Coral-Like Yolk–Shell-Structured Nickel Oxide/Carbon Composite Microspheres for High-Performance Li-Ion Storage Anodes
Corresponding Author: Jung Sang Cho
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 3
Abstract
In this study, coral-like yolk–shell-structured NiO/C composite microspheres (denoted as CYS-NiO/C) were prepared using spray pyrolysis. The unique yolk–shell structure was characterized, and the formation mechanism of the structure was proposed. Both the phase separation of the polyvinylpyrrolidone and polystyrene (PS) colloidal solution and the decomposition of the size-controlled PS nanobeads in the droplet played crucial roles in the formation of the unique coral-like yolk–shell structure. The CYS-NiO/C microspheres delivered a reversible discharge capacity of 991 mAh g−1 after 500 cycles at the current density of 1.0 A g−1. The discharge capacity of the CYS-NiO/C microspheres after the 1000th cycle at the current density of 2.0 A g−1 was 635 mAh g−1, and the capacity retention measured from the second cycle was 91%. The final discharge capacities of the CYS-NiO/C microspheres at the current densities of 0.5, 1.5, 3.0, 5.0, 7.0, and 10.0 A g−1 were 753, 648, 560, 490, 440, and 389 mAh g−1, respectively. The synergetic effect of the coral-like yolk–shell structure with well-defined interconnected mesopores and highly conductive carbon resulted in the excellent Li+-ion storage properties of the CYS-NiO/C microspheres.
Highlights:
1 Coral-like yolk–shell-structured nickel oxide/carbon composite microspheres were synthesized.
2 Phase separation and polystyrene nanobead decomposition affected the structure formation.
3 Coral-like yolk with interconnected mesopores provided excellent Li-ion storage properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, C. Wang, Pipe-wire TiO2–Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 17(6), 3830–3836 (2017). https://doi.org/10.1021/acs.nanolett.7b01152
- L. Shen, S. Chen, J. Maier, Y. Yu, Carbon-coated Li3VO4 spheres as constituents of an advanced anode material for high-rate long-life lithium-ion batteries. Adv. Mater. 29(33), 1701571–1701577 (2017). https://doi.org/10.1002/adma.201701571
- J.S. Cho, Y.J. Hong, Y.C. Kang, Design and synthesis of bubble-nanorod-structured Fe2O3 carbon nanofibers as advanced anode material for Li-ion batteries. ACS Nano 9(4), 4026–4035 (2015). https://doi.org/10.1021/acsnano.5b00088
- W. Li, L. Zeng, Y. Wu, Y. Yu, Nanostructured electrode materials for lithium-ion and sodium ion batteries via electrospinning. Sci. China Mater. 59(4), 287–321 (2016). https://doi.org/10.1007/s40843-016-5039-6
- C. Tang, Y. Liu, C. Xu, J. Zhu, X. Wei, L. Zhou, L. He, W. Yang, L. Mai, Ultrafine nickel nanoparticle-enabled SiO2 hierarchical hollow spheres for high-performance lithium storage. Adv. Funct. Mater. 28(3), 1704561 (2018). https://doi.org/10.1002/adfm.201704561
- H. Liu, D. Su, G. Wang, S. Qiao, An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries. J. Mater. Chem. 22(34), 17437–17440 (2012). https://doi.org/10.1039/C2JM33992G
- X. Li, M. Gu, S. Hu, R. Kennard, P. Yan, X. Chen, C. Wang, M.J. Sailor, J.G. Zhang, J. Liu, Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105 (2014). https://doi.org/10.1038/ncomms5105
- J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1(4), 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
- R. Dai, Y. Wang, P. Da, H. Wu, M. Xu, G. Zheng, Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage. Nanoscale 6(21), 13236–13241 (2014). https://doi.org/10.1039/C4NR04378B
- Q. An, F. Lv, Q. Liu, C. Han, K. Zhao, J. Sheng, Q. Wei, M. Yan, L. Mai, Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett. 14(11), 6250–6256 (2014). https://doi.org/10.1021/nl5025694
- C. Yang, Y. Jiang, X. Liu, X. Zhong, Y. Yu, Germanium encapsulated in sulfur and nitrogen co-doped 3D porous carbon as an ultra-long-cycle life anode for lithium ion batteries. J. Mater. Chem. A 4(48), 18711–18716 (2016). https://doi.org/10.1039/C6TA08681K
- H. Li, M. Liang, W. Sun, Y. Wang, Bimetal-organic framework: one-step homogenous formation and its derived mesoporous ternary metal oxide nanorod for high-capacity, high-rate, and long-cycle-life lithium storage. Adv. Funct. Mater. 26(7), 1098–1103 (2016). https://doi.org/10.1002/adfm.201504312
- Z. Chen, M. Zhou, Y. Cao, X. Ai, H. Yang, J. Liu, In situ generation of few-layer graphene coatings on SnO2–SiC core-shell nanoparticles for high-performance lithium-ion storage. Adv. Energy Mater. 2(1), 95–102 (2012). https://doi.org/10.1002/aenm.201100464
- H. Liu, G. Wang, J. Liu, S. Qiao, H. Ahn, Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 21(9), 3046–3052 (2011). https://doi.org/10.1039/C0JM03132A
- Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 6(8), 1502175 (2016). https://doi.org/10.1002/aenm.201502175
- T. Li, X. Li, Z. Wang, H. Guo, Y. Li, J. Wang, A new design concept for preparing nickel-foam-supported metal oxide microspheres with superior electrochemical properties. J. Mater. Chem. A 5(26), 13469–13474 (2017). https://doi.org/10.1039/C7TA02789C
- Z. Cai, L. Xu, M. Yan, C. Han, L. He et al., Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries. Nano Lett. 15(1), 738–744 (2014). https://doi.org/10.1021/nl504427d
- X. Fan, J. Shao, X. Xiao, X. Wang, S. Li, H. Ge, L. Chen, C. Wang, In situ synthesis of SnO2 nanoparticles encapsulated in micro/mesoporous carbon foam as a high-performance anode material for lithium ion batteries. J. Mater. Chem. A 2(43), 18367–18374 (2014). https://doi.org/10.1039/C4TA04278F
- Y.L. Wang, J.J. Xu, H. Wu, M. Xu, Z. Peng, G. Zheng, Hierarchical SnO2–Fe2O3 heterostructures as lithium-ion battery anodes. J. Mater. Chem. 22(41), 21923–21927 (2012). https://doi.org/10.1039/C2JM35255A
- Y. Zhu, S.H. Choi, X. Fan, J. Shin, Z. Ma, M.R. Zachariah, J.W. Choi, C. Wang, Recent progress on spray pyrolysis for high performance electrode materials in lithium and sodium rechargeable batteries. Adv. Energy Mater. 7(7), 1601578 (2017). https://doi.org/10.1002/aenm.201601578
- L. Zhang, K. Zhao, R. Yu, M. Yan, W. Xu et al., Phosphorus enhanced intermolecular interactions of SnO2 and graphene as an ultrastable lithium battery anode. Small 13(20), 1603973 (2017). https://doi.org/10.1002/smll.201603973
- T. Wang, Z. Peng, Y. Wang, J. Tang, G. Zheng, MnO nanoparticle@mesoporous carbon composites grown on conducting substrates featuring high-performance lithium-ion battery, supercapacitor and sensor. Sci. Rep. 3, 2693 (2013). https://doi.org/10.1038/srep02693
- S.M. Lee, S.H. Choi, Y.C. Kang, Electrochemical properties of tin oxide flake/reduced graphene oxide/carbon composite powders as anode materials for lithium-ion batteries. Chem. Eur. J. 20(46), 15203–15207 (2014). https://doi.org/10.1002/chem.201404077
- S.H. Oh, J.S. Park, M.S. Jo, Y.C. Kang, J.S. Cho, Design and synthesis of tube-in-tube structured NiO nanobelts with superior electrochemical properties for lithium-ion storage. Chem. Eng. J. 347, 889–899 (2018). https://doi.org/10.1016/j.cej.2018.04.156
- L. Xia, S. Wang, G. Liu, L. Ding, D. Li, H. Wang, S. Qiao, Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12(7), 853–859 (2016). https://doi.org/10.1002/smll.201503315
- J. Zhu, Y.K. Sharma, Z. Zeng, X. Zhang, M. Srinivasan, S. Mhaisalkar, H. Zhang, H.H. Hng, Q. Yan, Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. J. Phy. Chem. C 115(16), 8400–8406 (2011). https://doi.org/10.1021/jp2002113
- K. Zeng, X. Li, Z. Wang, H. Guo, J. Wang, T. Li, W. Pan, K. Shih, Cave-embedded porous Mn2O3 hollow microsphere as anode material for lithium ion batteries. Electrochim. Acta 247, 795–802 (2017). https://doi.org/10.1016/j.electacta.2017.07.070
- X. Ahang, R. Zhao, Q. Wu, W. Li, C. Shen, L. Ni, H. Yan, G. Daio, M. Chen, Ultrathin WS2 nanosheets vertically embedded in a hollow mesoporous carbon framework—a triple-shell structure with enhanced lithium storage and electrocatalytic properties. J. Mater. Chem. A 6(39), 19004–19012 (2018). https://doi.org/10.1039/C8TA05584J
- J.S. Cho, Y.C. Kang, Nanofibers comprising yolk–shell Sn@ void@SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the kirkendall diffusion effect and their electrochemical properties. Small 11(36), 4673–4681 (2015). https://doi.org/10.1002/smll.201500940
- C. Wu, X. Tong, Y. Ai, D.-S. Liu, P. Yu, J. Wu, Z.M. Wang, A. Review, Enhanced anodes of Li/Na-ion batteries based on yolk–shell structured nanomaterials. Nano-Micro Lett. 10, 40 (2018). https://doi.org/10.1007/s40820-018-0194-4
- X. Zhang, R. Zhao, Q. Wu, W. Li, C. Shen, L. Ni, H. Yan, G. Diao, M. Chen, Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance. ACS Nano 11(8), 8429–8436 (2017). https://doi.org/10.1021/acsnano.7b04078
- H. Zhang, L. Zhou, O. Noonan, D.J. Martin, A.K. Whittaker, C. Yu, Tailoring the void size of iron oxide@carbon yolk–shell structure for optimized lithium storage. Adv. Funct. Mater. 24(27), 4337–4342 (2014). https://doi.org/10.1002/adfm.201400178
- L. Yu, B. Guan, W. Xiao, X.W. Lou, Formation of yolk–shelled Ni–Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv. Energy Mater. 5(21), 1500981 (2015). https://doi.org/10.1002/aenm.201500981
- J.H. Kim, Y.C. Kang, Synthesis of uniquely structured yolk–shell metal oxide microspheres filled with nitrogen-doped graphitic carbon with excellent Li-ion storage performance. Small 13(39), 1701585 (2017). https://doi.org/10.1002/smll.201701585
- W. You, R. Che, Excellent NiO–Ni nanoplate microwave absorber via pinning effect of antiferromagnetic-ferromagnetic interface. ACS Appl. Mater. Interfaces 10(17), 15104–15111 (2018). https://doi.org/10.1021/acsami.8b03610
- B.V. L’vov, Mechanism of carbothermal reduction of iron, cobalt, nickel and copper oxides. Thermochim. Acta 360(2), 109–120 (2000). https://doi.org/10.1016/S0040-6031(00)00540-2
- H. Lai, Q. Wu, J. Zhao, L. Shang, H. Li et al., Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy Environ. Sci. 9(6), 2053–2060 (2016). https://doi.org/10.1039/C6EE00603E
- J.S. Park, S.Y. Jeong, K.M. Jeon, Y.C. Kang, J.S. Cho, Iron diselenide combined with hollow graphitic carbon nanospheres as a high-performance anode material for sodium-ion batteries. Chem. Eng. J. 339, 97–107 (2018). https://doi.org/10.1016/j.cej.2018.01.118
- M. Sevilla, A.B. Fuertes, Catalytic graphitization of templated mesoporous carbons. Carbon 44(3), 468–474 (2006). https://doi.org/10.1016/j.carbon.2005.08.019
- J.S. Cho, J.M. Won, J.K. Lee, Y.C. Kang, Design and synthesis of multiroom-structured metal compounds-carbon hybrid microspheres as anode materials for rechargeable batteries. Nano Energy 26, 466–478 (2016). https://doi.org/10.1016/j.nanoen.2016.06.012
- H. Long, T. Shi, H. Hu, S. Jiang, S. Xi, Z. Tang, Growth of hierarchal mesoporous NiO nanosheets on carbon cloth as binder-free anodes for high-performance flexible lithium-ion batteries. Sci. Rep. 4, 7413 (2014). https://doi.org/10.1038/srep07413
- L. Yu, G. Wan, X. Peng, Z. Dou, X. Li, K. Wang, S. Lin, G. Wang, Fabrication of carbon-coated NiO supported on graphene for high performance supercapacitors. RSC Adv. 6(17), 14199–14204 (2016). https://doi.org/10.1039/C6RA01405D
- J.S. Park, J.S. Cho, Y.C. Kang, Scalable synthesis of NiMoO4 microspheres with numerous empty nanovoids as an advanced anode material for Li-ion batteries. J. Power Sources 379, 278–287 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.050
- Y. Zhu, H. Guo, Y. Wu, C. Cao, S. Tao, Z. Wu, Surface-enabled superior lithium storage of high-quality ultrathin NiO nanosheets. J. Mater. Chem. A 2(21), 7904–7911 (2014). https://doi.org/10.1039/C4TA00257A
- W. Huang, S. Ding, Y. Chen, W. Hao, X. Lai, J. Peng, J. Tu, Y. Cao, X. Li, 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor. Sci. Rep. 7(1), 5220 (2017). https://doi.org/10.1038/s41598-017-05528-1
- G. Meng, Q. Yang, X. Wu, P. Wan, Y. Li, X. Lei, X. Sun, J. Liu, Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor. Nano Energy 30, 831–839 (2016). https://doi.org/10.1016/j.nanoen.2016.09.012
- J.C. Groen, L.A.A. Peffer, J.P. Ramı́rez, Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Micropor. Mesopor. Mater. 60(1-3), 1–17 (2003). https://doi.org/10.1016/S1387-1811(03)00339-1
- G.D. Park, J.H. Kim, Y.J. Choi, Y.C. Kang, Large-scale production of MoO3-reduced graphene oxide powders with superior lithium storage properties by spray-drying process. Electrochim. Acta 173, 581–587 (2015). https://doi.org/10.1016/j.electacta.2015.05.090
- Z. Bai, Z. Ju, C. Guo, Y. Qian, B. Tang, S. Xiong, Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries. Nanoscale 6(6), 3268–3273 (2014). https://doi.org/10.1039/C3NR05676G
- Z. Fan, J. Liang, W. Yu, S. Ding, S. Cheng et al., Ultrathin NiO nanosheets anchored on a highly ordered nanostructured carbon as an enhanced anode material for lithium ion batteries. Nano Energy 16, 152–162 (2015). https://doi.org/10.1016/j.nanoen.2015.06.009
- J.S. Cho, J.M. Won, J.H. Lee, Y.C. Kang, Synthesis and electrochemical properties of spherical and hollow-structured NiO aggregates created by combining the kirkendall effect and Ostwald ripening. Nanoscale 7(46), 19620–19626 (2015). https://doi.org/10.1039/C5NR05930E
- L. Su, Z. Zhou, P. Shen, Ni/C hierarchical nanostructures with Ni nanoparticles highly dispersed in N-containing carbon nanosheets: origin of Li storage capacity. J. Phy. Chem. C 116(45), 23974–23980 (2012). https://doi.org/10.1021/jp310054b
- J.K. Kim, J.H. Kim, Y.C. Kang, Electrochemical properties of multicomponent oxide and selenide microspheres containing Co and Mo components with several tens of vacant nanorooms synthesized by spray pyrolysis. Chem. Eng. J. 333, 665–677 (2018). https://doi.org/10.1016/j.cej.2017.09.169
- L. Su, Y. Zhong, Z. Zhou, Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: a case study of hierarchical core–shell Fe3O4@C and Fe@ C microspheres. J. Mater. Chem. A 1(47), 15158–15166 (2013). https://doi.org/10.1039/C3TA13233A
- J.S. Cho, J.S. Park, Y.C. Kang, Porous FeS nanofibers with numerous nanovoids obtained by kirkendall diffusion effect for use as anode materials for sodium-ion batteries. Nano Res. 10(3), 897–907 (2017). https://doi.org/10.1007/s12274-016-1346-9
- J.S. Cho, S.Y. Lee, H.S. Ju, Y.C. Kang, Synthesis of NiO nanofibers composed of hollow nanospheres with controlled sizes by the nanoscale kirkendall diffusion process and their electrochemical properties. ACS Appl. Mater. Interfaces 7(46), 25641–25647 (2015). https://doi.org/10.1021/acsami.5b08793
- H. Tabassum, R. Zou, A. Mahmood, Z. Liang, Q. Wang et al., A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N Co-doped graphitic nanotubes as high-performance lithium-ion battery anodes. Adv. Mater. 30(8), 1705441 (2018). https://doi.org/10.1002/adma.201705441
- H. Wang, N. Mao, J. Shi, Q. Wang, W. Yu, X. Wang, Cobalt oxide-carbon nanosheet nanoarchitecture as an anode for high-performance lithium-ion battery. ACS Appl. Mater. Interfaces 7(4), 2882–2890 (2015). https://doi.org/10.1021/am508208c
- J. Leng, Z. Wang, X. Li, H. Guo, H. Li, K. Shih, G. Yan, J. Wang, Accurate construction of a hierarchical nickel–cobalt oxide multishell yolk–shell structure with large and ultrafast lithium storage capability. J. Mater. Chem. A 5(29), 14996–15001 (2017). https://doi.org/10.1039/C7TA02956J
References
M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, C. Wang, Pipe-wire TiO2–Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 17(6), 3830–3836 (2017). https://doi.org/10.1021/acs.nanolett.7b01152
L. Shen, S. Chen, J. Maier, Y. Yu, Carbon-coated Li3VO4 spheres as constituents of an advanced anode material for high-rate long-life lithium-ion batteries. Adv. Mater. 29(33), 1701571–1701577 (2017). https://doi.org/10.1002/adma.201701571
J.S. Cho, Y.J. Hong, Y.C. Kang, Design and synthesis of bubble-nanorod-structured Fe2O3 carbon nanofibers as advanced anode material for Li-ion batteries. ACS Nano 9(4), 4026–4035 (2015). https://doi.org/10.1021/acsnano.5b00088
W. Li, L. Zeng, Y. Wu, Y. Yu, Nanostructured electrode materials for lithium-ion and sodium ion batteries via electrospinning. Sci. China Mater. 59(4), 287–321 (2016). https://doi.org/10.1007/s40843-016-5039-6
C. Tang, Y. Liu, C. Xu, J. Zhu, X. Wei, L. Zhou, L. He, W. Yang, L. Mai, Ultrafine nickel nanoparticle-enabled SiO2 hierarchical hollow spheres for high-performance lithium storage. Adv. Funct. Mater. 28(3), 1704561 (2018). https://doi.org/10.1002/adfm.201704561
H. Liu, D. Su, G. Wang, S. Qiao, An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries. J. Mater. Chem. 22(34), 17437–17440 (2012). https://doi.org/10.1039/C2JM33992G
X. Li, M. Gu, S. Hu, R. Kennard, P. Yan, X. Chen, C. Wang, M.J. Sailor, J.G. Zhang, J. Liu, Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105 (2014). https://doi.org/10.1038/ncomms5105
J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1(4), 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
R. Dai, Y. Wang, P. Da, H. Wu, M. Xu, G. Zheng, Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage. Nanoscale 6(21), 13236–13241 (2014). https://doi.org/10.1039/C4NR04378B
Q. An, F. Lv, Q. Liu, C. Han, K. Zhao, J. Sheng, Q. Wei, M. Yan, L. Mai, Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett. 14(11), 6250–6256 (2014). https://doi.org/10.1021/nl5025694
C. Yang, Y. Jiang, X. Liu, X. Zhong, Y. Yu, Germanium encapsulated in sulfur and nitrogen co-doped 3D porous carbon as an ultra-long-cycle life anode for lithium ion batteries. J. Mater. Chem. A 4(48), 18711–18716 (2016). https://doi.org/10.1039/C6TA08681K
H. Li, M. Liang, W. Sun, Y. Wang, Bimetal-organic framework: one-step homogenous formation and its derived mesoporous ternary metal oxide nanorod for high-capacity, high-rate, and long-cycle-life lithium storage. Adv. Funct. Mater. 26(7), 1098–1103 (2016). https://doi.org/10.1002/adfm.201504312
Z. Chen, M. Zhou, Y. Cao, X. Ai, H. Yang, J. Liu, In situ generation of few-layer graphene coatings on SnO2–SiC core-shell nanoparticles for high-performance lithium-ion storage. Adv. Energy Mater. 2(1), 95–102 (2012). https://doi.org/10.1002/aenm.201100464
H. Liu, G. Wang, J. Liu, S. Qiao, H. Ahn, Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 21(9), 3046–3052 (2011). https://doi.org/10.1039/C0JM03132A
Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 6(8), 1502175 (2016). https://doi.org/10.1002/aenm.201502175
T. Li, X. Li, Z. Wang, H. Guo, Y. Li, J. Wang, A new design concept for preparing nickel-foam-supported metal oxide microspheres with superior electrochemical properties. J. Mater. Chem. A 5(26), 13469–13474 (2017). https://doi.org/10.1039/C7TA02789C
Z. Cai, L. Xu, M. Yan, C. Han, L. He et al., Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries. Nano Lett. 15(1), 738–744 (2014). https://doi.org/10.1021/nl504427d
X. Fan, J. Shao, X. Xiao, X. Wang, S. Li, H. Ge, L. Chen, C. Wang, In situ synthesis of SnO2 nanoparticles encapsulated in micro/mesoporous carbon foam as a high-performance anode material for lithium ion batteries. J. Mater. Chem. A 2(43), 18367–18374 (2014). https://doi.org/10.1039/C4TA04278F
Y.L. Wang, J.J. Xu, H. Wu, M. Xu, Z. Peng, G. Zheng, Hierarchical SnO2–Fe2O3 heterostructures as lithium-ion battery anodes. J. Mater. Chem. 22(41), 21923–21927 (2012). https://doi.org/10.1039/C2JM35255A
Y. Zhu, S.H. Choi, X. Fan, J. Shin, Z. Ma, M.R. Zachariah, J.W. Choi, C. Wang, Recent progress on spray pyrolysis for high performance electrode materials in lithium and sodium rechargeable batteries. Adv. Energy Mater. 7(7), 1601578 (2017). https://doi.org/10.1002/aenm.201601578
L. Zhang, K. Zhao, R. Yu, M. Yan, W. Xu et al., Phosphorus enhanced intermolecular interactions of SnO2 and graphene as an ultrastable lithium battery anode. Small 13(20), 1603973 (2017). https://doi.org/10.1002/smll.201603973
T. Wang, Z. Peng, Y. Wang, J. Tang, G. Zheng, MnO nanoparticle@mesoporous carbon composites grown on conducting substrates featuring high-performance lithium-ion battery, supercapacitor and sensor. Sci. Rep. 3, 2693 (2013). https://doi.org/10.1038/srep02693
S.M. Lee, S.H. Choi, Y.C. Kang, Electrochemical properties of tin oxide flake/reduced graphene oxide/carbon composite powders as anode materials for lithium-ion batteries. Chem. Eur. J. 20(46), 15203–15207 (2014). https://doi.org/10.1002/chem.201404077
S.H. Oh, J.S. Park, M.S. Jo, Y.C. Kang, J.S. Cho, Design and synthesis of tube-in-tube structured NiO nanobelts with superior electrochemical properties for lithium-ion storage. Chem. Eng. J. 347, 889–899 (2018). https://doi.org/10.1016/j.cej.2018.04.156
L. Xia, S. Wang, G. Liu, L. Ding, D. Li, H. Wang, S. Qiao, Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12(7), 853–859 (2016). https://doi.org/10.1002/smll.201503315
J. Zhu, Y.K. Sharma, Z. Zeng, X. Zhang, M. Srinivasan, S. Mhaisalkar, H. Zhang, H.H. Hng, Q. Yan, Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. J. Phy. Chem. C 115(16), 8400–8406 (2011). https://doi.org/10.1021/jp2002113
K. Zeng, X. Li, Z. Wang, H. Guo, J. Wang, T. Li, W. Pan, K. Shih, Cave-embedded porous Mn2O3 hollow microsphere as anode material for lithium ion batteries. Electrochim. Acta 247, 795–802 (2017). https://doi.org/10.1016/j.electacta.2017.07.070
X. Ahang, R. Zhao, Q. Wu, W. Li, C. Shen, L. Ni, H. Yan, G. Daio, M. Chen, Ultrathin WS2 nanosheets vertically embedded in a hollow mesoporous carbon framework—a triple-shell structure with enhanced lithium storage and electrocatalytic properties. J. Mater. Chem. A 6(39), 19004–19012 (2018). https://doi.org/10.1039/C8TA05584J
J.S. Cho, Y.C. Kang, Nanofibers comprising yolk–shell Sn@ void@SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the kirkendall diffusion effect and their electrochemical properties. Small 11(36), 4673–4681 (2015). https://doi.org/10.1002/smll.201500940
C. Wu, X. Tong, Y. Ai, D.-S. Liu, P. Yu, J. Wu, Z.M. Wang, A. Review, Enhanced anodes of Li/Na-ion batteries based on yolk–shell structured nanomaterials. Nano-Micro Lett. 10, 40 (2018). https://doi.org/10.1007/s40820-018-0194-4
X. Zhang, R. Zhao, Q. Wu, W. Li, C. Shen, L. Ni, H. Yan, G. Diao, M. Chen, Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance. ACS Nano 11(8), 8429–8436 (2017). https://doi.org/10.1021/acsnano.7b04078
H. Zhang, L. Zhou, O. Noonan, D.J. Martin, A.K. Whittaker, C. Yu, Tailoring the void size of iron oxide@carbon yolk–shell structure for optimized lithium storage. Adv. Funct. Mater. 24(27), 4337–4342 (2014). https://doi.org/10.1002/adfm.201400178
L. Yu, B. Guan, W. Xiao, X.W. Lou, Formation of yolk–shelled Ni–Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv. Energy Mater. 5(21), 1500981 (2015). https://doi.org/10.1002/aenm.201500981
J.H. Kim, Y.C. Kang, Synthesis of uniquely structured yolk–shell metal oxide microspheres filled with nitrogen-doped graphitic carbon with excellent Li-ion storage performance. Small 13(39), 1701585 (2017). https://doi.org/10.1002/smll.201701585
W. You, R. Che, Excellent NiO–Ni nanoplate microwave absorber via pinning effect of antiferromagnetic-ferromagnetic interface. ACS Appl. Mater. Interfaces 10(17), 15104–15111 (2018). https://doi.org/10.1021/acsami.8b03610
B.V. L’vov, Mechanism of carbothermal reduction of iron, cobalt, nickel and copper oxides. Thermochim. Acta 360(2), 109–120 (2000). https://doi.org/10.1016/S0040-6031(00)00540-2
H. Lai, Q. Wu, J. Zhao, L. Shang, H. Li et al., Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy Environ. Sci. 9(6), 2053–2060 (2016). https://doi.org/10.1039/C6EE00603E
J.S. Park, S.Y. Jeong, K.M. Jeon, Y.C. Kang, J.S. Cho, Iron diselenide combined with hollow graphitic carbon nanospheres as a high-performance anode material for sodium-ion batteries. Chem. Eng. J. 339, 97–107 (2018). https://doi.org/10.1016/j.cej.2018.01.118
M. Sevilla, A.B. Fuertes, Catalytic graphitization of templated mesoporous carbons. Carbon 44(3), 468–474 (2006). https://doi.org/10.1016/j.carbon.2005.08.019
J.S. Cho, J.M. Won, J.K. Lee, Y.C. Kang, Design and synthesis of multiroom-structured metal compounds-carbon hybrid microspheres as anode materials for rechargeable batteries. Nano Energy 26, 466–478 (2016). https://doi.org/10.1016/j.nanoen.2016.06.012
H. Long, T. Shi, H. Hu, S. Jiang, S. Xi, Z. Tang, Growth of hierarchal mesoporous NiO nanosheets on carbon cloth as binder-free anodes for high-performance flexible lithium-ion batteries. Sci. Rep. 4, 7413 (2014). https://doi.org/10.1038/srep07413
L. Yu, G. Wan, X. Peng, Z. Dou, X. Li, K. Wang, S. Lin, G. Wang, Fabrication of carbon-coated NiO supported on graphene for high performance supercapacitors. RSC Adv. 6(17), 14199–14204 (2016). https://doi.org/10.1039/C6RA01405D
J.S. Park, J.S. Cho, Y.C. Kang, Scalable synthesis of NiMoO4 microspheres with numerous empty nanovoids as an advanced anode material for Li-ion batteries. J. Power Sources 379, 278–287 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.050
Y. Zhu, H. Guo, Y. Wu, C. Cao, S. Tao, Z. Wu, Surface-enabled superior lithium storage of high-quality ultrathin NiO nanosheets. J. Mater. Chem. A 2(21), 7904–7911 (2014). https://doi.org/10.1039/C4TA00257A
W. Huang, S. Ding, Y. Chen, W. Hao, X. Lai, J. Peng, J. Tu, Y. Cao, X. Li, 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor. Sci. Rep. 7(1), 5220 (2017). https://doi.org/10.1038/s41598-017-05528-1
G. Meng, Q. Yang, X. Wu, P. Wan, Y. Li, X. Lei, X. Sun, J. Liu, Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor. Nano Energy 30, 831–839 (2016). https://doi.org/10.1016/j.nanoen.2016.09.012
J.C. Groen, L.A.A. Peffer, J.P. Ramı́rez, Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Micropor. Mesopor. Mater. 60(1-3), 1–17 (2003). https://doi.org/10.1016/S1387-1811(03)00339-1
G.D. Park, J.H. Kim, Y.J. Choi, Y.C. Kang, Large-scale production of MoO3-reduced graphene oxide powders with superior lithium storage properties by spray-drying process. Electrochim. Acta 173, 581–587 (2015). https://doi.org/10.1016/j.electacta.2015.05.090
Z. Bai, Z. Ju, C. Guo, Y. Qian, B. Tang, S. Xiong, Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries. Nanoscale 6(6), 3268–3273 (2014). https://doi.org/10.1039/C3NR05676G
Z. Fan, J. Liang, W. Yu, S. Ding, S. Cheng et al., Ultrathin NiO nanosheets anchored on a highly ordered nanostructured carbon as an enhanced anode material for lithium ion batteries. Nano Energy 16, 152–162 (2015). https://doi.org/10.1016/j.nanoen.2015.06.009
J.S. Cho, J.M. Won, J.H. Lee, Y.C. Kang, Synthesis and electrochemical properties of spherical and hollow-structured NiO aggregates created by combining the kirkendall effect and Ostwald ripening. Nanoscale 7(46), 19620–19626 (2015). https://doi.org/10.1039/C5NR05930E
L. Su, Z. Zhou, P. Shen, Ni/C hierarchical nanostructures with Ni nanoparticles highly dispersed in N-containing carbon nanosheets: origin of Li storage capacity. J. Phy. Chem. C 116(45), 23974–23980 (2012). https://doi.org/10.1021/jp310054b
J.K. Kim, J.H. Kim, Y.C. Kang, Electrochemical properties of multicomponent oxide and selenide microspheres containing Co and Mo components with several tens of vacant nanorooms synthesized by spray pyrolysis. Chem. Eng. J. 333, 665–677 (2018). https://doi.org/10.1016/j.cej.2017.09.169
L. Su, Y. Zhong, Z. Zhou, Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: a case study of hierarchical core–shell Fe3O4@C and Fe@ C microspheres. J. Mater. Chem. A 1(47), 15158–15166 (2013). https://doi.org/10.1039/C3TA13233A
J.S. Cho, J.S. Park, Y.C. Kang, Porous FeS nanofibers with numerous nanovoids obtained by kirkendall diffusion effect for use as anode materials for sodium-ion batteries. Nano Res. 10(3), 897–907 (2017). https://doi.org/10.1007/s12274-016-1346-9
J.S. Cho, S.Y. Lee, H.S. Ju, Y.C. Kang, Synthesis of NiO nanofibers composed of hollow nanospheres with controlled sizes by the nanoscale kirkendall diffusion process and their electrochemical properties. ACS Appl. Mater. Interfaces 7(46), 25641–25647 (2015). https://doi.org/10.1021/acsami.5b08793
H. Tabassum, R. Zou, A. Mahmood, Z. Liang, Q. Wang et al., A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N Co-doped graphitic nanotubes as high-performance lithium-ion battery anodes. Adv. Mater. 30(8), 1705441 (2018). https://doi.org/10.1002/adma.201705441
H. Wang, N. Mao, J. Shi, Q. Wang, W. Yu, X. Wang, Cobalt oxide-carbon nanosheet nanoarchitecture as an anode for high-performance lithium-ion battery. ACS Appl. Mater. Interfaces 7(4), 2882–2890 (2015). https://doi.org/10.1021/am508208c
J. Leng, Z. Wang, X. Li, H. Guo, H. Li, K. Shih, G. Yan, J. Wang, Accurate construction of a hierarchical nickel–cobalt oxide multishell yolk–shell structure with large and ultrafast lithium storage capability. J. Mater. Chem. A 5(29), 14996–15001 (2017). https://doi.org/10.1039/C7TA02956J