904–912 (2021). https://doi.org/10.1038/s41560-021-00899-2
C. Lv, L. Zhong, H. Liu, Z. Fang, C. Yan et al., Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 4(10), 868–876 (2021). https://doi.org/10.1038/s41893-021-00741-3
X. Wei, X. Wen, Y. Liu, C. Chen, C. Xie et al., Oxygen vacancy-mediated selective C–N coupling toward electrocatalytic urea synthesis. J. Am. Chem. Soc. 144(26), 11530–11535 (2022). https://doi.org/10.1021/jacs.2c03452
M. Yuan, J. Chen, Y. Bai, Z. Liu, J. Zhang et al., Unveiling electrochemical urea synthesis by co-activation of CO2 and N2 with mott-schottky heterostructure catalysts. Angew. Chem. Int. Ed. 60(19), 10910–10918 (2021). https://doi.org/10.1002/anie.202101275
M. Xia, C. Mao, A. Gu, A.A. Tountas, C. Qiu et al., Solar urea: towards a sustainable fertilizer industry. Angew. Chem. Int. Ed. 61(1), e202110158 (2022). https://doi.org/10.1002/anie.202110158
S. Al Shehimy, O. Baydoun, S. Denis-Quanquin, J.-C. Mulatier, L. Khrouz et al., Ni-centered coordination-induced spin-state switching triggered by electrical stimulation. J. Am. Chem. Soc. 144(39), 17955–17965 (2022). https://doi.org/10.1021/jacs.2c07196
Y.-N. Gong, W. Zhong, Y. Li, Y. Qiu, L. Zheng et al., Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J. Am. Chem. Soc. 142(39), 16723–16731 (2020). https://doi.org/10.1021/jacs.0c07206
G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu et al., Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 12(1), 1734 (2021). https://doi.org/10.1038/s41467-021-21919-5
Y. Jia, Z. Xue, J. Yang, Q. Liu, J. Xian et al., Tailoring the electronic structure of an atomically dispersed zinc electrocatalyst: Coordination environment regulation for high selectivity oxygen reduction. Angew. Chem. Int. Ed. 61(2), e202110838 (2022). https://doi.org/10.1002/anie.202110838
S. Luo, K. Elouarzaki, Z.J. Xu, Electrochemistry in magnetic fields. Angew. Chem. Int. Ed. 61(27), e202203564 (2022). https://doi.org/10.1002/anie.202203564
F. Lu, W. Xie, D. Yi, Y. Wang, F. Zhang et al., Revealing the role of d orbitals of transition-metal-doped titanium oxide on high-efficient oxygen reduction. CCS Chem. 3(11), 180–188 (2021). https://doi.org/10.31635/ccschem.020.202000659
D. Yi, F. Lu, F. Zhang, S. Liu, B. Zhou et al., Regulating charge transfer of lattice oxygen in single-atom-doped titania for hydrogen evolution. Angew. Chem. Int. Ed. 59(37), 15855–15859 (2020). https://doi.org/10.1002/anie.202004510
S. Chen, W.-H. Li, W. Jiang, J. Yang, J. Zhu et al., MOF encapsulating n-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem. Int. Ed. 61(4), e202114450 (2022). https://doi.org/10.1002/anie.202114450
Y. Chen, P. Wang, H. Hao, J. Hong, H. Li et al., Thermal atomization of platinum nanops into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 143(44), 18643–18651 (2021). https://doi.org/10.1021/jacs.1c08581
H. Kim, D. Shin, W. Yang, D.H. Won, H.-S. Oh et al., Identification of single-atom Ni site active toward electrochemical CO2 conversion to CO. J. Am. Chem. Soc. 143(2), 925–933 (2021). https://doi.org/10.1021/jacs.0c11008
S. Zhao, Y. Yang, Z. Tang, Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts. Angew. Chem. Int. Ed. 61(11), e202110186 (2022). https://doi.org/10.1002/anie.202110186
L. Wang, C. Zhu, M. Xu, C. Zhao, J. Gu et al., Boosting activity and stability of metal single-atom catalysts via regulation of coordination number and local composition. J. Am. Chem. Soc. 143(45), 18854–18858 (2021). https://doi.org/10.1021/jacs.1c09498
C. Pan, F. Wu, J. Mao, W. Wu, G. Zhao et al., Highly stable and selective sensing of hydrogen sulfide in living mouse brain with NiN4 single-atom catalyst-based galvanic redox potentiometry. J. Am. Chem. Soc. 144(32), 14678–14686 (2022). https://doi.org/10.1021/jacs.2c04695
M. Chung, K. Jin, J.S. Zeng, T.N. Ton, K. Manthiram, Tuning single-atom dopants on manganese oxide for selective electrocatalytic cyclooctene epoxidation. J. Am. Chem. Soc. 144(38), 17416–17422 (2022). https://doi.org/10.1021/jacs.2c04711
J. Qin, H. Liu, P. Zou, R. Zhang, C. Wang et al., Altering ligand fields in single-atom sites through second-shell anion modulation boosts the oxygen reduction reaction. J. Am. Chem. Soc. 144(5), 2197–2207 (2022). https://doi.org/10.1021/jacs.1c11331
B.L. Geoghegan, Y. Liu, S. Peredkov, S. Dechert, F. Meyer et al., Combining valence-to-core x-ray emission and Cu k-edge x-ray absorption spectroscopies to experimentally assess oxidation state in organometallic Cu(I)/(II)/(III) complexes. J. Am. Chem. Soc. 144(6), 2520–2534 (2022). https://doi.org/10.1021/jacs.1c09505
X. Bai, X. Zhao, Y. Zhang, C. Ling, Y. Zhou et al., Dynamic stability of copper single-atom catalysts under working conditions. J. Am. Chem. Soc. 144(37), 17140–17148 (2022). https://doi.org/10.1021/jacs.2c07178
H. Gu, G. Shi, L. Zhong, L. Liu, H. Zhang et al., A two-dimensional van der waals heterostructure with isolated electron-deficient cobalt sites toward high-efficiency CO2 electroreduction. J. Am. Chem. Soc. 144(47), 21502–21511 (2022). https://doi.org/10.1021/jacs.2c07601
Y. Deng, Y. Guo, Z. Jia, J.-C. Liu, J. Guo et al., Few-atom Pt ensembles enable efficient catalytic cyclohexane dehydrogenation for hydrogen production. J. Am. Chem. Soc. 144(8), 3535–3542 (2022). https://doi.org/10.1021/jacs.1c12261
C.T. Kelly, S. Dunne, I.A. Kühne, A. Barker, K. Esien et al., Proton-induced spin state switching in an feiii complex. Angew. Chem. Int. Ed. 62, e202217388 (2023). https://doi.org/10.1002/anie.202217388
P. Li, X. Zhang, J. Wang, Y. Xue, Y. Yao et al., Engineering O-O species in boron nitrous nanotubes increases olefins for propane oxidative dehydrogenation. J. Am. Chem. Soc. 144(13), 5930–5936 (2022). https://doi.org/10.1021/jacs.1c13563
T. He, Y. Chen, Q. Liu, B. Lu, X. Song et al., Theory-guided regulation of FeN4 spin state by neighboring Cu atoms for enhanced oxygen reduction electrocatalysis in flexible metal–air batteries. Angew. Chem. Int. Ed. 61(27), e202201007 (2022). https://doi.org/10.1002/anie.202201007
J. Hao, S. Xie, Q. Huang, Z. Ding, H. Sheng et al., Spin-enhanced C-C coupling in CO2 electroreduction with oxide-derived copper. CCS Chem. (2022). https://doi.org/10.31635/ccschem.022.202202263
Y. Gao, Q. Yin, Q. Wang, Z. Li, J. Cai et al., Spontaneous (anti)meron chains in the domain walls of van der waals ferromagnetic Fe5−xGeTe2. Adv. Mater. 32(48), 2005228 (2020). https://doi.org/10.1002/adma.202005228
R.W. Day, D.K. Bediako, M. Rezaee, L.R. Parent, G. Skorupskii et al., Single crystals of electrically conductive two-dimensional metal–organic frameworks: structural and electrical transport properties. ACS Cent. Sci. 5(12), 1959–1964 (2019). https://doi.org/10.1021/acscentsci.9b01006
A.N. Pham, G. Xing, C.J. Miller, T.D. Waite, Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J. Catal. 301, 54–64 (2013). https://doi.org/10.1016/j.jc-at.2013.01.025
Y. Sun, Z. Deng, X.-M. Song, H. Li, Z. Huang et al., Bismuth-based free-standing electrodes for ambient-condition ammonia production in neutral media. Nano-Micro Lett. 12(1), 133 (2020). https://doi.org/10.1007/s40820-020-00444-y
M. Yuan, J. Chen, H. Zhang, Q. Li, L. Zhou et al., Host–guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal–organic framework. Energy Environ. Sci. 15, 2084–2095 (2022). https://doi.org/10.1039/d1ee03918k
X. Su, Z. Jiang, J. Zhou, H. Liu, D. Zhou et al., Complementary operando spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 13(1), 1322 (2022). https://doi.org/10.1038/s41467-022-29035-8
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
Z. Shen, Y. Yu, Z. Zhao, M.A. Mushtaq, Q. Ji et al., N, O trans-coordinating silver single-atom catalyst for robust and efficient ammonia electrosynthesis from nitrate. Appl. Catal. B 331, 122687 (2023). https://doi.org/10.1016/j.apcatb.2023.122687
Y. Zhao, F. Li, W. Li, Y. Li, C. Liu et al., Identification of M-NH2-NH2 intermediate and rate determining step for nitrogen reduction with bioinspired sulfur-bonded few catalyst. Angew. Chem. Int. Ed. 60(37), 20331–20341 (2021). https://doi.org/10.1002/anie.202104-918
Y. Deng, B.S. Yeo, Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy. ACS Catal. 7(11), 7873–7889 (2017). https://doi.org/10.1021/acscatal.7b02561