Carbon-Coated Three-Dimensional MXene/Iron Selenide Ball with Core–Shell Structure for High-Performance Potassium-Ion Batteries
Corresponding Author: Yun Chan Kang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 17
Abstract
Two-dimensional (2D) MXenes are promising as electrode materials for energy storage, owing to their high electronic conductivity and low diffusion barrier. Unfortunately, similar to most 2D materials, MXene nanosheets easily restack during the electrode preparation, which degrades the electrochemical performance of MXene-based materials. A novel synthetic strategy is proposed for converting MXene into restacking-inhibited three-dimensional (3D) balls coated with iron selenides and carbon. This strategy involves the preparation of Fe2O3@carbon/MXene microspheres via a facile ultrasonic spray pyrolysis and subsequent selenization process. Such 3D structuring effectively prevents interlayer restacking, increases the surface area, and accelerates ion transport, while maintaining the attractive properties of MXene. Furthermore, combining iron selenides and carbon with 3D MXene balls offers many more sites for ion storage and enhances the structural robustness of the composite balls. The resultant 3D structured microspheres exhibit a high reversible capacity of 410 mAh g−1 after 200 cycles at 0.1 A g−1 in potassium-ion batteries, corresponding to the capacity retention of 97% as calculated based on 100 cycles. Even at a high current density of 5.0 A g−1, the composite exhibits a discharge capacity of 169 mAh g−1.
Highlights:
1 We propose a novel synthetic strategy for converting MXene nanosheets into 3D balls coated with iron selenides and carbon (FeSex@C/MB), using the ultrasonic spray pyrolysis and thermal treatment.
2 Combining iron selenides and carbon with 3D MXene balls offer many more sites for ion storage and enhance the structural robustness of the composite balls.
3 The resultant shows high electrochemical performances when used in potassium-ion battery in terms of cycling stability and rate capability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.D. He, Z.H. Liu, J.Y. Liao, X. Ding, Q. Hu et al., A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries. J. Mater. Chem. A 7(16), 9629–9637 (2019). https://doi.org/10.1039/C9TA01968E
- Y. Wu, Y. Sun, J. Zheng, J. Rong, H. Li et al., MXenes: advanced materials in potassium ion batteries. Chem. Eng. J. 404, 126565 (2021). https://doi.org/10.1016/j.cej.2020.126565
- Z. Liu, H. Su, Y. Yang, T. Wu, S. Sun et al., Advances and perspectives on transitional metal layered oxides for potassium-ion battery. Energy Stor. Mater. 34, 211–228 (2020). https://doi.org/10.1016/j.ensm.2020.09.010
- J. Jiang, G. Nie, P. Nie, Z. Li, Z. Pan et al., Nanohollow carbon for rechargeable batteries: ongoing progresses and challenges. Nano-Micro Lett. 12, 183 (2020). https://doi.org/10.1007/s40820-020-00521-2
- B. Sheng, L. Wang, H. Huang, H. Yang, R. Xu et al., Boosting potassium storage by integration advantageous of defect engineering and spatial confinement: a case study of Sb2Se3. Small 16(49), 2005272 (2020). https://doi.org/10.1002/smll.202005272
- K. Xie, K. Yuan, X. Li, W. Lu, C. Shen et al., Superior potassium ion storage via vertical MoS2 “nano-rose” with expanded interlayers on graphene. Small 13(42), 1701471 (2017). https://doi.org/10.1002/smll.201701471
- Y. Zhao, J. Zhu, S.J.H. Ong, Q. Yao, X. Shi et al., High-rate and ultralong cycle-life potassium ion batteries enabled by in situ engineering of yolk–shell FeS2@C structure on graphene matrix. Adv. Energy Mater. 8(36), 1802565 (2018). https://doi.org/10.1002/aenm.201802565
- X. Wu, H. Wang, Z. Zhao, B. Huang, Interstratification-assembled 2D black phosphorene and V2CTx MXene as superior anodes for boosting potassium-ion storage. J. Mater. Chem. A 8(25), 12705–12715 (2020). https://doi.org/10.1039/D0TA04506C
- L. Bai, Y. Zhang, W. Tong, L. Sun, H. Huang et al., Graphene for energy storage and conversion: synthesis and interdisciplinary applications. Electrochem. Energy Rev. 3(2), 395–430 (2020). https://doi.org/10.1007/s41918-019-00042-6
- J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett. 13(1), 12 (2021). https://doi.org/10.1007/s40820-020-00541-y
- P. Huang, S. Zhang, H. Ying, Z. Zhang, W. Han, Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanoparticles for superior sodium-ion batteries. Chem. Eng. J. 417, 129161 (2021). https://doi.org/10.1016/j.cej.2021.129161
- Y. Dong, H. Shi, Z.S. Wu, Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv. Funct. Mater. 30(47), 2000706 (2020). https://doi.org/10.1002/adfm.202000706
- F. Ming, H. Liang, G. Huang, Z. Bayhan, H.N. Alshareef, MXenes for rechargeable batteries beyond the lithium-ion. Adv. Mater. 33(1), 2004039 (2021). https://doi.org/10.1002/adma.202004039
- Y.J. Lei, Z.C. Yan, W.H. Lai, S.L. Chou, Y.X. Wang et al., Tailoring MXene-based materials for sodium-ion storage: synthesis, mechanisms, and applications. Electrochem. Energy Rev. 3, 766–792 (2020). https://doi.org/10.1007/s41918-020-00079-y
- R. Zhao, H. Di, X. Hui, D. Zhao, R. Wang et al., Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 13(1), 246–257 (2020). https://doi.org/10.1039/C9EE03250A
- P. Lian, Y. Dong, Z.S. Wu, S. Zheng, X. Wang et al., Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002
- M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
- G. Tontini, M. Greaves, S. Ghosh, V. Bayram, S. Barg, MXene-based 3D porous macrostructures for electrochemical energy storage. J. Phys. Mater. 3, 022001 (2020). https://doi.org/10.1088/2515-7639/ab78f1
- P. Zhang, R.A. Soomro, Z. Guan, N. Sun, B. Xu, 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Stor. Mater. 29, 163–171 (2020). https://doi.org/10.1016/j.ensm.2020.04.016
- J. Li, L. Han, Y. Li, J. Li, G. Zhu et al., MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries. Chem. Eng. J. 380, 122590 (2020). https://doi.org/10.1016/j.cej.2019.122590
- E. Xu, Y. Zhang, H. Wang, Z. Zhu, J. Quan et al., Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries. Chem. Eng. J. 385, 123839 (2020). https://doi.org/10.1016/j.cej.2019.123839
- Z. Xia, X. Chen, H. Ci, Z. Fan, Y. Yi et al., Designing N-doped graphene/ReSe2/Ti3C2 MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries. J. Energy Chem. 53, 155–162 (2021). https://doi.org/10.1016/j.jechem.2020.04.071
- J. Cao, L. Wang, D. Li, Z. Yuan, H. Xu et al., Ti3C2Tx MXene conductive layers supported bio-derived Fex−1Sex/MXene/carbonaceous nanoribbons for high-performance half/full sodium-ion and potassium-ion batteries. Adv. Mater. 33(34), 2101535 (2021). https://doi.org/10.1002/adma.202101535
- G.D. Park, Y.C. Kang, One-pot synthesis of CoSex–rGo composite powders by spray pyrolysis and their application as anode material for sodium-ion batteries. Chem. Eur. J. 22(12), 4140–4146 (2016). https://doi.org/10.1002/chem.201504398
- Y.N. Ko, S.H. Choi, Y.C. Kang, Hollow cobalt selenide microspheres: synthesis and application as anode materials for Na-ion batteries. ACS Appl. Mater. Interfaces 8(10), 6449–6456 (2016). https://doi.org/10.1021/acsami.5b11963
- G.D. Park, J.K. Lee, Y.C. Kang, Synthesis of uniquely structured SnO2 hollow nanoplates and their electrochemical properties for Li-ion storage. Adv. Funct. Mater. 27(4), 1603399 (2017). https://doi.org/10.1002/adfm.201603399
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- F. Zhang, Y. Zhou, Y. Zhang, D. Li, Z. Huang, Facile synthesis of sulfur@titanium carbide MXene as high performance cathode for lithium-sulfur batteries. Nanophotonics 9(7), 2025–2032 (2020). https://doi.org/10.1515/nanoph-2019-0568
- M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 8(32), 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
- Y. Chen, J. Shao, X. Lin, Y. Gu, R. Holze et al., Hollow structured carbon@FeSe nanocomposite as a promising anode material for Li-ion batteries. ChemElectroChem 6(5), 1393–1399 (2019). https://doi.org/10.1002/celc.201801722
- D. Li, J. Zhou, X. Chen, H. Song, Achieving ultrafast and stable Na-ion storage in FeSe2 nanorods/graphene anodes by controlling the surface oxide. ACS Appl. Mater. Interfaces 10(26), 22841–22850 (2018). https://doi.org/10.1021/acsami.8b06318
- B. He, G. Li, J. Li, J. Wang, H. Tong et al., MoSe2@CNT core–shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in lithium-oxygen batteries. Adv. Energy Mater. 11(18), 2003263 (2021). https://doi.org/10.1002/aenm.202003263
- R. Xu, Y. Yao, H. Wang, Y. Yuan, J. Wang et al., Unraveling the nature of excellent potassium storage in small-molecule Se@peapod-like N-doped carbon nanofibers. Adv. Mater. 32(52), 2003879 (2020). https://doi.org/10.1002/adma.202003879
- J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
- C. Shen, L. Wang, A. Zhou, B. Wang, X. Wang et al., Synthesis and electrochemical properties of two-dimensional rGo/Ti3C2Tx nanocomposites. Nanomaterials 8(2), 80 (2018). https://doi.org/10.3390/nano8020080
- E. Satheeshkumar, T. Makaryan, A. Melikyan, H. Minassian, Y. Gogotsi et al., One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Sci. Rep. 6(1), 32049 (2016). https://doi.org/10.1038/srep32049
- V. Natu, M. Benchakar, C. Canaff, A. Habrioux, S. Celerier et al., A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter 4(4), 1224–1251 (2021). https://doi.org/10.1016/j.matt.2021.01.015
- S.Y. Jeong, J.S. Cho, Porous hybrid nanofibers comprising ZnSe/CoSe2/carbon with uniformly distributed pores as anodes for high-performance sodium-ion batteries. Nanomaterials 9(10), 1362 (2019). https://doi.org/10.3390/nano9101362
- S. Ji, L. Zhang, L. Yu, X. Xu, J. Liu, In situ carbon-coating and Ostwald ripening-based route for hollow Ni3S4@C spheres with superior Li-ion storage performances. RSC Adv. 6(104), 101752–101759 (2016). https://doi.org/10.1039/C6RA21677C
- B. Yuan, W. Luan, S. Tu, One-step synthesis of cubic FeS2 and flower-like FeSe2 particles by a solvothermal reduction process. Dalton Trans. 41(3), 772–776 (2012). https://doi.org/10.1039/C1DT11176K
- X. Wei, C. Tang, Q. An, M. Yan, X. Wang et al., FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries. Nano Res. 10(9), 3202–3211 (2017). https://doi.org/10.1007/s12274-017-1537-z
- W. Feng, H. Luo, Y. Wang, S. Zeng, Y. Tan et al., MXenes derived laminated and magnetic composites with excellent microwave absorbing performance. Sci. Rep. 9(1), 3957 (2019). https://doi.org/10.1038/s41598-019-40336-9
- K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S.J. Kim, Titanium carbide sheet based high performance wire type solid state supercapacitors. J. Mater. Chem. A 5(12), 5726–5736 (2017). https://doi.org/10.1039/C6TA11198J
- H. Kim, B. Anasori, Y. Gogotsi, H.N. Alshareef, Thermoelectric properties of two-dimensional molybdenum-based MXenes. Chem. Mater. 29(15), 6472–6479 (2017). https://doi.org/10.1021/acs.chemmater.7b02056
- Z. Li, L. Wang, D. Sun, Y. Zhang, B. Liu et al., Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng. B 191, 33–40 (2015). https://doi.org/10.1016/j.mseb.2014.10.009
- J.S. Park, S.Y. Jeong, K.M. Jeon, Y.C. Kang, J.S. Cho, Iron diselenide combined with hollow graphitic carbon nanospheres as a high-performance anode material for sodium-ion batteries. Chem. Eng. J. 339, 97–107 (2018). https://doi.org/10.1016/j.cej.2018.01.118
- S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita et al., Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 10(3), 3334–3341 (2016). https://doi.org/10.1021/acsnano.5b06958
- Y. Yi, Z. Sun, C. Li, Z. Tian, C. Lu et al., Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors. Adv. Funct. Mater. 30(4), 1903878 (2020). https://doi.org/10.1002/adfm.201903878
- B. Tian, W. Tang, C. Su, Y. Li, Reticular V2O5·0.6H2O xerogel as cathode for rechargeable potassium ion batteries. ACS Appl. Mater. Interfaces 10(1), 642–650 (2018). https://doi.org/10.1021/acsami.7b15407
- S.H. Lim, G.D. Park, D.S. Jung, J.H. Lee, Y.C. Kang, Towards an efficient anode material for Li-ion batteries: understanding the conversion mechanism of nickel hydroxy chloride with Li-ions. J. Mater. Chem. A 8(4), 1939–1946 (2020). https://doi.org/10.1039/C9TA12321K
- J. Liu, S. Xiao, X. Li, Z. Li, X. Li et al., Interface engineering of Fe3Se4/FeSe heterostructure encapsulated in electrospun carbon nanofibers for fast and robust sodium storage. Chem. Eng. J. 417, 129279 (2021). https://doi.org/10.1016/j.cej.2021.129279
- Y. Tang, Z. Zhao, X. Hao, Y. Wei, H. Zhang et al., Cellular carbon-wrapped FeSe2 nanocavities with ultrathin walls and multiple rooms for ion diffusion-confined ultrafast sodium storage. J. Mater. Chem. A 7(9), 4469–4479 (2019). https://doi.org/10.1039/C8TA10614B
- J.K. Kim, Y.C. Kang, Encapsulation of Se into hierarchically porous carbon microspheres with optimized pore structure for advanced Na–Se and K-Se batteries. ACS Nano 14(10), 13203–13216 (2020). https://doi.org/10.1021/acsnano.0c04870
- Y. Liu, C. Yang, Y. Li, F. Zheng, Y. Li et al., FeSe2/nitrogen-doped carbon as anode material for potassium-ion batteries. Chem. Eng. J. 393, 124590 (2020). https://doi.org/10.1016/j.cej.2020.124590
- H. Min, M. Li, H. Shu, X. Zhang, T. Hu et al., FeSe2 nanoparticle embedded in 3D honeycomb-like N-doped carbon architectures coupled with electrolytes engineering boost superior potassium ion storage. Electrochim. Acta 366, 137381 (2021). https://doi.org/10.1016/j.electacta.2020.137381
- Z. Wang, X. Zhang, Y. Zhao, M. Li, T. Tan et al., Preparation and electrochemical properties of pomegranate-shaped Fe2O3/C anodes for Li-ion batteries. Nanoscale Res. Lett. 13(1), 344 (2018). https://doi.org/10.1186/s11671-018-2757-1
- L. Ji, O. Toprakci, M. Alcoutlabi, Y. Yao, Y. Li et al., α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. ACS Appl. Mater. Interfaces 4(5), 2672–2679 (2012). https://doi.org/10.1021/am300333s
- B. Ahmed, D.H. Anjum, Y. Gogotsi, H.N. Alshareef, Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 34, 249–256 (2017). https://doi.org/10.1016/j.nanoen.2017.02.043
- Z. Lin, H. Shao, K. Xu, P.L. Taberna, P. Simon, MXenes as high-rate electrodes for energy storage. Trends Chem. 2(7), 654–664 (2020). https://doi.org/10.1016/j.trechm.2020.04.010
- X. Li, M. Zhang, S. Yuan, C. Lu, Research progress of silicon/carbon anode materials for lithium-ion batteries: Structure design and synthesis method. ChemElectroChem 7(21), 4289–4302 (2020). https://doi.org/10.1002/celc.202001060
- M.M. Gaikwad, C.S. Sharma, In situ graphitized hard carbon xerogel: a promising high-performance anode material for Li-ion batteries. J. Mater. Res. 35(21), 2989–3003 (2020). https://doi.org/10.1557/jmr.2020.293
- D.Y. Jo, J.K. Kim, H.G. Oh, Y.C. Kang, S.K. Park, Chemically integrating MXene nanosheets with N-doped C-coated Si nanoparticles for enhanced Li storage performance. Scr. Mater. 199, 113840 (2021). https://doi.org/10.1016/j.scriptamat.2021.113840
- Y. Fang, X.Y. Yu, X.W. Lou, Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Adv. Mater. 30(21), 1706668 (2018). https://doi.org/10.1002/adma.201706668
- F. Jiang, Y. Bai, L. Zhang, W. Zhao, P. Ge et al., Modified bornite materials with high electrochemical performance for sodium and lithium storage. Energy Stor. Mater. 40, 150–158 (2021). https://doi.org/10.1016/j.ensm.2021.04.046
- R. Sun, S. Liu, Q. Wei, J. Sheng, S. Zhu et al., Mesoporous NiS2 nanospheres anode with pseudocapacitance for high-rate and long-life sodium-ion battery. Small 13(39), 1701744 (2017). https://doi.org/10.1002/smll.201701744
- Y. Che, X. Lin, L. Xing, X. Guan, R. Guo et al., Protective electrode/electrolyte interphases for high energy lithium-ion batteries with p-toluenesulfonyl fluoride electrolyte additive. J. Energy Chem. 52, 361–371 (2021). https://doi.org/10.1016/j.jechem.2020.04.023
References
X.D. He, Z.H. Liu, J.Y. Liao, X. Ding, Q. Hu et al., A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries. J. Mater. Chem. A 7(16), 9629–9637 (2019). https://doi.org/10.1039/C9TA01968E
Y. Wu, Y. Sun, J. Zheng, J. Rong, H. Li et al., MXenes: advanced materials in potassium ion batteries. Chem. Eng. J. 404, 126565 (2021). https://doi.org/10.1016/j.cej.2020.126565
Z. Liu, H. Su, Y. Yang, T. Wu, S. Sun et al., Advances and perspectives on transitional metal layered oxides for potassium-ion battery. Energy Stor. Mater. 34, 211–228 (2020). https://doi.org/10.1016/j.ensm.2020.09.010
J. Jiang, G. Nie, P. Nie, Z. Li, Z. Pan et al., Nanohollow carbon for rechargeable batteries: ongoing progresses and challenges. Nano-Micro Lett. 12, 183 (2020). https://doi.org/10.1007/s40820-020-00521-2
B. Sheng, L. Wang, H. Huang, H. Yang, R. Xu et al., Boosting potassium storage by integration advantageous of defect engineering and spatial confinement: a case study of Sb2Se3. Small 16(49), 2005272 (2020). https://doi.org/10.1002/smll.202005272
K. Xie, K. Yuan, X. Li, W. Lu, C. Shen et al., Superior potassium ion storage via vertical MoS2 “nano-rose” with expanded interlayers on graphene. Small 13(42), 1701471 (2017). https://doi.org/10.1002/smll.201701471
Y. Zhao, J. Zhu, S.J.H. Ong, Q. Yao, X. Shi et al., High-rate and ultralong cycle-life potassium ion batteries enabled by in situ engineering of yolk–shell FeS2@C structure on graphene matrix. Adv. Energy Mater. 8(36), 1802565 (2018). https://doi.org/10.1002/aenm.201802565
X. Wu, H. Wang, Z. Zhao, B. Huang, Interstratification-assembled 2D black phosphorene and V2CTx MXene as superior anodes for boosting potassium-ion storage. J. Mater. Chem. A 8(25), 12705–12715 (2020). https://doi.org/10.1039/D0TA04506C
L. Bai, Y. Zhang, W. Tong, L. Sun, H. Huang et al., Graphene for energy storage and conversion: synthesis and interdisciplinary applications. Electrochem. Energy Rev. 3(2), 395–430 (2020). https://doi.org/10.1007/s41918-019-00042-6
J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett. 13(1), 12 (2021). https://doi.org/10.1007/s40820-020-00541-y
P. Huang, S. Zhang, H. Ying, Z. Zhang, W. Han, Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanoparticles for superior sodium-ion batteries. Chem. Eng. J. 417, 129161 (2021). https://doi.org/10.1016/j.cej.2021.129161
Y. Dong, H. Shi, Z.S. Wu, Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv. Funct. Mater. 30(47), 2000706 (2020). https://doi.org/10.1002/adfm.202000706
F. Ming, H. Liang, G. Huang, Z. Bayhan, H.N. Alshareef, MXenes for rechargeable batteries beyond the lithium-ion. Adv. Mater. 33(1), 2004039 (2021). https://doi.org/10.1002/adma.202004039
Y.J. Lei, Z.C. Yan, W.H. Lai, S.L. Chou, Y.X. Wang et al., Tailoring MXene-based materials for sodium-ion storage: synthesis, mechanisms, and applications. Electrochem. Energy Rev. 3, 766–792 (2020). https://doi.org/10.1007/s41918-020-00079-y
R. Zhao, H. Di, X. Hui, D. Zhao, R. Wang et al., Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 13(1), 246–257 (2020). https://doi.org/10.1039/C9EE03250A
P. Lian, Y. Dong, Z.S. Wu, S. Zheng, X. Wang et al., Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002
M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
G. Tontini, M. Greaves, S. Ghosh, V. Bayram, S. Barg, MXene-based 3D porous macrostructures for electrochemical energy storage. J. Phys. Mater. 3, 022001 (2020). https://doi.org/10.1088/2515-7639/ab78f1
P. Zhang, R.A. Soomro, Z. Guan, N. Sun, B. Xu, 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Stor. Mater. 29, 163–171 (2020). https://doi.org/10.1016/j.ensm.2020.04.016
J. Li, L. Han, Y. Li, J. Li, G. Zhu et al., MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries. Chem. Eng. J. 380, 122590 (2020). https://doi.org/10.1016/j.cej.2019.122590
E. Xu, Y. Zhang, H. Wang, Z. Zhu, J. Quan et al., Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries. Chem. Eng. J. 385, 123839 (2020). https://doi.org/10.1016/j.cej.2019.123839
Z. Xia, X. Chen, H. Ci, Z. Fan, Y. Yi et al., Designing N-doped graphene/ReSe2/Ti3C2 MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries. J. Energy Chem. 53, 155–162 (2021). https://doi.org/10.1016/j.jechem.2020.04.071
J. Cao, L. Wang, D. Li, Z. Yuan, H. Xu et al., Ti3C2Tx MXene conductive layers supported bio-derived Fex−1Sex/MXene/carbonaceous nanoribbons for high-performance half/full sodium-ion and potassium-ion batteries. Adv. Mater. 33(34), 2101535 (2021). https://doi.org/10.1002/adma.202101535
G.D. Park, Y.C. Kang, One-pot synthesis of CoSex–rGo composite powders by spray pyrolysis and their application as anode material for sodium-ion batteries. Chem. Eur. J. 22(12), 4140–4146 (2016). https://doi.org/10.1002/chem.201504398
Y.N. Ko, S.H. Choi, Y.C. Kang, Hollow cobalt selenide microspheres: synthesis and application as anode materials for Na-ion batteries. ACS Appl. Mater. Interfaces 8(10), 6449–6456 (2016). https://doi.org/10.1021/acsami.5b11963
G.D. Park, J.K. Lee, Y.C. Kang, Synthesis of uniquely structured SnO2 hollow nanoplates and their electrochemical properties for Li-ion storage. Adv. Funct. Mater. 27(4), 1603399 (2017). https://doi.org/10.1002/adfm.201603399
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
F. Zhang, Y. Zhou, Y. Zhang, D. Li, Z. Huang, Facile synthesis of sulfur@titanium carbide MXene as high performance cathode for lithium-sulfur batteries. Nanophotonics 9(7), 2025–2032 (2020). https://doi.org/10.1515/nanoph-2019-0568
M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 8(32), 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
Y. Chen, J. Shao, X. Lin, Y. Gu, R. Holze et al., Hollow structured carbon@FeSe nanocomposite as a promising anode material for Li-ion batteries. ChemElectroChem 6(5), 1393–1399 (2019). https://doi.org/10.1002/celc.201801722
D. Li, J. Zhou, X. Chen, H. Song, Achieving ultrafast and stable Na-ion storage in FeSe2 nanorods/graphene anodes by controlling the surface oxide. ACS Appl. Mater. Interfaces 10(26), 22841–22850 (2018). https://doi.org/10.1021/acsami.8b06318
B. He, G. Li, J. Li, J. Wang, H. Tong et al., MoSe2@CNT core–shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in lithium-oxygen batteries. Adv. Energy Mater. 11(18), 2003263 (2021). https://doi.org/10.1002/aenm.202003263
R. Xu, Y. Yao, H. Wang, Y. Yuan, J. Wang et al., Unraveling the nature of excellent potassium storage in small-molecule Se@peapod-like N-doped carbon nanofibers. Adv. Mater. 32(52), 2003879 (2020). https://doi.org/10.1002/adma.202003879
J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
C. Shen, L. Wang, A. Zhou, B. Wang, X. Wang et al., Synthesis and electrochemical properties of two-dimensional rGo/Ti3C2Tx nanocomposites. Nanomaterials 8(2), 80 (2018). https://doi.org/10.3390/nano8020080
E. Satheeshkumar, T. Makaryan, A. Melikyan, H. Minassian, Y. Gogotsi et al., One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Sci. Rep. 6(1), 32049 (2016). https://doi.org/10.1038/srep32049
V. Natu, M. Benchakar, C. Canaff, A. Habrioux, S. Celerier et al., A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter 4(4), 1224–1251 (2021). https://doi.org/10.1016/j.matt.2021.01.015
S.Y. Jeong, J.S. Cho, Porous hybrid nanofibers comprising ZnSe/CoSe2/carbon with uniformly distributed pores as anodes for high-performance sodium-ion batteries. Nanomaterials 9(10), 1362 (2019). https://doi.org/10.3390/nano9101362
S. Ji, L. Zhang, L. Yu, X. Xu, J. Liu, In situ carbon-coating and Ostwald ripening-based route for hollow Ni3S4@C spheres with superior Li-ion storage performances. RSC Adv. 6(104), 101752–101759 (2016). https://doi.org/10.1039/C6RA21677C
B. Yuan, W. Luan, S. Tu, One-step synthesis of cubic FeS2 and flower-like FeSe2 particles by a solvothermal reduction process. Dalton Trans. 41(3), 772–776 (2012). https://doi.org/10.1039/C1DT11176K
X. Wei, C. Tang, Q. An, M. Yan, X. Wang et al., FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries. Nano Res. 10(9), 3202–3211 (2017). https://doi.org/10.1007/s12274-017-1537-z
W. Feng, H. Luo, Y. Wang, S. Zeng, Y. Tan et al., MXenes derived laminated and magnetic composites with excellent microwave absorbing performance. Sci. Rep. 9(1), 3957 (2019). https://doi.org/10.1038/s41598-019-40336-9
K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S.J. Kim, Titanium carbide sheet based high performance wire type solid state supercapacitors. J. Mater. Chem. A 5(12), 5726–5736 (2017). https://doi.org/10.1039/C6TA11198J
H. Kim, B. Anasori, Y. Gogotsi, H.N. Alshareef, Thermoelectric properties of two-dimensional molybdenum-based MXenes. Chem. Mater. 29(15), 6472–6479 (2017). https://doi.org/10.1021/acs.chemmater.7b02056
Z. Li, L. Wang, D. Sun, Y. Zhang, B. Liu et al., Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng. B 191, 33–40 (2015). https://doi.org/10.1016/j.mseb.2014.10.009
J.S. Park, S.Y. Jeong, K.M. Jeon, Y.C. Kang, J.S. Cho, Iron diselenide combined with hollow graphitic carbon nanospheres as a high-performance anode material for sodium-ion batteries. Chem. Eng. J. 339, 97–107 (2018). https://doi.org/10.1016/j.cej.2018.01.118
S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita et al., Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 10(3), 3334–3341 (2016). https://doi.org/10.1021/acsnano.5b06958
Y. Yi, Z. Sun, C. Li, Z. Tian, C. Lu et al., Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors. Adv. Funct. Mater. 30(4), 1903878 (2020). https://doi.org/10.1002/adfm.201903878
B. Tian, W. Tang, C. Su, Y. Li, Reticular V2O5·0.6H2O xerogel as cathode for rechargeable potassium ion batteries. ACS Appl. Mater. Interfaces 10(1), 642–650 (2018). https://doi.org/10.1021/acsami.7b15407
S.H. Lim, G.D. Park, D.S. Jung, J.H. Lee, Y.C. Kang, Towards an efficient anode material for Li-ion batteries: understanding the conversion mechanism of nickel hydroxy chloride with Li-ions. J. Mater. Chem. A 8(4), 1939–1946 (2020). https://doi.org/10.1039/C9TA12321K
J. Liu, S. Xiao, X. Li, Z. Li, X. Li et al., Interface engineering of Fe3Se4/FeSe heterostructure encapsulated in electrospun carbon nanofibers for fast and robust sodium storage. Chem. Eng. J. 417, 129279 (2021). https://doi.org/10.1016/j.cej.2021.129279
Y. Tang, Z. Zhao, X. Hao, Y. Wei, H. Zhang et al., Cellular carbon-wrapped FeSe2 nanocavities with ultrathin walls and multiple rooms for ion diffusion-confined ultrafast sodium storage. J. Mater. Chem. A 7(9), 4469–4479 (2019). https://doi.org/10.1039/C8TA10614B
J.K. Kim, Y.C. Kang, Encapsulation of Se into hierarchically porous carbon microspheres with optimized pore structure for advanced Na–Se and K-Se batteries. ACS Nano 14(10), 13203–13216 (2020). https://doi.org/10.1021/acsnano.0c04870
Y. Liu, C. Yang, Y. Li, F. Zheng, Y. Li et al., FeSe2/nitrogen-doped carbon as anode material for potassium-ion batteries. Chem. Eng. J. 393, 124590 (2020). https://doi.org/10.1016/j.cej.2020.124590
H. Min, M. Li, H. Shu, X. Zhang, T. Hu et al., FeSe2 nanoparticle embedded in 3D honeycomb-like N-doped carbon architectures coupled with electrolytes engineering boost superior potassium ion storage. Electrochim. Acta 366, 137381 (2021). https://doi.org/10.1016/j.electacta.2020.137381
Z. Wang, X. Zhang, Y. Zhao, M. Li, T. Tan et al., Preparation and electrochemical properties of pomegranate-shaped Fe2O3/C anodes for Li-ion batteries. Nanoscale Res. Lett. 13(1), 344 (2018). https://doi.org/10.1186/s11671-018-2757-1
L. Ji, O. Toprakci, M. Alcoutlabi, Y. Yao, Y. Li et al., α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. ACS Appl. Mater. Interfaces 4(5), 2672–2679 (2012). https://doi.org/10.1021/am300333s
B. Ahmed, D.H. Anjum, Y. Gogotsi, H.N. Alshareef, Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 34, 249–256 (2017). https://doi.org/10.1016/j.nanoen.2017.02.043
Z. Lin, H. Shao, K. Xu, P.L. Taberna, P. Simon, MXenes as high-rate electrodes for energy storage. Trends Chem. 2(7), 654–664 (2020). https://doi.org/10.1016/j.trechm.2020.04.010
X. Li, M. Zhang, S. Yuan, C. Lu, Research progress of silicon/carbon anode materials for lithium-ion batteries: Structure design and synthesis method. ChemElectroChem 7(21), 4289–4302 (2020). https://doi.org/10.1002/celc.202001060
M.M. Gaikwad, C.S. Sharma, In situ graphitized hard carbon xerogel: a promising high-performance anode material for Li-ion batteries. J. Mater. Res. 35(21), 2989–3003 (2020). https://doi.org/10.1557/jmr.2020.293
D.Y. Jo, J.K. Kim, H.G. Oh, Y.C. Kang, S.K. Park, Chemically integrating MXene nanosheets with N-doped C-coated Si nanoparticles for enhanced Li storage performance. Scr. Mater. 199, 113840 (2021). https://doi.org/10.1016/j.scriptamat.2021.113840
Y. Fang, X.Y. Yu, X.W. Lou, Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Adv. Mater. 30(21), 1706668 (2018). https://doi.org/10.1002/adma.201706668
F. Jiang, Y. Bai, L. Zhang, W. Zhao, P. Ge et al., Modified bornite materials with high electrochemical performance for sodium and lithium storage. Energy Stor. Mater. 40, 150–158 (2021). https://doi.org/10.1016/j.ensm.2021.04.046
R. Sun, S. Liu, Q. Wei, J. Sheng, S. Zhu et al., Mesoporous NiS2 nanospheres anode with pseudocapacitance for high-rate and long-life sodium-ion battery. Small 13(39), 1701744 (2017). https://doi.org/10.1002/smll.201701744
Y. Che, X. Lin, L. Xing, X. Guan, R. Guo et al., Protective electrode/electrolyte interphases for high energy lithium-ion batteries with p-toluenesulfonyl fluoride electrolyte additive. J. Energy Chem. 52, 361–371 (2021). https://doi.org/10.1016/j.jechem.2020.04.023