MOF-Derived CoSe2@N-Doped Carbon Matrix Confined in Hollow Mesoporous Carbon Nanospheres as High-Performance Anodes for Potassium-Ion Batteries
Corresponding Author: Yun Chan Kang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 9
Abstract
In this work, a novel vacuum-assisted strategy is proposed to homogenously form Metal–organic frameworks within hollow mesoporous carbon nanospheres (HMCSs) via a solid-state reaction. The method is applied to synthesize an ultrafine CoSe2 nanocrystal@N-doped carbon matrix confined within HMCSs (denoted as CoSe2@NC/HMCS) for use as advanced anodes in high-performance potassium-ion batteries (KIBs). The approach involves a solvent-free thermal treatment to form a Co-based zeolitic imidazolate framework (ZIF-67) within the HMCS templates under vacuum conditions and the subsequent selenization. Thermal treatment under vacuum facilitates the infiltration of the cobalt precursor and organic linker into the HMCS and simultaneously transforms them into stable ZIF-67 particles without any solvents. During the subsequent selenization process, the “dual confinement system”, composed of both the N-doped carbon matrix derived from the organic linker and the small-sized pores of HMCS, can effectively suppress the overgrowth of CoSe2 nanocrystals. Thus, the resulting uniquely structured composite exhibits a stable cycling performance (442 mAh g−1 at 0.1 A g−1 after 120 cycles) and excellent rate capability (263 mAh g−1 at 2.0 A g−1) as the anode material for KIBs.
Highlights:
1 A novel vacuum-assisted strategy is proposed to form N-doped carbon-encapsulated CoSe2 nanocrystals within hollow mesoporous carbon nanospheres (CoSe2@NC/HMCS) via a solid-state reaction.
2 The “dual confinement” by both the N-doped carbon matrix derived from 2-methylimidazole and the small-sized pores of the hollow mesoporous carbon nanospheres can effectively prevent the overgrowth of CoSe2 nanocrystals.
3 CoSe2@NC/HMCS exhibits an excellent electrochemical performance as the anode material for KIBs in terms of cycling stability and rate capability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Ma, S. Zhang, Y. Yao, H. Wang, H. Huang et al., Heterostructures of 2D molybdenum dichalcogenide on 2D nitrogen-doped carbon: superior potassium-ion storage and insight into potassium storage mechanism. Adv. Mater. 32(22), 2000958 (2020). https://doi.org/10.1002/adma.202000958
- J. Dong, J. Liao, X. He, Q. Hu, Y. Yu, C. Chen, Graphene encircled KFeSO4F cathode composite for high energy density potassium-ion batteries. Chem. Commun. 56, 10050–10053 (2020). https://doi.org/10.1039/D0CC03795H
- C. Wang, B. Zhang, H. Xia, L. Cao, B. Luo et al., Composition and architecture design of double-shelled Co0.85Se1−xSx@carbon/graphene hollow polyhedron with superior alkali (Li, Na, K)-ion storage. Small 16(17), 1905853 (2020). https://doi.org/10.1002/smll.201905853
- H. Tian, X. Yu, H. Shao, L. Dong, Y. Chen et al., Unlocking few-layered ternary chalcogenides for high-performance potassium-ion storage. Adv. Energy Mater. 9(29), 1901560 (2019). https://doi.org/10.1002/aenm.201901560
- J. Chu, Q. Yu, D. Yang, L. Xing, C.-Y. Lao et al., Thickness-control of ultrathin bimetallic Fe–Mo selenide@N-doped carbon core/shell “nano-crisps” for high-performance potassium-ion batteries. Appl. Mater. Today 13, 344–351 (2018). https://doi.org/10.1016/j.apmt.2018.10.004
- C.A. Etogo, H. Huang, H. Hong, G. Liu, L. Zhang, Metal–organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Storage Mater. 24, 167–176 (2020). https://doi.org/10.1016/j.ensm.2019.08.022
- Y. He, L. Wang, C. Dong, C. Li, X. Ding, Y. Qian, L. Xu, In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater. 23, 35–45 (2019). https://doi.org/10.1016/j.ensm.2019.05.039
- Q. Yu, B. Jiang, J. Hu, C.Y. Lao, Y. Gao et al., Metallic octahedral CoSe2 threaded by N-doped carbon nanotubes: a flexible framework for high-performance potassium-ion batteries. Adv. Sci. 5(10), 1800782 (2018). https://doi.org/10.1002/advs.201800782
- J. Wang, B. Wang, X. Liu, J. Bai, H. Wang, G. Wang, Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem. Eng. J. 382, 123050 (2020). https://doi.org/10.1016/j.cej.2019.123050
- G. Suo, J. Zhang, D. Li, Q. Yu, W. Wang et al., N-doped carbon/ultrathin 2D metallic cobalt selenide core/sheath flexible framework bridged by chemical bonds for high-performance potassium storage. Chem. Eng. J. 388, 124396 (2020). https://doi.org/10.1016/j.cej.2020.124396
- L. Yang, W. Hong, Y. Tian, G. Zou, H. Hou, W. Sun, X. Ji, Heteroatom-doped carbon inlaid with Sb2X3 (x = S, Se) nanodots for high-performance potassium-ion batteries. Chem. Eng. J. 385, 123838 (2020). https://doi.org/10.1016/j.cej.2019.123838
- X. Xu, T. Yang, Q. Zhang, W. Xia, Z. Ding et al., Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes. Chem. Eng. J. 390, 124493 (2020). https://doi.org/10.1016/j.cej.2020.124493
- Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8(26), 1801445 (2018). https://doi.org/10.1002/aenm.201801445
- S.H. Yang, S.-K. Park, Y.C. Kang, Mesoporous CoSe2 nanoclusters threaded with nitrogen-doped carbon nanotubes for high-performance sodium-ion battery anodes. Chem. Eng. J. 370, 1008–1018 (2019). https://doi.org/10.1016/j.cej.2019.03.263
- F. Han, T. Lv, B. Sun, W. Tang, C. Zhang, X. Li, In situ formation of ultrafine CoS2 nanoparticles uniformly encapsulated in N/S-doped carbon polyhedron for advanced sodium-ion batteries. RSC Adv. 7(49), 30699–30706 (2017). https://doi.org/10.1039/C7RA03628K
- Y. Zhang, A. Pan, L. Ding, Z. Zhou, Y. Wang et al., Nitrogen-doped yolk–shell-structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 9(4), 3624–3633 (2017). https://doi.org/10.1021/acsami.6b13153
- Y.M. Chen, L. Yu, X.W. Lou, Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem. Int. Ed. 55(20), 5990–5993 (2016). https://doi.org/10.1002/anie.201600133
- Q. Deng, S. Feng, P. Hui, H. Chen, C. Tian, R. Yang, Y. Xu, Exploration of low-cost microporous Fe(III)-based organic framework as anode material for potassium-ion batteries. J. Alloys Compd. 830, 154714 (2020). https://doi.org/10.1016/j.jallcom.2020.154714
- C. Li, X. Hu, B. Hu, Cobalt(II) dicarboxylate-based metal-organic framework for long-cycling and high-rate potassium-ion battery anode. Electrochim. Acta 253, 439–444 (2017). https://doi.org/10.1016/j.electacta.2017.09.090
- J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi, J. Feng, S. Xiong, Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
- Y. Zhang, N. Zhang, J. Chen, T. Zhang, W. Ge et al., Preparation and lithium storage properties of C@TiO2/3D carbon hollow sphere skeleton composites. J. Alloys Compd. 815, 152511 (2020). https://doi.org/10.1016/j.jallcom.2019.152511
- X. Zhang, C. Shen, H. Wu, Y. Han, X. Wu et al., Filling few-layer ReS2 in hollow mesoporous carbon spheres for boosted lithium/sodium storage properties. Energy Storage Mater. 26, 457–464 (2020). https://doi.org/10.1016/j.ensm.2019.11.019
- G. Lee, W. Na, J. Kim, S. Lee, J. Jang, Improved electrochemical performances of MOF-derived Ni–Co layered double hydroxide complexes using distinctive hollow-in-hollow structures. J. Mater. Chem. A 7(29), 17637–17647 (2019). https://doi.org/10.1039/C9TA05138D
- Y. Zhang, X. Bo, C. Luhana, H. Wang, M. Li, L. Guo, Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability. Chem. Commun. 49(61), 6885–6887 (2013). https://doi.org/10.1039/C3CC43292K
- W. Li, R. Zhao, K. Zhou, C. Shen, X. Zhang et al., Cage-structured MxPy@CNCs (M = Co and Zn) from MOF confined growth in carbon nanocages for superior lithium storage and hydrogen evolution performance. J. Mater. Chem. A 7(14), 8443–8450 (2019). https://doi.org/10.1039/C9TA00054B
- H. Zhang, O. Noonan, X. Huang, Y. Yang, C. Xu, L. Zhou, C. Yu, Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano 10(4), 4579–4586 (2016). https://doi.org/10.1021/acsnano.6b00723
- Q. An, Q. Wei, L. Mai, J. Fei, X. Xu et al., Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. Phys. Chem. Chem. Phys. 15(39), 16828–16833 (2013)
- C. Han, F. Liu, J. Liu, Q. Li, J. Meng et al., Facile template-free synthesis of uniform carbon-confined V2O5 hollow spheres for stable and fast lithium storage. J. Mater. Chem. A 6(15), 6220–6224 (2018). https://doi.org/10.1039/C3CP52624K
- D. Zhang, Y. Zhang, Y. Luo, Y. Zhang, X. Li et al., High-performance asymmetrical supercapacitor composed of rGO-enveloped nickel phosphite hollow spheres and N/S Co-doped rGo aerogel. Nano Res. 11(3), 1651–1663 (2018). https://doi.org/10.1007/s12274-017-1780-3
- V.A. Agubra, L. Zuniga, D. Flores, H. Campos, J. Villarreal, M. Alcoutlabi, A comparative study on the performance of binary SnO2/NiO/C and Sn/C composite nanofibers as alternative anode materials for lithium ion batteries. Electrochim. Acta 224, 608–621 (2017). https://doi.org/10.1016/j.electacta.2016.12.054
- X. Liu, X. Li, J. Yu, Y. Sun, Ultrasmall Sn nanoparticles embedded in N-doped carbon nanospheres as long cycle life anode for lithium ion batteries. Mater. Lett. 223, 203–206 (2018). https://doi.org/10.1016/j.matlet.2018.04.043
- S.-K. Park, J.K. Kim, Y.C. Kang, Excellent sodium-ion storage performances of CoSe2 nanoparticles embedded within N-doped porous graphitic carbon nanocube/carbon nanotube composite. Chem. Eng. J. 328, 546–555 (2017). https://doi.org/10.1016/j.cej.2017.07.079
- H. Chen, S. Chen, M. Fan, C. Li, D. Chen, G. Tian, K. Shu, Bimetallic nickel cobalt selenides: a new kind of electroactive material for high-power energy storage. J. Mater. Chem. A 3(47), 23653–23659 (2015). https://doi.org/10.1039/C5TA08366D
- Q. Zheng, X. Cheng, H. Li, Microwave synthesis of high activity FeSe2/C catalyst toward oxygen reduction reaction. Catalysts 5(3), 1079–1091 (2015). https://doi.org/10.3390/catal5031079
- C. Xia, Q. Jiang, C. Zhao, M.N. Hedhili, H.N. Alshareef, Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 28(1), 77–85 (2016). https://doi.org/10.1002/adma.201503906
- H. Li, D. Gao, X. Cheng, Simple microwave preparation of high activity Se-rich CoSe2/C for oxygen reduction reaction. Electrochim. Acta 138, 232–239 (2014). https://doi.org/10.1016/j.electacta.2014.06.065
- G. Ma, C. Li, F. Liu, M.K. Majeed, Z. Feng et al., Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater. Today Energy 10, 241–248 (2018). https://doi.org/10.1016/j.mtener.2018.09.013
- K. Zou, P. Cai, Y. Tian, J. Li, C. Liu et al., Voltage-induced high-efficient in situ presodiation strategy for sodium ion capacitors. Small Methods 4(3), 1900763 (2020). https://doi.org/10.1002/smtd.201900763
- Y. Yi, Z. Sun, C. Li, Z. Tian, C. Lu et al., Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors. Adv. Funct. Mater. 30(4), 1903878 (2020). https://doi.org/10.1002/adfm.201903878
- B. Tian, W. Tang, C. Su, Y. Li, Reticular V2O5·0.6H2O xerogel as cathode for rechargeable potassium ion batteries. ACS Appl. Mater. Interfaces 10(1), 642–650 (2018). https://doi.org/10.1021/acsami.7b15407
- Y. Tang, Y. Zhang, X. Rui, D. Qi, Y. Luo et al., Conductive inks based on a lithium titanate nanotube gel for high-rate lithium-ion batteries with customized configuration. Adv. Mater. 28(8), 1567–1576 (2016). https://doi.org/10.1002/adma.201505161
- G.D. Park, J.-K. Lee, Y.C. Kang, Electrochemical reaction mechanism of amorphous iron selenite with ultrahigh rate and excellent cyclic stability performance as new anode material for lithium-ion batteries. Chem. Eng. J. 389, 124350 (2020). https://doi.org/10.1016/j.cej.2020.124350
- S.H. Lim, G.D. Park, D.S. Jung, J.-H. Lee, Y.C. Kang, Towards an efficient anode material for Li-ion batteries: understanding the conversion mechanism of nickel hydroxy chloride with Li-ions. J. Mater. Chem. A 8, 1939–1946 (2020). https://doi.org/10.1039/C9TA12321K
- H. Sun, G. Xin, T. Hu, M. Yu, D. Shao, X. Sun, J. Lian, High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 5, 4526 (2014). https://doi.org/10.1038/ncomms5526
- G.D. Park, Y.C. Kang, Enhanced li-ion storage performance of novel tube-in-tube structured nanofibers with hollow metal oxide nanospheres covered with a graphitic carbon layer. Nanoscale 12, 8404–8414 (2020). https://doi.org/10.1039/D0NR00592D
- H. Hu, J. Zhang, B. Guan, X.W. Lou, Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem. Int. Ed. 55(33), 9514–9518 (2016). https://doi.org/10.1002/anie.201603852
- Y. Liu, C. Yang, Y. Li, F. Zheng, Y. Li et al., FeSe2/nitrogen-doped carbon as anode material for potassium-ion batteries. Chem. Eng. J. 393, 124590 (2020). https://doi.org/10.1016/j.cej.2020.124590
- P. Xiong, X. Zhao, Y. Xu, Nitrogen-doped carbon nanotubes derived from metal–organic frameworks for potassium-ion battery anodes. Chemsuschem 11(1), 202–208 (2018). https://doi.org/10.1002/cssc.201701759
- T. Wang, H. Li, S. Shi, T. Liu, G. Yang, Y. Chao, F. Yin, 2D film of carbon nanofibers elastically astricted MnO microparticles: a flexible binder-free anode for highly reversible lithium ion storage. Small 13(20), 1604182 (2017). https://doi.org/10.1002/smll.201604182
- D. Jin, X. Yang, Y. Ou, M. Rao, Y. Zhong et al., Thermal pyrolysis of Si@ZIF-67 into Si@N-doped CNTs towards highly stable lithium storage. Sci. Bull. 65(6), 452–459 (2020). https://doi.org/10.1016/j.scib.2019.12.005
- Y. Fang, R. Hu, B. Liu, Y. Zhang, K. Zhu et al., MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J. Mater. Chem. A 7(10), 5363–5372 (2019). https://doi.org/10.1039/C8TA12069B
- Z. Kangyu, P. Cai, B. Wang, C. Liu, J. Li et al., Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett. 12, 121 (2020). https://doi.org/10.1007/s40820-020-00458-6
- Y. Fang, D. Luan, Y. Chen, S. Gao, X.W. Lou, Rationally designed three-layered Cu2S@ carbon@MoS2 hierarchical nanoboxes for efficient sodium storage. Angew. Chem. Int. Ed. 59(18), 7178–7183 (2020). https://doi.org/10.1002/anie.201915917
- S.-K. Park, Y.C. Kang, MOF-templated N-doped carbon-coated CoSe2 nanorods supported on porous CNT microspheres with excellent sodium-ion storage and electrocatalytic properties. ACS Appl. Mater. Interfaces 10(20), 17203–17213 (2018). https://doi.org/10.1021/acsami.8b03607
- J.H. Choi, S.-K. Park, Y.C. Kang, N-doped carbon coated Ni-Mo sulfide tubular structure decorated with nanobubbles for enhanced sodium storage performance. Chem. Eng. J. 383, 123112 (2020). https://doi.org/10.1016/j.cej.2019.123112
- J.K. Kim, S.-K. Park, J.-S. Park, Y.C. Kang, Uniquely structured composite microspheres of metal sulfides and carbon with cubic nanorooms for highly efficient anode materials for sodium-ion batteries. J. Mater. Chem. A 7(6), 2636–2645 (2019). https://doi.org/10.1039/C8TA11481A
References
M. Ma, S. Zhang, Y. Yao, H. Wang, H. Huang et al., Heterostructures of 2D molybdenum dichalcogenide on 2D nitrogen-doped carbon: superior potassium-ion storage and insight into potassium storage mechanism. Adv. Mater. 32(22), 2000958 (2020). https://doi.org/10.1002/adma.202000958
J. Dong, J. Liao, X. He, Q. Hu, Y. Yu, C. Chen, Graphene encircled KFeSO4F cathode composite for high energy density potassium-ion batteries. Chem. Commun. 56, 10050–10053 (2020). https://doi.org/10.1039/D0CC03795H
C. Wang, B. Zhang, H. Xia, L. Cao, B. Luo et al., Composition and architecture design of double-shelled Co0.85Se1−xSx@carbon/graphene hollow polyhedron with superior alkali (Li, Na, K)-ion storage. Small 16(17), 1905853 (2020). https://doi.org/10.1002/smll.201905853
H. Tian, X. Yu, H. Shao, L. Dong, Y. Chen et al., Unlocking few-layered ternary chalcogenides for high-performance potassium-ion storage. Adv. Energy Mater. 9(29), 1901560 (2019). https://doi.org/10.1002/aenm.201901560
J. Chu, Q. Yu, D. Yang, L. Xing, C.-Y. Lao et al., Thickness-control of ultrathin bimetallic Fe–Mo selenide@N-doped carbon core/shell “nano-crisps” for high-performance potassium-ion batteries. Appl. Mater. Today 13, 344–351 (2018). https://doi.org/10.1016/j.apmt.2018.10.004
C.A. Etogo, H. Huang, H. Hong, G. Liu, L. Zhang, Metal–organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Storage Mater. 24, 167–176 (2020). https://doi.org/10.1016/j.ensm.2019.08.022
Y. He, L. Wang, C. Dong, C. Li, X. Ding, Y. Qian, L. Xu, In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater. 23, 35–45 (2019). https://doi.org/10.1016/j.ensm.2019.05.039
Q. Yu, B. Jiang, J. Hu, C.Y. Lao, Y. Gao et al., Metallic octahedral CoSe2 threaded by N-doped carbon nanotubes: a flexible framework for high-performance potassium-ion batteries. Adv. Sci. 5(10), 1800782 (2018). https://doi.org/10.1002/advs.201800782
J. Wang, B. Wang, X. Liu, J. Bai, H. Wang, G. Wang, Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem. Eng. J. 382, 123050 (2020). https://doi.org/10.1016/j.cej.2019.123050
G. Suo, J. Zhang, D. Li, Q. Yu, W. Wang et al., N-doped carbon/ultrathin 2D metallic cobalt selenide core/sheath flexible framework bridged by chemical bonds for high-performance potassium storage. Chem. Eng. J. 388, 124396 (2020). https://doi.org/10.1016/j.cej.2020.124396
L. Yang, W. Hong, Y. Tian, G. Zou, H. Hou, W. Sun, X. Ji, Heteroatom-doped carbon inlaid with Sb2X3 (x = S, Se) nanodots for high-performance potassium-ion batteries. Chem. Eng. J. 385, 123838 (2020). https://doi.org/10.1016/j.cej.2019.123838
X. Xu, T. Yang, Q. Zhang, W. Xia, Z. Ding et al., Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes. Chem. Eng. J. 390, 124493 (2020). https://doi.org/10.1016/j.cej.2020.124493
Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8(26), 1801445 (2018). https://doi.org/10.1002/aenm.201801445
S.H. Yang, S.-K. Park, Y.C. Kang, Mesoporous CoSe2 nanoclusters threaded with nitrogen-doped carbon nanotubes for high-performance sodium-ion battery anodes. Chem. Eng. J. 370, 1008–1018 (2019). https://doi.org/10.1016/j.cej.2019.03.263
F. Han, T. Lv, B. Sun, W. Tang, C. Zhang, X. Li, In situ formation of ultrafine CoS2 nanoparticles uniformly encapsulated in N/S-doped carbon polyhedron for advanced sodium-ion batteries. RSC Adv. 7(49), 30699–30706 (2017). https://doi.org/10.1039/C7RA03628K
Y. Zhang, A. Pan, L. Ding, Z. Zhou, Y. Wang et al., Nitrogen-doped yolk–shell-structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 9(4), 3624–3633 (2017). https://doi.org/10.1021/acsami.6b13153
Y.M. Chen, L. Yu, X.W. Lou, Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem. Int. Ed. 55(20), 5990–5993 (2016). https://doi.org/10.1002/anie.201600133
Q. Deng, S. Feng, P. Hui, H. Chen, C. Tian, R. Yang, Y. Xu, Exploration of low-cost microporous Fe(III)-based organic framework as anode material for potassium-ion batteries. J. Alloys Compd. 830, 154714 (2020). https://doi.org/10.1016/j.jallcom.2020.154714
C. Li, X. Hu, B. Hu, Cobalt(II) dicarboxylate-based metal-organic framework for long-cycling and high-rate potassium-ion battery anode. Electrochim. Acta 253, 439–444 (2017). https://doi.org/10.1016/j.electacta.2017.09.090
J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi, J. Feng, S. Xiong, Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
Y. Zhang, N. Zhang, J. Chen, T. Zhang, W. Ge et al., Preparation and lithium storage properties of C@TiO2/3D carbon hollow sphere skeleton composites. J. Alloys Compd. 815, 152511 (2020). https://doi.org/10.1016/j.jallcom.2019.152511
X. Zhang, C. Shen, H. Wu, Y. Han, X. Wu et al., Filling few-layer ReS2 in hollow mesoporous carbon spheres for boosted lithium/sodium storage properties. Energy Storage Mater. 26, 457–464 (2020). https://doi.org/10.1016/j.ensm.2019.11.019
G. Lee, W. Na, J. Kim, S. Lee, J. Jang, Improved electrochemical performances of MOF-derived Ni–Co layered double hydroxide complexes using distinctive hollow-in-hollow structures. J. Mater. Chem. A 7(29), 17637–17647 (2019). https://doi.org/10.1039/C9TA05138D
Y. Zhang, X. Bo, C. Luhana, H. Wang, M. Li, L. Guo, Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability. Chem. Commun. 49(61), 6885–6887 (2013). https://doi.org/10.1039/C3CC43292K
W. Li, R. Zhao, K. Zhou, C. Shen, X. Zhang et al., Cage-structured MxPy@CNCs (M = Co and Zn) from MOF confined growth in carbon nanocages for superior lithium storage and hydrogen evolution performance. J. Mater. Chem. A 7(14), 8443–8450 (2019). https://doi.org/10.1039/C9TA00054B
H. Zhang, O. Noonan, X. Huang, Y. Yang, C. Xu, L. Zhou, C. Yu, Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano 10(4), 4579–4586 (2016). https://doi.org/10.1021/acsnano.6b00723
Q. An, Q. Wei, L. Mai, J. Fei, X. Xu et al., Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. Phys. Chem. Chem. Phys. 15(39), 16828–16833 (2013)
C. Han, F. Liu, J. Liu, Q. Li, J. Meng et al., Facile template-free synthesis of uniform carbon-confined V2O5 hollow spheres for stable and fast lithium storage. J. Mater. Chem. A 6(15), 6220–6224 (2018). https://doi.org/10.1039/C3CP52624K
D. Zhang, Y. Zhang, Y. Luo, Y. Zhang, X. Li et al., High-performance asymmetrical supercapacitor composed of rGO-enveloped nickel phosphite hollow spheres and N/S Co-doped rGo aerogel. Nano Res. 11(3), 1651–1663 (2018). https://doi.org/10.1007/s12274-017-1780-3
V.A. Agubra, L. Zuniga, D. Flores, H. Campos, J. Villarreal, M. Alcoutlabi, A comparative study on the performance of binary SnO2/NiO/C and Sn/C composite nanofibers as alternative anode materials for lithium ion batteries. Electrochim. Acta 224, 608–621 (2017). https://doi.org/10.1016/j.electacta.2016.12.054
X. Liu, X. Li, J. Yu, Y. Sun, Ultrasmall Sn nanoparticles embedded in N-doped carbon nanospheres as long cycle life anode for lithium ion batteries. Mater. Lett. 223, 203–206 (2018). https://doi.org/10.1016/j.matlet.2018.04.043
S.-K. Park, J.K. Kim, Y.C. Kang, Excellent sodium-ion storage performances of CoSe2 nanoparticles embedded within N-doped porous graphitic carbon nanocube/carbon nanotube composite. Chem. Eng. J. 328, 546–555 (2017). https://doi.org/10.1016/j.cej.2017.07.079
H. Chen, S. Chen, M. Fan, C. Li, D. Chen, G. Tian, K. Shu, Bimetallic nickel cobalt selenides: a new kind of electroactive material for high-power energy storage. J. Mater. Chem. A 3(47), 23653–23659 (2015). https://doi.org/10.1039/C5TA08366D
Q. Zheng, X. Cheng, H. Li, Microwave synthesis of high activity FeSe2/C catalyst toward oxygen reduction reaction. Catalysts 5(3), 1079–1091 (2015). https://doi.org/10.3390/catal5031079
C. Xia, Q. Jiang, C. Zhao, M.N. Hedhili, H.N. Alshareef, Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 28(1), 77–85 (2016). https://doi.org/10.1002/adma.201503906
H. Li, D. Gao, X. Cheng, Simple microwave preparation of high activity Se-rich CoSe2/C for oxygen reduction reaction. Electrochim. Acta 138, 232–239 (2014). https://doi.org/10.1016/j.electacta.2014.06.065
G. Ma, C. Li, F. Liu, M.K. Majeed, Z. Feng et al., Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater. Today Energy 10, 241–248 (2018). https://doi.org/10.1016/j.mtener.2018.09.013
K. Zou, P. Cai, Y. Tian, J. Li, C. Liu et al., Voltage-induced high-efficient in situ presodiation strategy for sodium ion capacitors. Small Methods 4(3), 1900763 (2020). https://doi.org/10.1002/smtd.201900763
Y. Yi, Z. Sun, C. Li, Z. Tian, C. Lu et al., Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors. Adv. Funct. Mater. 30(4), 1903878 (2020). https://doi.org/10.1002/adfm.201903878
B. Tian, W. Tang, C. Su, Y. Li, Reticular V2O5·0.6H2O xerogel as cathode for rechargeable potassium ion batteries. ACS Appl. Mater. Interfaces 10(1), 642–650 (2018). https://doi.org/10.1021/acsami.7b15407
Y. Tang, Y. Zhang, X. Rui, D. Qi, Y. Luo et al., Conductive inks based on a lithium titanate nanotube gel for high-rate lithium-ion batteries with customized configuration. Adv. Mater. 28(8), 1567–1576 (2016). https://doi.org/10.1002/adma.201505161
G.D. Park, J.-K. Lee, Y.C. Kang, Electrochemical reaction mechanism of amorphous iron selenite with ultrahigh rate and excellent cyclic stability performance as new anode material for lithium-ion batteries. Chem. Eng. J. 389, 124350 (2020). https://doi.org/10.1016/j.cej.2020.124350
S.H. Lim, G.D. Park, D.S. Jung, J.-H. Lee, Y.C. Kang, Towards an efficient anode material for Li-ion batteries: understanding the conversion mechanism of nickel hydroxy chloride with Li-ions. J. Mater. Chem. A 8, 1939–1946 (2020). https://doi.org/10.1039/C9TA12321K
H. Sun, G. Xin, T. Hu, M. Yu, D. Shao, X. Sun, J. Lian, High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 5, 4526 (2014). https://doi.org/10.1038/ncomms5526
G.D. Park, Y.C. Kang, Enhanced li-ion storage performance of novel tube-in-tube structured nanofibers with hollow metal oxide nanospheres covered with a graphitic carbon layer. Nanoscale 12, 8404–8414 (2020). https://doi.org/10.1039/D0NR00592D
H. Hu, J. Zhang, B. Guan, X.W. Lou, Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem. Int. Ed. 55(33), 9514–9518 (2016). https://doi.org/10.1002/anie.201603852
Y. Liu, C. Yang, Y. Li, F. Zheng, Y. Li et al., FeSe2/nitrogen-doped carbon as anode material for potassium-ion batteries. Chem. Eng. J. 393, 124590 (2020). https://doi.org/10.1016/j.cej.2020.124590
P. Xiong, X. Zhao, Y. Xu, Nitrogen-doped carbon nanotubes derived from metal–organic frameworks for potassium-ion battery anodes. Chemsuschem 11(1), 202–208 (2018). https://doi.org/10.1002/cssc.201701759
T. Wang, H. Li, S. Shi, T. Liu, G. Yang, Y. Chao, F. Yin, 2D film of carbon nanofibers elastically astricted MnO microparticles: a flexible binder-free anode for highly reversible lithium ion storage. Small 13(20), 1604182 (2017). https://doi.org/10.1002/smll.201604182
D. Jin, X. Yang, Y. Ou, M. Rao, Y. Zhong et al., Thermal pyrolysis of Si@ZIF-67 into Si@N-doped CNTs towards highly stable lithium storage. Sci. Bull. 65(6), 452–459 (2020). https://doi.org/10.1016/j.scib.2019.12.005
Y. Fang, R. Hu, B. Liu, Y. Zhang, K. Zhu et al., MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J. Mater. Chem. A 7(10), 5363–5372 (2019). https://doi.org/10.1039/C8TA12069B
Z. Kangyu, P. Cai, B. Wang, C. Liu, J. Li et al., Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett. 12, 121 (2020). https://doi.org/10.1007/s40820-020-00458-6
Y. Fang, D. Luan, Y. Chen, S. Gao, X.W. Lou, Rationally designed three-layered Cu2S@ carbon@MoS2 hierarchical nanoboxes for efficient sodium storage. Angew. Chem. Int. Ed. 59(18), 7178–7183 (2020). https://doi.org/10.1002/anie.201915917
S.-K. Park, Y.C. Kang, MOF-templated N-doped carbon-coated CoSe2 nanorods supported on porous CNT microspheres with excellent sodium-ion storage and electrocatalytic properties. ACS Appl. Mater. Interfaces 10(20), 17203–17213 (2018). https://doi.org/10.1021/acsami.8b03607
J.H. Choi, S.-K. Park, Y.C. Kang, N-doped carbon coated Ni-Mo sulfide tubular structure decorated with nanobubbles for enhanced sodium storage performance. Chem. Eng. J. 383, 123112 (2020). https://doi.org/10.1016/j.cej.2019.123112
J.K. Kim, S.-K. Park, J.-S. Park, Y.C. Kang, Uniquely structured composite microspheres of metal sulfides and carbon with cubic nanorooms for highly efficient anode materials for sodium-ion batteries. J. Mater. Chem. A 7(6), 2636–2645 (2019). https://doi.org/10.1039/C8TA11481A