Porous Microspheres Comprising CoSe2 Nanorods Coated with N-Doped Graphitic C and Polydopamine-Derived C as Anodes for Long-Lived Na-Ion Batteries
Corresponding Author: Jung Sang Cho
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 113
Abstract
Metal–organic framework-templated nitrogen-doped graphitic carbon (NGC) and polydopamine-derived carbon (PDA-derived C)-double coated one-dimensional CoSe2 nanorods supported highly porous three-dimensional microspheres are introduced as anodes for excellent Na-ion batteries, particularly with long-lived cycle under carbonate-based electrolyte system. The microspheres uniformly composed of ZIF-67 polyhedrons and polystyrene nanobeads (ϕ = 40 nm) are synthesized using the facile spray pyrolysis technique, followed by the selenization process (P-CoSe2@NGC NR). Further, the PDA-derived C-coated microspheres are obtained using a solution-based coating approach and the subsequent carbonization process (P-CoSe2@PDA-C NR). The rational synthesis approach benefited from the synergistic effects of dual carbon coating, resulting in a highly conductive and porous nanostructure that could facilitate rapid diffusion of charge species along with efficient electrolyte infiltration and effectively channelize the volume stress. Consequently, the prepared nanostructure exhibits extraordinary electrochemical performance, particularly the ultra-long cycle life stability. For instance, the advanced anode has a discharge capacity of 291 (1000th cycle, average capacity decay of 0.017%) and 142 mAh g−1 (5000th cycle, average capacity decay of 0.011%) at a current density of 0.5 and 2.0 A g−1, respectively.
Highlights:
1 One-dimensional CoSe2 nanorods supported on three-dimensional microspheres were prepared via spray pyrolysis.
2 Nanorods were coated by N-doped graphitic C and polydopamine-derived C.
3 The unique nanostructure exhibits exceptional cycling stability (5000 cycles at 2.0 A g−1).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Li, Z. Zhou, Micro/nanostructured materials for sodium ion batteries and capacitors. Small 14(6), 1702961 (2018). https://doi.org/10.1002/smll.201702961
- S.H. Yang, S.K. Park, J.K. Kim, Y.C. Kang, A MOF-mediated strategy for constructing human backbone-like CoMoS3@N-doped carbon nanostructures with multiple voids as a superior anode for sodium-ion batteries. J. Mater. Chem. A 7(22), 13751–13761 (2019). https://doi.org/10.1039/c9ta03873f
- S.K. Park, J.K. Kim, Y.C. Kang, Excellent sodium-ion storage performances of CoSe2 nanops embedded within N-doped porous graphitic carbon nanocube/carbon nanotube composite. Chem. Eng. J. 328(1), 546–555 (2017). https://doi.org/10.1016/j.cej.2017.07.079
- H. Guo, G. Liu, M. Wang, Y. Zhang, W. Li et al., In-situ fabrication of bone-like CoSe2 nano-thorn loaded on porous carbon cloth as a flexible electrode for Na-ion storage. Chem. Asian J. 15(9), 1493–1499 (2020). https://doi.org/10.1002/asia.202000189
- M. Yousaf, Y. Chen, H. Tabassum, Z. Wang, Y. Wang et al., A dual protection system for heterostructured 3D CNT/CoSe2/C as high areal capacity anode for sodium storage. Adv. Sci. 7(5), 1902907 (2020). https://doi.org/10.1002/advs.201902907
- Z. Ali, M. Asif, X. Huang, T. Tang, Y. Hou, Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries. Adv. Mater. 30(36), 1802745 (2018). https://doi.org/10.1002/adma.201802745
- M.S. Jo, J.S. Lee, S.Y. Jeong, J.K. Kim, Y.C. Kang et al., Golden bristlegrass-like hierarchical graphene nanofibers entangled with N-doped CNTs containing CoSe2 nanocrystals at each node as anodes for high-rate sodium-ion batteries. Small 16(38), 2003391 (2020). https://doi.org/10.1002/smll.202003391
- L. Xia, Z. Yang, B. Tang, F. Li, J. Wei et al., Carbon nanofibers with embedded Sb2Se3 nanops as highly reversible anodes for Na-ion batteries. Small 17(4), 2006016 (2021). https://doi.org/10.1002/smll.202006016
- T. Lu, S. Dong, C. Zhang, L. Zhang, G. Cui, Fabrication of transition metal selenides and their applications in energy storage. Coord. Chem. Rev. 332(1), 75–99 (2017). https://doi.org/10.1016/j.ccr.2016.11.005
- T. Wang, D. Legut, Y. Fan, J. Qin, X. Li et al., Building fast diffusion channel by constructing metal sulfide/metal selenide heterostructures for high-performance sodium ion batteries anode. Nano Lett. 20(8), 6199–6205 (2020). https://doi.org/10.1021/acs.nanolett.0c02595
- E. Xu, P. Li, J. Quan, H. Zhu, L. Wang et al., Dimensional gradient structure of CoSe2@CNTs-MXene anode assisted by ether for high-capacity, stable sodium storage. Nano-Micro Lett. 13, 40 (2021). https://doi.org/10.1007/s40820-020-00562-7
- S.K. Park, Y.C. Kang, MOF-templated N-doped carbon-coated CoSe2 nanorods supported on porous CNT microspheres with excellent sodium-ion storage and electrocatalytic properties. ACS Appl. Mater. Interfaces 10(20), 17203–17213 (2018). https://doi.org/10.1021/acsami.8b03607
- K. Zhang, M. Park, L. Zhou, G.H. Lee, W. Li et al., Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 26(37), 6728–6735 (2016). https://doi.org/10.1002/adfm.201602608
- G. Zhang, J. Shu, L. Xu, X. Cai, W. Zou et al., Pancake-like MOF solid-state electrolytes with fast ion migration for high-performance sodium battery. Nano-Micro Lett. 13, 105 (2021). https://doi.org/10.1007/s40820-021-00628-0
- A. Jomekian, R.M. Behbahani, T. Mohammadi, A. Kargari, High speed spin coating in fabrication of Pebax 1657 based mixed matrix membrane filled with ultra-porous ZIF-8 ps for Co2/CH4 separation. Korean J. Chem. Eng. 34(2), 440–453 (2016). https://doi.org/10.1007/s11814-016-0269-1
- L. Xu, Y. Qin, L. Liu, J. Xiao, Z. Ding, Fabrication of hydrophobic ZIFs based composite membrane with high CO2 absorption performance. Korean J. Chem. Eng. 38(5), 1032–1042 (2021). https://doi.org/10.1007/s11814-021-0762-z
- J. Yang, H. Gao, S. Men, Z. Shi, Z. Lin et al., CoSe2 nanops encapsulated by N-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li- and Na-ion batteries. Adv. Sci. 5(12), 1800763 (2018). https://doi.org/10.1002/advs.201800763
- S.H. Yang, S.K. Park, Y.C. Kang, MOF-derived CoSe2@N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries. Nano-Micro Lett. 13, 9 (2020). https://doi.org/10.1007/s40820-020-00539-6
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13, 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
- Y. Jiang, G. Zou, W. Hong, Y. Zhang, Y. Zhang et al., N-rich carbon-coated Co3S4 ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries. Nanoscale 10(39), 18786–18794 (2018). https://doi.org/10.1039/c8nr05652h
- B. Zhao, Q. Liu, G. Wei, J. Wang, X.Y. Yu et al., Synthesis of CoSe2 nanops embedded in N-doped carbon with conformal TiO2 shell for sodium-ion batteries. Chem. Eng. J. 378(1), 122206 (2019). https://doi.org/10.1016/j.cej.2019.122206
- S. Guo, P. Zhang, Y. Feng, Z. Wang, X. Li et al., Rational design of interlaced Co9S8/carbon composites from ZIF-67/cellulose nanofibers for enhanced lithium storage. J. Alloys Compd. 818(1), 152911 (2020). https://doi.org/10.1016/j.jallcom.2019.152911
- Z. Li, X. Huang, C. Sun, X. Chen, J. Hu et al., Thin-film electrode based on zeolitic imidazolate frameworks (ZIF-8 and ZIF-67) with ultra-stable performance as a lithium-ion battery anode. J. Mater. Sci. 52(7), 3979–3991 (2016). https://doi.org/10.1007/s10853-016-0660-7
- J. Choi, K.S. Yoo, J. Kim, Spray pyrolysis synthesis of mesoporous TiO2 microspheres and their post modification for improved photocatalytic activity. Korean J. Chem. Eng. 35(12), 2480–2486 (2018). https://doi.org/10.1007/s11814-018-0176-8
- T.K. Vo, J. Kim, Facile synthesis of mesoporous Cr2O3 microspheres by spray pyrolysis and their photocatalytic activity: effects of surfactant and pyrolysis temperature. Korean J. Chem. Eng. 37(3), 571–575 (2020). https://doi.org/10.1007/s11814-020-0475-8
- S.Y. Jeong, S.K. Park, Y.C. Kang, J.S. Cho, One-dimensional nanostructure comprising MoSe2 nanosheets and carbon with uniformly defined nanovoids as an anode for high-performance sodium-ion batteries. Chem. Eng. J. 351(1), 559–568 (2018). https://doi.org/10.1016/j.cej.2018.06.130
- J.S. Jang, W.T. Koo, D.H. Kim, I.D. Kim, In situ coupling of multidimensional MOFs for heterogeneous metal-oxide architectures: toward sensitive chemiresistors. ACS Cent. Sci. 4(7), 929–937 (2018). https://doi.org/10.1021/acscentsci.8b00359
- F. Wang, H. Guo, Y. Chai, Y. Li, C. Liu, The controlled regulation of morphology and size of HKUST-1 by “coordination modulation method.” Microporous Mesoporous Mater. 173(1), 181–188 (2013). https://doi.org/10.1016/j.micromeso.2013.02.023
- H. Fan, H. Yu, Y. Zhang, J. Guo, Z. Wang et al., 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@C core-shell nanorods for advanced sodium ion batteries. Energy Storage Mater. 10(1), 48–55 (2018). https://doi.org/10.1016/j.ensm.2017.08.006
- J.S. Lee, M.S. Jo, R. Saroha, D.S. Jung, Y.H. Seon et al., Hierarchically well-developed porous graphene nanofibers comprising N-doped graphitic C-coated cobalt oxide hollow nanospheres as anodes for high-rate Li-ion batteries. Small 16(32), 2002213 (2020). https://doi.org/10.1002/smll.202002213
- Y. Tang, Z. Zhao, X. Hao, Y. Wang, Y. Liu et al., Engineering hollow polyhedrons structured from carbon-coated CoSe2 nanospheres bridged by CNTs with boosted sodium storage performance. J. Mater. Chem. A 5(26), 13591–13600 (2017). https://doi.org/10.1039/c7ta02665j
- C. Xia, Q. Jiang, C. Zhao, M.N. Hedhili, H.N. Alshareef, Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 28(1), 77–85 (2016). https://doi.org/10.1002/adma.201503906
- K. Zhou, J. He, X. Wang, J. Lin, Y. Jing et al., Self-assembled CoSe2 nanocrystals embedded into carbon nanowires as highly efficient catalyst for hydrogen evolution reaction. Electrochim. Acta 231(1), 626–631 (2017). https://doi.org/10.1016/j.electacta.2017.02.089
- S.K. Park, A. Jin, S.H. Yu, J. Ha, B. Jang et al., In situ hydrothermal synthesis of Mn3O4 nanops on nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Electrochim. Acta 120(1), 452–459 (2014). https://doi.org/10.1016/j.electacta.2013.12.018
- J.S. Lee, R. Saroha, S.H. Oh, D.H. Shin, S.M. Jeong et al., Rational design of perforated bimetallic (Ni, Mo) sulfides/N-doped graphitic carbon composite microspheres as anode materials for superior Na-ion batteries. Small Methods 5(9), 2100195 (2021). https://doi.org/10.1002/smtd.202100195
- Y.C. Zhang, Y. You, S. Xin, Y.X. Yin, J. Zhang et al., Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25(1), 120–127 (2016). https://doi.org/10.1016/j.nanoen.2016.04.043
- B. Gendensuren, C. He, E.S. Oh, Preparation of pectin-based dual-crosslinked network as a binder for high performance Si/C anode for LIBs. Korean J. Chem. Eng. 37(2), 366–373 (2020). https://doi.org/10.1007/s11814-019-0438-0
- L. Liu, Y.X. Yin, J.Y. Li, S.H. Wang, Y.G. Guo et al., Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv. Mater. 30(10), 1706216 (2018). https://doi.org/10.1002/adma.201706216
- H. Li, D. Gao, X. Cheng, Simple microwave preparation of high activity Se-rich CoSe2/C for oxygen reduction reaction. Electrochim. Acta 138(1), 232–239 (2014). https://doi.org/10.1016/j.electacta.2014.06.065
- C.E.M. Campos, J.C. Lima, T.A. Grandi, K.D. Machado, V. Drago et al., Hexagonal CoSe formation in mechanical alloyed Co75Se25 mixture. Solid State Commun. 131(3–4), 265–270 (2004). https://doi.org/10.1016/j.ssc.2004.03.044
- J.C. Groen, L.A.A. Peffer, J. Pérez-Ramı́rez, Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 60(1–3), 1–17 (2003). https://doi.org/10.1016/s1387-1811(03)00339-1
- J.K. Kim, G.D. Park, J.H. Kim, S.K. Park, Y.C. Kang, Rational design and synthesis of extremely efficient macroporous CoSe2-CNT composite microspheres for hydrogen evolution reaction. Small 13(27), 1700068 (2017). https://doi.org/10.1002/smll.201700068
- Y. Lu, D. Li, C. Lyu, H. Liu, B. Liu et al., High nitrogen doped carbon nanofiber aerogels for sodium ion batteries: synergy of vacancy defects to boost sodium ion storage. Appl. Surf. Sci. 496(1), 143717 (2019). https://doi.org/10.1016/j.apsusc.2019.143717
- F. Niu, J. Yang, N. Wang, D. Zhang, W. Fan et al., MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 27(23), 1700522 (2017). https://doi.org/10.1002/adfm.201700522
- Z. Lin, Q. Xia, W. Wang, W. Li, S. Chou, Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries. InfoMat 1(3), 376–389 (2019). https://doi.org/10.1002/inf2.12023
- A. Eftekhari, D.W. Kim, Sodium-ion batteries: new opportunities beyond energy storage by lithium. J. Power Sources 395(1), 336–348 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.089
- F. Li, L. Li, T. Yao, T. Liu, L. Zhu et al., Electrospinning synthesis of porous carbon nanofiber supported CoSe2 nanops towards enhanced sodium ion storage. Mater. Chem. Phys. 262(1), 124314 (2021). https://doi.org/10.1016/j.matchemphys.2021.124314
- H. Liang, X. Li, X. Liu, R. Sun, Z. Qin et al., Epitaxial growth induced multilayer yolk-shell structured CoSe2 with promoting transport kinetics of sodium ion half/full batteries. J. Power Sources 517(1), 230729 (2022). https://doi.org/10.1016/j.jpowsour.2021.230729
- F. Kong, J. Wang, J. Chen, S. Tao, B. Qian et al., MOF-derived ultrasmall CoSe2 nanops encapsulated by an N-doped carbon matrix and their superior lithium/sodium storage properties. Chem. Commun. 56(64), 9218–9221 (2020). https://doi.org/10.1039/d0cc03113e
- Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer et al., Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12(7), 3783–3787 (2012). https://doi.org/10.1021/nl3016957
- H.G. Wang, Z. Wu, F.L. Meng, D.L. Ma, X.L. Huang et al., Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. Chemsuschem 6(1), 56–60 (2013). https://doi.org/10.1002/cssc.201200680
- P. Gu, H. Hou, S. Li, L. Huang, X. Ji, Three-dimensional hierarchical framework assembled by cobblestone-like CoSe2@C nanospheres for ultrastable sodium-ion storage. ACS Appl. Mater. Interfaces 10(17), 14716–14726 (2018). https://doi.org/10.1021/acsami.8b01888
- S. Liu, D. Li, G. Zhang, D. Sun, J. Zhou et al., Two-dimensional NiSe2/N-rich carbon nanocomposites derived from Ni-hexamine frameworks for superb Na-ion storage. Appl. Mater. Interfaces 10(40), 34193–34201 (2018). https://doi.org/10.1021/acsami.8b10635
- J.S. Cho, J.K. Lee, Y.C. Kang, Graphitic carbon-coated FeSe2 hollow nanosphere-decorated reduced graphene oxide hybrid nanofibers as an efficient anode material for sodium ion batteries. Sci. Rep. 6(1), 23699 (2016). https://doi.org/10.1038/srep23699
- Y. Xiang, Q. Li, X. Wei, X. Li, Q. Zheng et al., Constructing NiS2/NiSe2 heteroboxes with phase boundaries for Sodium-ion batteries. J. Colloid Interface Sci. 607(1), 752–759 (2022). https://doi.org/10.1016/j.jcis.2021.09.015
- G. Zhang, K. Liu, S. Liu, H. Song, J. Zhou, Flexible Co0.85Se nanosheets/graphene composite film as binder-free anode with high Li-and Na-ion storage performance. J. Alloys Compd. 731(1), 714–722 (2018). https://doi.org/10.1016/j.jallcom.2017.10.094
- B. Li, Y. Liu, X. Jin, S. Jiao, G. Wang et al., Designed formation of hybrid nanobox composed of carbon sheathed CoSe2 anchored on nitrogen-doped carbon skeleton as ultrastable anode for sodium-ion batteries. Small 15(42), 1902881 (2016). https://doi.org/10.1002/smll.201902881
- Z.S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao et al., Graphene anchored with Co3O4 nanops as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6), 3187–3194 (2010). https://doi.org/10.1021/nn100740x
- G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li et al., Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22(18), 5306–5313 (2010). https://doi.org/10.1021/cm101532x
- S.H. Choi, Y.C. Kang, Fe3O4-decorated hollow graphene balls prepared by spray pyrolysis process for ultrafast and long cycle-life lithium ion batteries. Carbon 79(1), 58–66 (2014). https://doi.org/10.1016/j.carbon.2014.07.042
- J. Lin, A.R.O. Raji, K. Nan, Z. Peng, Z. Yan et al., Iron oxide nanop and graphene nanoribbon composite as an anode material for high-performance Li-ion batteries. Adv. Funct. Mater. 24(14), 2044–2048 (2014). https://doi.org/10.1002/adfm.201303023
- Y.H. Seon, Y.C. Kang, J.S. Cho, One-dimensional porous nanostructure composed of few-layered MoSe2 nanosheets and highly densified-entangled-N-doped CNTs as anodes for Na ion batteries. Chem. Eng. J. 425(1), 129051 (2021). https://doi.org/10.1016/j.cej.2021.129051
- H. Kim, K. Lim, G. Yoon, J.H. Park, K. Ku et al., Exploiting lithium-ether co-intercalation in graphite for high-power lithium-ion batteries. Adv. Energy Mater. 7(19), 1700418 (2017). https://doi.org/10.1002/aenm.201700418
- P. Ge, L. Zhang, Y. Yang, W. Sun, Y. Hu et al., Advanced MoSe2/carbon electrodes in Li/Na-ions batteries. Adv. Mater. Interfaces 7(2), 1901651 (2019). https://doi.org/10.1002/admi.201901651
- J. Yang, J. Zhu, J. Xu, C. Zhang, T. Liu, MoSe2 nanosheet array with layered MoS2 heterostructures for superior hydrogen evolution and lithium storage performance. ACS Appl. Mater. Interfaces 9(51), 44550–44559 (2017). https://doi.org/10.1021/acsami.7b15854
- M.S. Jo, S. Ghosh, S.M. Jeong, Y.C. Kang, J.S. Cho, Coral-like yolk-shell-structured nickel oxide/carbon composite microspheres for high-performance Li-ion storage anodes. Nano-Micro Lett. 11, 3 (2019). https://doi.org/10.1007/s40820-018-0234-0
- J.H. Lee, S.H. Oh, S.Y. Jeong, Y.C. Kang, J.S. Cho, Rattle-type porous Sn/C composite fibers with uniformly distributed nanovoids containing metallic Sn nanops for high-performance anode materials in lithium-ion batteries. Nanoscale 10(45), 21483–21491 (2018). https://doi.org/10.1039/c8nr06075d
- S.H. Oh, S.M. Park, D.W. Kang, Y.C. Kang, J.S. Cho, Fibrous network of highly integrated carbon nanotubes/MoO3 composite bundles anchored with MoO3 nanoplates for superior lithium ion battery anodes. J. Ind. Eng. Chem. 83(1), 438–448 (2020). https://doi.org/10.1016/j.jiec.2019.12.017
- Y. Cao, Y. Liu, D. Zhao, J. Zhang, X. Xia et al., K-doped Na3Fe2(PO4)3 cathode materials with high-stable structure for sodium-ion stored energy battery. J. Alloys Compd. 784(1), 939–946 (2019). https://doi.org/10.1016/j.jallcom.2019.01.125
- L.B. Tang, B. Zhang, C.S. An, H. Li, B. Xiao et al., Ultrahigh-rate behavior anode materials of MoSe2 nanosheets anchored on dual-heteroatoms functionalized graphene for sodium-ion batteries. Inorg. Chem. 58(12), 8169–8178 (2019). https://doi.org/10.1021/acs.inorgchem.9b00971
References
F. Li, Z. Zhou, Micro/nanostructured materials for sodium ion batteries and capacitors. Small 14(6), 1702961 (2018). https://doi.org/10.1002/smll.201702961
S.H. Yang, S.K. Park, J.K. Kim, Y.C. Kang, A MOF-mediated strategy for constructing human backbone-like CoMoS3@N-doped carbon nanostructures with multiple voids as a superior anode for sodium-ion batteries. J. Mater. Chem. A 7(22), 13751–13761 (2019). https://doi.org/10.1039/c9ta03873f
S.K. Park, J.K. Kim, Y.C. Kang, Excellent sodium-ion storage performances of CoSe2 nanops embedded within N-doped porous graphitic carbon nanocube/carbon nanotube composite. Chem. Eng. J. 328(1), 546–555 (2017). https://doi.org/10.1016/j.cej.2017.07.079
H. Guo, G. Liu, M. Wang, Y. Zhang, W. Li et al., In-situ fabrication of bone-like CoSe2 nano-thorn loaded on porous carbon cloth as a flexible electrode for Na-ion storage. Chem. Asian J. 15(9), 1493–1499 (2020). https://doi.org/10.1002/asia.202000189
M. Yousaf, Y. Chen, H. Tabassum, Z. Wang, Y. Wang et al., A dual protection system for heterostructured 3D CNT/CoSe2/C as high areal capacity anode for sodium storage. Adv. Sci. 7(5), 1902907 (2020). https://doi.org/10.1002/advs.201902907
Z. Ali, M. Asif, X. Huang, T. Tang, Y. Hou, Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries. Adv. Mater. 30(36), 1802745 (2018). https://doi.org/10.1002/adma.201802745
M.S. Jo, J.S. Lee, S.Y. Jeong, J.K. Kim, Y.C. Kang et al., Golden bristlegrass-like hierarchical graphene nanofibers entangled with N-doped CNTs containing CoSe2 nanocrystals at each node as anodes for high-rate sodium-ion batteries. Small 16(38), 2003391 (2020). https://doi.org/10.1002/smll.202003391
L. Xia, Z. Yang, B. Tang, F. Li, J. Wei et al., Carbon nanofibers with embedded Sb2Se3 nanops as highly reversible anodes for Na-ion batteries. Small 17(4), 2006016 (2021). https://doi.org/10.1002/smll.202006016
T. Lu, S. Dong, C. Zhang, L. Zhang, G. Cui, Fabrication of transition metal selenides and their applications in energy storage. Coord. Chem. Rev. 332(1), 75–99 (2017). https://doi.org/10.1016/j.ccr.2016.11.005
T. Wang, D. Legut, Y. Fan, J. Qin, X. Li et al., Building fast diffusion channel by constructing metal sulfide/metal selenide heterostructures for high-performance sodium ion batteries anode. Nano Lett. 20(8), 6199–6205 (2020). https://doi.org/10.1021/acs.nanolett.0c02595
E. Xu, P. Li, J. Quan, H. Zhu, L. Wang et al., Dimensional gradient structure of CoSe2@CNTs-MXene anode assisted by ether for high-capacity, stable sodium storage. Nano-Micro Lett. 13, 40 (2021). https://doi.org/10.1007/s40820-020-00562-7
S.K. Park, Y.C. Kang, MOF-templated N-doped carbon-coated CoSe2 nanorods supported on porous CNT microspheres with excellent sodium-ion storage and electrocatalytic properties. ACS Appl. Mater. Interfaces 10(20), 17203–17213 (2018). https://doi.org/10.1021/acsami.8b03607
K. Zhang, M. Park, L. Zhou, G.H. Lee, W. Li et al., Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 26(37), 6728–6735 (2016). https://doi.org/10.1002/adfm.201602608
G. Zhang, J. Shu, L. Xu, X. Cai, W. Zou et al., Pancake-like MOF solid-state electrolytes with fast ion migration for high-performance sodium battery. Nano-Micro Lett. 13, 105 (2021). https://doi.org/10.1007/s40820-021-00628-0
A. Jomekian, R.M. Behbahani, T. Mohammadi, A. Kargari, High speed spin coating in fabrication of Pebax 1657 based mixed matrix membrane filled with ultra-porous ZIF-8 ps for Co2/CH4 separation. Korean J. Chem. Eng. 34(2), 440–453 (2016). https://doi.org/10.1007/s11814-016-0269-1
L. Xu, Y. Qin, L. Liu, J. Xiao, Z. Ding, Fabrication of hydrophobic ZIFs based composite membrane with high CO2 absorption performance. Korean J. Chem. Eng. 38(5), 1032–1042 (2021). https://doi.org/10.1007/s11814-021-0762-z
J. Yang, H. Gao, S. Men, Z. Shi, Z. Lin et al., CoSe2 nanops encapsulated by N-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li- and Na-ion batteries. Adv. Sci. 5(12), 1800763 (2018). https://doi.org/10.1002/advs.201800763
S.H. Yang, S.K. Park, Y.C. Kang, MOF-derived CoSe2@N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries. Nano-Micro Lett. 13, 9 (2020). https://doi.org/10.1007/s40820-020-00539-6
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13, 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
Y. Jiang, G. Zou, W. Hong, Y. Zhang, Y. Zhang et al., N-rich carbon-coated Co3S4 ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries. Nanoscale 10(39), 18786–18794 (2018). https://doi.org/10.1039/c8nr05652h
B. Zhao, Q. Liu, G. Wei, J. Wang, X.Y. Yu et al., Synthesis of CoSe2 nanops embedded in N-doped carbon with conformal TiO2 shell for sodium-ion batteries. Chem. Eng. J. 378(1), 122206 (2019). https://doi.org/10.1016/j.cej.2019.122206
S. Guo, P. Zhang, Y. Feng, Z. Wang, X. Li et al., Rational design of interlaced Co9S8/carbon composites from ZIF-67/cellulose nanofibers for enhanced lithium storage. J. Alloys Compd. 818(1), 152911 (2020). https://doi.org/10.1016/j.jallcom.2019.152911
Z. Li, X. Huang, C. Sun, X. Chen, J. Hu et al., Thin-film electrode based on zeolitic imidazolate frameworks (ZIF-8 and ZIF-67) with ultra-stable performance as a lithium-ion battery anode. J. Mater. Sci. 52(7), 3979–3991 (2016). https://doi.org/10.1007/s10853-016-0660-7
J. Choi, K.S. Yoo, J. Kim, Spray pyrolysis synthesis of mesoporous TiO2 microspheres and their post modification for improved photocatalytic activity. Korean J. Chem. Eng. 35(12), 2480–2486 (2018). https://doi.org/10.1007/s11814-018-0176-8
T.K. Vo, J. Kim, Facile synthesis of mesoporous Cr2O3 microspheres by spray pyrolysis and their photocatalytic activity: effects of surfactant and pyrolysis temperature. Korean J. Chem. Eng. 37(3), 571–575 (2020). https://doi.org/10.1007/s11814-020-0475-8
S.Y. Jeong, S.K. Park, Y.C. Kang, J.S. Cho, One-dimensional nanostructure comprising MoSe2 nanosheets and carbon with uniformly defined nanovoids as an anode for high-performance sodium-ion batteries. Chem. Eng. J. 351(1), 559–568 (2018). https://doi.org/10.1016/j.cej.2018.06.130
J.S. Jang, W.T. Koo, D.H. Kim, I.D. Kim, In situ coupling of multidimensional MOFs for heterogeneous metal-oxide architectures: toward sensitive chemiresistors. ACS Cent. Sci. 4(7), 929–937 (2018). https://doi.org/10.1021/acscentsci.8b00359
F. Wang, H. Guo, Y. Chai, Y. Li, C. Liu, The controlled regulation of morphology and size of HKUST-1 by “coordination modulation method.” Microporous Mesoporous Mater. 173(1), 181–188 (2013). https://doi.org/10.1016/j.micromeso.2013.02.023
H. Fan, H. Yu, Y. Zhang, J. Guo, Z. Wang et al., 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@C core-shell nanorods for advanced sodium ion batteries. Energy Storage Mater. 10(1), 48–55 (2018). https://doi.org/10.1016/j.ensm.2017.08.006
J.S. Lee, M.S. Jo, R. Saroha, D.S. Jung, Y.H. Seon et al., Hierarchically well-developed porous graphene nanofibers comprising N-doped graphitic C-coated cobalt oxide hollow nanospheres as anodes for high-rate Li-ion batteries. Small 16(32), 2002213 (2020). https://doi.org/10.1002/smll.202002213
Y. Tang, Z. Zhao, X. Hao, Y. Wang, Y. Liu et al., Engineering hollow polyhedrons structured from carbon-coated CoSe2 nanospheres bridged by CNTs with boosted sodium storage performance. J. Mater. Chem. A 5(26), 13591–13600 (2017). https://doi.org/10.1039/c7ta02665j
C. Xia, Q. Jiang, C. Zhao, M.N. Hedhili, H.N. Alshareef, Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 28(1), 77–85 (2016). https://doi.org/10.1002/adma.201503906
K. Zhou, J. He, X. Wang, J. Lin, Y. Jing et al., Self-assembled CoSe2 nanocrystals embedded into carbon nanowires as highly efficient catalyst for hydrogen evolution reaction. Electrochim. Acta 231(1), 626–631 (2017). https://doi.org/10.1016/j.electacta.2017.02.089
S.K. Park, A. Jin, S.H. Yu, J. Ha, B. Jang et al., In situ hydrothermal synthesis of Mn3O4 nanops on nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Electrochim. Acta 120(1), 452–459 (2014). https://doi.org/10.1016/j.electacta.2013.12.018
J.S. Lee, R. Saroha, S.H. Oh, D.H. Shin, S.M. Jeong et al., Rational design of perforated bimetallic (Ni, Mo) sulfides/N-doped graphitic carbon composite microspheres as anode materials for superior Na-ion batteries. Small Methods 5(9), 2100195 (2021). https://doi.org/10.1002/smtd.202100195
Y.C. Zhang, Y. You, S. Xin, Y.X. Yin, J. Zhang et al., Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25(1), 120–127 (2016). https://doi.org/10.1016/j.nanoen.2016.04.043
B. Gendensuren, C. He, E.S. Oh, Preparation of pectin-based dual-crosslinked network as a binder for high performance Si/C anode for LIBs. Korean J. Chem. Eng. 37(2), 366–373 (2020). https://doi.org/10.1007/s11814-019-0438-0
L. Liu, Y.X. Yin, J.Y. Li, S.H. Wang, Y.G. Guo et al., Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv. Mater. 30(10), 1706216 (2018). https://doi.org/10.1002/adma.201706216
H. Li, D. Gao, X. Cheng, Simple microwave preparation of high activity Se-rich CoSe2/C for oxygen reduction reaction. Electrochim. Acta 138(1), 232–239 (2014). https://doi.org/10.1016/j.electacta.2014.06.065
C.E.M. Campos, J.C. Lima, T.A. Grandi, K.D. Machado, V. Drago et al., Hexagonal CoSe formation in mechanical alloyed Co75Se25 mixture. Solid State Commun. 131(3–4), 265–270 (2004). https://doi.org/10.1016/j.ssc.2004.03.044
J.C. Groen, L.A.A. Peffer, J. Pérez-Ramı́rez, Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 60(1–3), 1–17 (2003). https://doi.org/10.1016/s1387-1811(03)00339-1
J.K. Kim, G.D. Park, J.H. Kim, S.K. Park, Y.C. Kang, Rational design and synthesis of extremely efficient macroporous CoSe2-CNT composite microspheres for hydrogen evolution reaction. Small 13(27), 1700068 (2017). https://doi.org/10.1002/smll.201700068
Y. Lu, D. Li, C. Lyu, H. Liu, B. Liu et al., High nitrogen doped carbon nanofiber aerogels for sodium ion batteries: synergy of vacancy defects to boost sodium ion storage. Appl. Surf. Sci. 496(1), 143717 (2019). https://doi.org/10.1016/j.apsusc.2019.143717
F. Niu, J. Yang, N. Wang, D. Zhang, W. Fan et al., MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 27(23), 1700522 (2017). https://doi.org/10.1002/adfm.201700522
Z. Lin, Q. Xia, W. Wang, W. Li, S. Chou, Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries. InfoMat 1(3), 376–389 (2019). https://doi.org/10.1002/inf2.12023
A. Eftekhari, D.W. Kim, Sodium-ion batteries: new opportunities beyond energy storage by lithium. J. Power Sources 395(1), 336–348 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.089
F. Li, L. Li, T. Yao, T. Liu, L. Zhu et al., Electrospinning synthesis of porous carbon nanofiber supported CoSe2 nanops towards enhanced sodium ion storage. Mater. Chem. Phys. 262(1), 124314 (2021). https://doi.org/10.1016/j.matchemphys.2021.124314
H. Liang, X. Li, X. Liu, R. Sun, Z. Qin et al., Epitaxial growth induced multilayer yolk-shell structured CoSe2 with promoting transport kinetics of sodium ion half/full batteries. J. Power Sources 517(1), 230729 (2022). https://doi.org/10.1016/j.jpowsour.2021.230729
F. Kong, J. Wang, J. Chen, S. Tao, B. Qian et al., MOF-derived ultrasmall CoSe2 nanops encapsulated by an N-doped carbon matrix and their superior lithium/sodium storage properties. Chem. Commun. 56(64), 9218–9221 (2020). https://doi.org/10.1039/d0cc03113e
Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer et al., Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12(7), 3783–3787 (2012). https://doi.org/10.1021/nl3016957
H.G. Wang, Z. Wu, F.L. Meng, D.L. Ma, X.L. Huang et al., Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. Chemsuschem 6(1), 56–60 (2013). https://doi.org/10.1002/cssc.201200680
P. Gu, H. Hou, S. Li, L. Huang, X. Ji, Three-dimensional hierarchical framework assembled by cobblestone-like CoSe2@C nanospheres for ultrastable sodium-ion storage. ACS Appl. Mater. Interfaces 10(17), 14716–14726 (2018). https://doi.org/10.1021/acsami.8b01888
S. Liu, D. Li, G. Zhang, D. Sun, J. Zhou et al., Two-dimensional NiSe2/N-rich carbon nanocomposites derived from Ni-hexamine frameworks for superb Na-ion storage. Appl. Mater. Interfaces 10(40), 34193–34201 (2018). https://doi.org/10.1021/acsami.8b10635
J.S. Cho, J.K. Lee, Y.C. Kang, Graphitic carbon-coated FeSe2 hollow nanosphere-decorated reduced graphene oxide hybrid nanofibers as an efficient anode material for sodium ion batteries. Sci. Rep. 6(1), 23699 (2016). https://doi.org/10.1038/srep23699
Y. Xiang, Q. Li, X. Wei, X. Li, Q. Zheng et al., Constructing NiS2/NiSe2 heteroboxes with phase boundaries for Sodium-ion batteries. J. Colloid Interface Sci. 607(1), 752–759 (2022). https://doi.org/10.1016/j.jcis.2021.09.015
G. Zhang, K. Liu, S. Liu, H. Song, J. Zhou, Flexible Co0.85Se nanosheets/graphene composite film as binder-free anode with high Li-and Na-ion storage performance. J. Alloys Compd. 731(1), 714–722 (2018). https://doi.org/10.1016/j.jallcom.2017.10.094
B. Li, Y. Liu, X. Jin, S. Jiao, G. Wang et al., Designed formation of hybrid nanobox composed of carbon sheathed CoSe2 anchored on nitrogen-doped carbon skeleton as ultrastable anode for sodium-ion batteries. Small 15(42), 1902881 (2016). https://doi.org/10.1002/smll.201902881
Z.S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao et al., Graphene anchored with Co3O4 nanops as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6), 3187–3194 (2010). https://doi.org/10.1021/nn100740x
G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li et al., Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22(18), 5306–5313 (2010). https://doi.org/10.1021/cm101532x
S.H. Choi, Y.C. Kang, Fe3O4-decorated hollow graphene balls prepared by spray pyrolysis process for ultrafast and long cycle-life lithium ion batteries. Carbon 79(1), 58–66 (2014). https://doi.org/10.1016/j.carbon.2014.07.042
J. Lin, A.R.O. Raji, K. Nan, Z. Peng, Z. Yan et al., Iron oxide nanop and graphene nanoribbon composite as an anode material for high-performance Li-ion batteries. Adv. Funct. Mater. 24(14), 2044–2048 (2014). https://doi.org/10.1002/adfm.201303023
Y.H. Seon, Y.C. Kang, J.S. Cho, One-dimensional porous nanostructure composed of few-layered MoSe2 nanosheets and highly densified-entangled-N-doped CNTs as anodes for Na ion batteries. Chem. Eng. J. 425(1), 129051 (2021). https://doi.org/10.1016/j.cej.2021.129051
H. Kim, K. Lim, G. Yoon, J.H. Park, K. Ku et al., Exploiting lithium-ether co-intercalation in graphite for high-power lithium-ion batteries. Adv. Energy Mater. 7(19), 1700418 (2017). https://doi.org/10.1002/aenm.201700418
P. Ge, L. Zhang, Y. Yang, W. Sun, Y. Hu et al., Advanced MoSe2/carbon electrodes in Li/Na-ions batteries. Adv. Mater. Interfaces 7(2), 1901651 (2019). https://doi.org/10.1002/admi.201901651
J. Yang, J. Zhu, J. Xu, C. Zhang, T. Liu, MoSe2 nanosheet array with layered MoS2 heterostructures for superior hydrogen evolution and lithium storage performance. ACS Appl. Mater. Interfaces 9(51), 44550–44559 (2017). https://doi.org/10.1021/acsami.7b15854
M.S. Jo, S. Ghosh, S.M. Jeong, Y.C. Kang, J.S. Cho, Coral-like yolk-shell-structured nickel oxide/carbon composite microspheres for high-performance Li-ion storage anodes. Nano-Micro Lett. 11, 3 (2019). https://doi.org/10.1007/s40820-018-0234-0
J.H. Lee, S.H. Oh, S.Y. Jeong, Y.C. Kang, J.S. Cho, Rattle-type porous Sn/C composite fibers with uniformly distributed nanovoids containing metallic Sn nanops for high-performance anode materials in lithium-ion batteries. Nanoscale 10(45), 21483–21491 (2018). https://doi.org/10.1039/c8nr06075d
S.H. Oh, S.M. Park, D.W. Kang, Y.C. Kang, J.S. Cho, Fibrous network of highly integrated carbon nanotubes/MoO3 composite bundles anchored with MoO3 nanoplates for superior lithium ion battery anodes. J. Ind. Eng. Chem. 83(1), 438–448 (2020). https://doi.org/10.1016/j.jiec.2019.12.017
Y. Cao, Y. Liu, D. Zhao, J. Zhang, X. Xia et al., K-doped Na3Fe2(PO4)3 cathode materials with high-stable structure for sodium-ion stored energy battery. J. Alloys Compd. 784(1), 939–946 (2019). https://doi.org/10.1016/j.jallcom.2019.01.125
L.B. Tang, B. Zhang, C.S. An, H. Li, B. Xiao et al., Ultrahigh-rate behavior anode materials of MoSe2 nanosheets anchored on dual-heteroatoms functionalized graphene for sodium-ion batteries. Inorg. Chem. 58(12), 8169–8178 (2019). https://doi.org/10.1021/acs.inorgchem.9b00971