Thermal-Gated Self-Repairing Polyimide Separator for Dendrite-Suppressed Lithium Metal Batteries
Corresponding Author: Nanjun Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 228
Abstract
The internal heat generation and the growth of lithium dendrites have raised severe safety issues in lithium metal batteries (LMBs), which significantly hinder their widespread adoption. Therefore, it is critical to develop intelligent separators to improve the security and performance of LMBs. Here, we engineer a self-repairing polyetherimide (PEI)-functionalized polyamide-imide (PAI@PEI) nanofiber separator with a thermal-gated function, in which the thermoplastic PEI core has an automatically thermal shutdown function via intelligent closure of apertures under high temperature, while the thermosetting PAI shell can drive the remodeling of PEI to restore its apertures. The PAI@PEI separator showcases the topmost aperture-closing temperature of 400 °C compared to the cutting-edge separators that typically have an aperture-closing temperature below 200 °C. Morphological characterization confirms that the PAI@PEI separator with a closed aperture can recover its apertures at 350 °C, endowing the PAI@PEI separator with a unique self-repairing function to enhance the longevity and safety of LMBs. Meanwhile, density functional theory calculations reveal that the polar amide and imide groups in PAI@PEI separator, both before and after aperture restoration, can efficiently facilitate Li-ion dissociation and transportation for suppressing lithium dendrite growth. As a result, the aperture-restored PAI@PEI separator (R-PAI@PEI) demonstrates significantly improved overall electrochemical performance. Specifically, the R-PAI@PEI-based Li||Li cell exhibits an exceptional Li-ion transference number of 0.71 and an excellent cycling stability at 1 mA cm−2 for over 750 h, which significantly outperform commercial and state-of-the-art separator-based LMBs (typically below 0.65 and 500 h, respectively). Importantly, the R-PAI@PEI-based Li||NCM523 battery still exhibits an impressive specific capacity of 99.7 mAh g−1 at 5C and maintains 90% of its capacity after 100 cycles. These results underscore the feasibility of designing functional separator, opening a new avenue for next-generation highly safe LMBs separators.
Highlights:
1 The self-repairing polyetherimide (PEI)-functionalized polyamide-imide (PAI@PEI) nanofiber membrane with a thermal-gated function was designed to enhance the thermal safety properties of lithium metal batteries.
2 The PAI@PEI membrane with the polar amide and imide groups facilitates Li+ dissociation and transport, which is essential for suppressing dendrite growth.
3 The aperture-restored PAI@PEI-based Li||Li cell exhibits an exceptional Li+ transference number of 0.71 and an excellent cycling stability at 1 mA cm−2 for over 750 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
- R. Guo, D. Han, W. Chen, L. Dai, K. Ji et al., Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat. Energy 6(10), 977–986 (2021). https://doi.org/10.1038/s41560-021-00912-8
- Y. Wen, C. Zhan, J. Liu, X. Zhuang, S. Liu et al., Zeolite-confined Cu single-atom clusters stably catalyse CO to acetate at 1 A cm−2 beyond 1,000 h. Nat. Nanotechnol. 20(5), 656–663 (2025). https://doi.org/10.1038/s41565-025-01892-6
- Z. Huang, Q. Xiao, T. Ding, J. Xia, C. Zhan et al., Interfacial metal-coordinated bifunctional PtCo for practical fuel cells. Sci. Adv. 11(10), eadt4914 (2025). https://doi.org/10.1126/sciadv.adt4914
- Z. Huang, C. Zhan, Y. Yuan, B. Song, J. Pan et al., Designing natural cell-inspired heme-spurred membrane electrode assembly for fuel cells. J. Am. Chem. Soc. 147(26), 22818–22826 (2025). https://doi.org/10.1021/jacs.5c05017
- Q. Yao, R. Ren, Y. Zhu, W. Yan, Z. Yu et al., Multicomponent Ru-based alloys with a face-centered cubic structure achieve high activity and CO tolerance for hydrogen oxidation electrocatalysis. J. Am. Chem. Soc. 147(26), 22517–22528 (2025). https://doi.org/10.1021/jacs.5c02339
- J. Liu, Y. Wen, W. Yan, Z. Huang, X. Liu et al., Single-atom mediated crystal facet engineering for the exceptional production of acetate in CO electrolysis. Energy Environ. Sci. 18(9), 4396–4404 (2025). https://doi.org/10.1039/d4ee06192f
- N. Chen, C. Hu, Y. Lee, Poly(aryl-co-aryl piperidinium) copolymers for anion exchange membrane fuel cells and water electrolyzers. Acc. Chem. Res. 58(5), 688–702 (2025). https://doi.org/10.1021/acs.accounts.4c00695
- X.-X. Luo, S.-J. Tan, J. Zhang, J.-C. Guo, C.-H. Zhang et al., Realizing persistent lithium protection and revival with dissolution-equilibrium-driven sustainable additives reservoir. Angew. Chem. Int. Ed. 64(33), e202500135 (2025). https://doi.org/10.1002/anie.202500135
- C.-H. Zhang, Y.-J. Guo, S.-J. Tan, Y.-H. Wang, J.-C. Guo et al., An ultralight, pulverization-free integrated anode toward lithium-less lithium metal batteries. Sci. Adv. 10(13), eadl4842 (2024). https://doi.org/10.1126/sciadv.adl4842
- K. Liu, W. Liu, Y. Qiu, B. Kong, Y. Sun et al., Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci. Adv. 3(1), e1601978 (2017). https://doi.org/10.1126/sciadv.1601978
- J.-L. Yang, X.-X. Zhao, W. Zhang, K. Ren, X.-X. Luo et al., “Pore-hopping” ion transport in cellulose-based separator towards high-performance sodium-ion batteries. Angew. Chem. Int. Ed. 62(15), e202300258 (2023). https://doi.org/10.1002/anie.202300258
- H. Jia, C. Zeng, H.-S. Lim, A. Simmons, Y. Zhang et al., Important role of ion flux regulated by separators in lithium metal batteries. Adv. Mater. 36(19), 2311312 (2024). https://doi.org/10.1002/adma.202311312
- D. Guo, L. Mu, F. Lin, G. Liu, Mesoporous polyimide thin films as dendrite-suppressing separators for lithium-metal batteries. ACS Nano 18(1), 155–163 (2024). https://doi.org/10.1021/acsnano.3c04159
- L. Sheng, Q. Wang, X. Liu, H. Cui, X. Wang et al., Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nat. Commun. 13(1), 172 (2022). https://doi.org/10.1038/s41467-021-27841-0
- Z. Ji, Z. Zhu, A. Ye, J. Yang, W. Cai et al., Selectively permeable mesoporous separator coating by anti-gravity 2D-microfluidic for lithium metal batteries. Energy Storage Mater. 75, 104005 (2025). https://doi.org/10.1016/j.ensm.2025.104005
- X. Yang, Z. An, P. Zhang, S. Kim, P. Yoo, Catalytic metal-organic framework-functionalized inverse-opal architectured polymeric separator for high-performance Li-S batteries. Adv. Funct. Mater. 35(29), 2419983 (2025). https://doi.org/10.1002/adfm.202419983
- L. He, Y. Zheng, L. Tong, L. Zhang, G. Lin et al., Thermoregulating phase-change composite separators with thermal runaway suppression for safe and high-performance lithium-ion batteries. J. Colloid Interface Sci. 702(Pt 1), 138825 (2026). https://doi.org/10.1016/j.jcis.2025.138825
- J. Serra, G. Antunes, A. Fidalgo-Marijuan, M. Salado, R. Gonçalves et al., Improving thermal regulation of lithium-ion batteries by poly(vinylidene fluoride-co-hexafluoropropylene) composite separator membranes with phase change materials. ACS Appl. Energy Mater. 8(3), 1847–1856 (2025). https://doi.org/10.1021/acsaem.4c03121
- G. Lin, L. Tong, C. Zhao, Y. Wu, K. Jia, Controlled phase separation of regenerated cellulose with super-engineering thermoplastics into porous membranes with hierarchical morphology as high-performance separators for lithium-ion batteries. J. Membr. Sci. 716, 123505 (2025). https://doi.org/10.1016/j.memsci.2024.123505
- M. Cao, F. Bu, X. Liu, C.H. Ng, C. Guan, Beyond separation: multifunctional separators in rechargeable batteries. Adv. Energy Mater. 15(36), 2502540 (2025). https://doi.org/10.1002/aenm.202502540
- J. Yang, Y. Jeong, W. Kim, M. Lee, J. Choi et al., Dual flame-retardant mechanism-assisted suppression of thermal runaway in lithium metal batteries with improved electrochemical performances. Adv. Energy Mater. 15(2), 2304366 (2025). https://doi.org/10.1002/aenm.202304366
- Y. Roh, D. Kim, D. Jin, D. Kim, C. Han et al., Enhanced safety of lithium ion batteries through a novel functional separator with encapsulated flame retardant and hydroxide ceramics. Chem. Eng. J. 474, 145937 (2023). https://doi.org/10.1016/j.cej.2023.145937
- M. Baginska, B. Blaiszik, R. Merriman, N. Sottos, J. Moore et al., Autonomic shutdown of lithium-ion batteries using thermoresponsive microspheres. Adv. Energy Mater. 2(5), 583–590 (2012). https://doi.org/10.1002/aenm.201100683
- H. Yang, X. Shi, S. Chu, Z. Shao, Y. Wang, Design of block-copolymer nanoporous membranes for robust and safer lithium-ion battery separators. Adv. Sci. 8(7), 2003096 (2021). https://doi.org/10.1002/advs.202003096
- H. Lu, A. Du, X. Lin, Z. Zhang, S. Liu et al., Rationally coupling thermal tolerance, thermal conductance, and overheating-response in a separator for safe batteries. Energy Environ. Sci. 17(20), 7860–7869 (2024). https://doi.org/10.1039/d4ee02302a
- R. Pan, X. Xu, R. Sun, Z. Wang, J. Lindh et al., Nanocellulose modified polyethylene separators for lithium metal batteries. Small 14(21), e1704371 (2018). https://doi.org/10.1002/smll.201704371
- C. Zhang, H. Li, S. Wang, Y. Cao, H. Yang et al., A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries. J. Energy Chem. 44, 33–40 (2020). https://doi.org/10.1016/j.jechem.2019.09.017
- Y. Zhang, R. He, H. Liu, H. Liu, X.-X. Zhang, Dual thermal-response separator utilizing phase change materials with polysulfides chemisorption for safe and stable lithium–sulfur batteries. J. Energy Storage 113, 115647 (2025). https://doi.org/10.1016/j.est.2025.115647
- J. Dai, C. Shi, C. Li, X. Shen, L. Peng et al., A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes. Energy Environ. Sci. 9(10), 3252–3261 (2016). https://doi.org/10.1039/c6ee01219a
- Y. Lei, L. Xu, Q. Chan, A. Li, A. Yuen et al., Recent advances in separator design for lithium metal batteries without dendrite formation: implications for electric vehicles. eTransportation 20, 100330 (2024). https://doi.org/10.1016/j.etran.2024.100330
- C.-Z. Zhao, P.-Y. Chen, R. Zhang, X. Chen, B.-Q. Li et al., An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv. 4(11), eaat3446 (2018). https://doi.org/10.1126/sciadv.aat3446
- J. Liang, Q. Chen, X. Liao, P. Yao, B. Zhu et al., A nano-shield design for separators to resist dendrite formation in lithium-metal batteries. Angew. Chem. Int. Ed. 59(16), 6561–6566 (2020). https://doi.org/10.1002/anie.201915440
- X. Wu, N. Liu, Z. Guo, M. Wang, Y. Qiu et al., Constructing multi-functional Janus separator toward highly stable lithium batteries. Energy Storage Mater. 28, 153–159 (2020). https://doi.org/10.1016/j.ensm.2020.03.004
- S. Guo, W. Li, X. Wu, X. Guo, Z. Gong et al., Functional separator induced interface potential uniform reformation enabling dendrite-free metal batteries. Adv. Funct. Mater. 35(37), 2504599 (2025). https://doi.org/10.1002/adfm.202504599
- H. Lee, X. Ren, C. Niu, L. Yu, M. Engelhard et al., Suppressing lithium dendrite growth by metallic coating on a separator. Adv. Funct. Mater. 27(45), 1704391 (2017). https://doi.org/10.1002/adfm.201704391
- L. Wei, N. Deng, J. Ju, J. Kang, X. Wang et al., A review on nanofiber materials for lithium-metal batteries to suppress the dendritic lithium growth. Chem. Eng. J. 433, 134392 (2022). https://doi.org/10.1016/j.cej.2021.134392
- G. Lin, K. Jia, Z. Bai, C. Liu, S. Liu et al., Metal-organic framework sandwiching porous super-engineering polymeric membranes as anionphilic separators for dendrite-free lithium metal batteries. Adv. Funct. Mater. 32(47), 2207969 (2022). https://doi.org/10.1002/adfm.202207969
- G. Sun, J. Cui, Q. Zhang, Y. Zhou, X. Li et al., Polybenzimidazolium-reinforced polyimide separators to inhibit dendrites for high-security lithium-ion batteries. Sci. China Chem. 68(7), 3221–3229 (2025). https://doi.org/10.1007/s11426-024-2451-y
- Q. Zhang, L. Chen, X. Li, B. Hou, X. Wu et al., Robust, high-temperature-resistant polyimide separators with vertically aligned uniform nanochannels for high-performance lithium-ion batteries. ACS Nano 18(46), 32162–32174 (2024). https://doi.org/10.1021/acsnano.4c11217
- Y. Guo, Y. Wang, L. Tao, T. Wang, Q. Wang et al., Engineering thermal and light dual-triggered thermosetting shape memory polyimide nanocomposites with superior toughness and rapid remote actuation properties. Adv. Eng. Mater. 25(9), 2201555 (2023). https://doi.org/10.1002/adem.202201555
- D. Wang, L.-S. Tan, Origami-inspired fabrication: self-folding or self-unfolding of cross-linked-polyimide objects in extremely hot ambience. ACS Macro Lett. 8(5), 546–552 (2019). https://doi.org/10.1021/acsmacrolett.9b00198
- M. Behl, A. Lendlein, Shape-memory polymers. Mater. Today 10, 20–28 (2007). https://doi.org/10.1016/S1369-7021(07)70047-0
- B. Yang, C. Deng, N. Chen, F. Zhang, K. Hu et al., Super-ionic conductor soft filler promotes Li+ transport in integrated cathode–electrolyte for solid-state battery at room temperature. Adv. Mater. 36(27), 2403078 (2024). https://doi.org/10.1002/adma.202403078
- M. Wang, W. Chen, X. Shen, W. Wang, K. Wang et al., “Hybrid bidirectional-gradient” phase change separator for battery all-temperature-range performance enhancement. Chem. Eng. J. 511, 161940 (2025). https://doi.org/10.1016/j.cej.2025.161940
- J.-L. Yang, X.-X. Zhao, H.-H. Liu, J.-M. Cao, H.-J. Liang et al., Nature-inspired separator with thermal sealing reinforcement toward sustainable sodium-ion batteries. ACS Nano 19(16), 15983–15993 (2025). https://doi.org/10.1021/acsnano.5c02393
- A. Ghosh, S. Tian, M. Zhang, I. Gómez, Q. Chen et al., Deciphering a new electrolyte formulation for intelligent modulation of thermal runaway to improve the safety of lithium-ion batteries. Adv. Funct. Mater. 35(39), 2502761 (2025). https://doi.org/10.1002/adfm.202502761
- L. Du, G. Xu, C. Sun, Y.-H. Zhang, H. Zhang et al., Smart gel polymer electrolytes enlightening high safety and long life sodium ion batteries. Nat. Commun. 16(1), 2979 (2025). https://doi.org/10.1038/s41467-025-57964-7
- K. Wang, W. Wang, Y. Wang, M. Wang, Dual phase change separator combining cooling and thermal shutdown functions for Li-ion battery with enhanced safety. Chem. Eng. J. 481, 148538 (2024). https://doi.org/10.1016/j.cej.2024.148538
- Z. Zhang, G. Li, X. Du, L. Huang, G. Kang et al., Rapid thermal shutdown of deep-eutectic-polymer electrolyte enabling overheating self-protection of lithium metal batteries. Adv. Sci. 11(48), 2409628 (2024). https://doi.org/10.1002/advs.202409628
- J. Richard, N. Solati, A. Singh, V. Meunier, Y. Toda et al., Functional composite separators with cation-trapping abilities. ACS Appl. Energy Mater. 7(10), 4335–4346 (2024). https://doi.org/10.1021/acsaem.4c00094
- L.-L. Jiang, Y.-Z. Deng, T. Luo, R. Xie, X.-J. Ju et al., A smart membrane with negative thermo-responsiveness in battery electrolyte solution. J. Membr. Sci. 692, 122266 (2024). https://doi.org/10.1016/j.memsci.2023.122266
- X. Hu, Y. Li, Z. Chen, Y. Sun, C. Duan et al., Facile fabrication of PMIA composite separator with bi-functional sodium-alginate coating layer for synergistically increasing performance of lithium-ion batteries. J. Colloid Interface Sci. 648, 951–962 (2023). https://doi.org/10.1016/j.jcis.2023.06.060
- T. Dong, H. Zhang, L. Huang, J. Ma, P. Mu et al., A smart polymer electrolyte coordinates the trade-off between thermal safety and energy density of lithium batteries. Energy Storage Mater. 58, 123–131 (2023). https://doi.org/10.1016/j.ensm.2023.03.013
- M. Luo, X. Zhang, S. Wang, J. Ye, Y. Zhao et al., A thermal-ball-valve structure separator for highly safe lithium-ion batteries. Small 20(18), e2309523 (2024). https://doi.org/10.1002/smll.202309523
- T. Gao, P. Tian, Q. Xu, H. Pang, J. Ye et al., Class of boehmite/polyacrylonitrile membranes with different thermal shutdown temperatures for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 15(1), 2112–2123 (2023). https://doi.org/10.1021/acsami.2c18058
- J. Zhang, H. Wu, X. Du, H. Zhang, L. Huang et al., Smart deep eutectic electrolyte enabling thermally induced shutdown toward high-safety lithium metal batteries. Adv. Energy Mater. 13(3), 2202529 (2023). https://doi.org/10.1002/aenm.202202529
- Z. Wei, N. Zhang, T. Feng, F. Wu, T. Zhao et al., A copolymer microspheres-coated separator to enhance thermal stability of lithium-sulfur batteries. Chem. Eng. J. 430, 132678 (2022). https://doi.org/10.1016/j.cej.2021.132678
- Y. Xiao, A. Fu, Y. Zou, L. Huang, H. Wang et al., High safety lithium-ion battery enabled by a thermal-induced shutdown separator. Chem. Eng. J. 438, 135550 (2022). https://doi.org/10.1016/j.cej.2022.135550
- Z. Liu, Y. Peng, T. Meng, L. Yu, S. Wang et al., Thermal-triggered fire-extinguishing separators by phase change materials for high-safety lithium-ion batteries. Energy Storage Mater. 47, 445–452 (2022). https://doi.org/10.1016/j.ensm.2022.02.020
- M.-C. Long, G. Wu, X.-L. Wang, Y.-Z. Wang, Self-adaptable gel polymer electrolytes enable high-performance and all-round safety lithium ion batteries. Energy Storage Mater. 53, 62–71 (2022). https://doi.org/10.1016/j.ensm.2022.08.044
- L. Ding, N. Yan, S. Zhang, R. Xu, T. Wu et al., Low-cost mass manufacturing technique for the shutdown-functionalized lithium-ion battery separator based on Al2O3 coating online construction during the β-iPP cavitation process. ACS Appl. Mater. Interfaces 14(5), 6714–6728 (2022). https://doi.org/10.1021/acsami.1c22080
- G. Sun, B. Liu, H. Niu, F. Hao, N. Chen et al., In situ welding: superb strength, good wettability and fire resistance tri-layer separator with shutdown function for high-safety lithium ion battery. J. Membr. Sci. 595, 117509 (2020). https://doi.org/10.1016/j.memsci.2019.117509
- Q. Zhou, S. Dong, Z. Lv, G. Xu, L. Huang et al., A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries. Adv. Energy Mater. 10(6), 1903441 (2020). https://doi.org/10.1002/aenm.201903441
- Q. An, H.-E. Wang, G. Zhao, S. Wang, L. Xu et al., Understanding dual-polar group functionalized COFs for accelerating Li-ion transport and dendrite-free deposition in lithium metal anodes. Energy Environ. Mater. 6(2), e12345 (2023). https://doi.org/10.1002/eem2.12345
References
X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
R. Guo, D. Han, W. Chen, L. Dai, K. Ji et al., Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat. Energy 6(10), 977–986 (2021). https://doi.org/10.1038/s41560-021-00912-8
Y. Wen, C. Zhan, J. Liu, X. Zhuang, S. Liu et al., Zeolite-confined Cu single-atom clusters stably catalyse CO to acetate at 1 A cm−2 beyond 1,000 h. Nat. Nanotechnol. 20(5), 656–663 (2025). https://doi.org/10.1038/s41565-025-01892-6
Z. Huang, Q. Xiao, T. Ding, J. Xia, C. Zhan et al., Interfacial metal-coordinated bifunctional PtCo for practical fuel cells. Sci. Adv. 11(10), eadt4914 (2025). https://doi.org/10.1126/sciadv.adt4914
Z. Huang, C. Zhan, Y. Yuan, B. Song, J. Pan et al., Designing natural cell-inspired heme-spurred membrane electrode assembly for fuel cells. J. Am. Chem. Soc. 147(26), 22818–22826 (2025). https://doi.org/10.1021/jacs.5c05017
Q. Yao, R. Ren, Y. Zhu, W. Yan, Z. Yu et al., Multicomponent Ru-based alloys with a face-centered cubic structure achieve high activity and CO tolerance for hydrogen oxidation electrocatalysis. J. Am. Chem. Soc. 147(26), 22517–22528 (2025). https://doi.org/10.1021/jacs.5c02339
J. Liu, Y. Wen, W. Yan, Z. Huang, X. Liu et al., Single-atom mediated crystal facet engineering for the exceptional production of acetate in CO electrolysis. Energy Environ. Sci. 18(9), 4396–4404 (2025). https://doi.org/10.1039/d4ee06192f
N. Chen, C. Hu, Y. Lee, Poly(aryl-co-aryl piperidinium) copolymers for anion exchange membrane fuel cells and water electrolyzers. Acc. Chem. Res. 58(5), 688–702 (2025). https://doi.org/10.1021/acs.accounts.4c00695
X.-X. Luo, S.-J. Tan, J. Zhang, J.-C. Guo, C.-H. Zhang et al., Realizing persistent lithium protection and revival with dissolution-equilibrium-driven sustainable additives reservoir. Angew. Chem. Int. Ed. 64(33), e202500135 (2025). https://doi.org/10.1002/anie.202500135
C.-H. Zhang, Y.-J. Guo, S.-J. Tan, Y.-H. Wang, J.-C. Guo et al., An ultralight, pulverization-free integrated anode toward lithium-less lithium metal batteries. Sci. Adv. 10(13), eadl4842 (2024). https://doi.org/10.1126/sciadv.adl4842
K. Liu, W. Liu, Y. Qiu, B. Kong, Y. Sun et al., Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci. Adv. 3(1), e1601978 (2017). https://doi.org/10.1126/sciadv.1601978
J.-L. Yang, X.-X. Zhao, W. Zhang, K. Ren, X.-X. Luo et al., “Pore-hopping” ion transport in cellulose-based separator towards high-performance sodium-ion batteries. Angew. Chem. Int. Ed. 62(15), e202300258 (2023). https://doi.org/10.1002/anie.202300258
H. Jia, C. Zeng, H.-S. Lim, A. Simmons, Y. Zhang et al., Important role of ion flux regulated by separators in lithium metal batteries. Adv. Mater. 36(19), 2311312 (2024). https://doi.org/10.1002/adma.202311312
D. Guo, L. Mu, F. Lin, G. Liu, Mesoporous polyimide thin films as dendrite-suppressing separators for lithium-metal batteries. ACS Nano 18(1), 155–163 (2024). https://doi.org/10.1021/acsnano.3c04159
L. Sheng, Q. Wang, X. Liu, H. Cui, X. Wang et al., Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nat. Commun. 13(1), 172 (2022). https://doi.org/10.1038/s41467-021-27841-0
Z. Ji, Z. Zhu, A. Ye, J. Yang, W. Cai et al., Selectively permeable mesoporous separator coating by anti-gravity 2D-microfluidic for lithium metal batteries. Energy Storage Mater. 75, 104005 (2025). https://doi.org/10.1016/j.ensm.2025.104005
X. Yang, Z. An, P. Zhang, S. Kim, P. Yoo, Catalytic metal-organic framework-functionalized inverse-opal architectured polymeric separator for high-performance Li-S batteries. Adv. Funct. Mater. 35(29), 2419983 (2025). https://doi.org/10.1002/adfm.202419983
L. He, Y. Zheng, L. Tong, L. Zhang, G. Lin et al., Thermoregulating phase-change composite separators with thermal runaway suppression for safe and high-performance lithium-ion batteries. J. Colloid Interface Sci. 702(Pt 1), 138825 (2026). https://doi.org/10.1016/j.jcis.2025.138825
J. Serra, G. Antunes, A. Fidalgo-Marijuan, M. Salado, R. Gonçalves et al., Improving thermal regulation of lithium-ion batteries by poly(vinylidene fluoride-co-hexafluoropropylene) composite separator membranes with phase change materials. ACS Appl. Energy Mater. 8(3), 1847–1856 (2025). https://doi.org/10.1021/acsaem.4c03121
G. Lin, L. Tong, C. Zhao, Y. Wu, K. Jia, Controlled phase separation of regenerated cellulose with super-engineering thermoplastics into porous membranes with hierarchical morphology as high-performance separators for lithium-ion batteries. J. Membr. Sci. 716, 123505 (2025). https://doi.org/10.1016/j.memsci.2024.123505
M. Cao, F. Bu, X. Liu, C.H. Ng, C. Guan, Beyond separation: multifunctional separators in rechargeable batteries. Adv. Energy Mater. 15(36), 2502540 (2025). https://doi.org/10.1002/aenm.202502540
J. Yang, Y. Jeong, W. Kim, M. Lee, J. Choi et al., Dual flame-retardant mechanism-assisted suppression of thermal runaway in lithium metal batteries with improved electrochemical performances. Adv. Energy Mater. 15(2), 2304366 (2025). https://doi.org/10.1002/aenm.202304366
Y. Roh, D. Kim, D. Jin, D. Kim, C. Han et al., Enhanced safety of lithium ion batteries through a novel functional separator with encapsulated flame retardant and hydroxide ceramics. Chem. Eng. J. 474, 145937 (2023). https://doi.org/10.1016/j.cej.2023.145937
M. Baginska, B. Blaiszik, R. Merriman, N. Sottos, J. Moore et al., Autonomic shutdown of lithium-ion batteries using thermoresponsive microspheres. Adv. Energy Mater. 2(5), 583–590 (2012). https://doi.org/10.1002/aenm.201100683
H. Yang, X. Shi, S. Chu, Z. Shao, Y. Wang, Design of block-copolymer nanoporous membranes for robust and safer lithium-ion battery separators. Adv. Sci. 8(7), 2003096 (2021). https://doi.org/10.1002/advs.202003096
H. Lu, A. Du, X. Lin, Z. Zhang, S. Liu et al., Rationally coupling thermal tolerance, thermal conductance, and overheating-response in a separator for safe batteries. Energy Environ. Sci. 17(20), 7860–7869 (2024). https://doi.org/10.1039/d4ee02302a
R. Pan, X. Xu, R. Sun, Z. Wang, J. Lindh et al., Nanocellulose modified polyethylene separators for lithium metal batteries. Small 14(21), e1704371 (2018). https://doi.org/10.1002/smll.201704371
C. Zhang, H. Li, S. Wang, Y. Cao, H. Yang et al., A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries. J. Energy Chem. 44, 33–40 (2020). https://doi.org/10.1016/j.jechem.2019.09.017
Y. Zhang, R. He, H. Liu, H. Liu, X.-X. Zhang, Dual thermal-response separator utilizing phase change materials with polysulfides chemisorption for safe and stable lithium–sulfur batteries. J. Energy Storage 113, 115647 (2025). https://doi.org/10.1016/j.est.2025.115647
J. Dai, C. Shi, C. Li, X. Shen, L. Peng et al., A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes. Energy Environ. Sci. 9(10), 3252–3261 (2016). https://doi.org/10.1039/c6ee01219a
Y. Lei, L. Xu, Q. Chan, A. Li, A. Yuen et al., Recent advances in separator design for lithium metal batteries without dendrite formation: implications for electric vehicles. eTransportation 20, 100330 (2024). https://doi.org/10.1016/j.etran.2024.100330
C.-Z. Zhao, P.-Y. Chen, R. Zhang, X. Chen, B.-Q. Li et al., An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv. 4(11), eaat3446 (2018). https://doi.org/10.1126/sciadv.aat3446
J. Liang, Q. Chen, X. Liao, P. Yao, B. Zhu et al., A nano-shield design for separators to resist dendrite formation in lithium-metal batteries. Angew. Chem. Int. Ed. 59(16), 6561–6566 (2020). https://doi.org/10.1002/anie.201915440
X. Wu, N. Liu, Z. Guo, M. Wang, Y. Qiu et al., Constructing multi-functional Janus separator toward highly stable lithium batteries. Energy Storage Mater. 28, 153–159 (2020). https://doi.org/10.1016/j.ensm.2020.03.004
S. Guo, W. Li, X. Wu, X. Guo, Z. Gong et al., Functional separator induced interface potential uniform reformation enabling dendrite-free metal batteries. Adv. Funct. Mater. 35(37), 2504599 (2025). https://doi.org/10.1002/adfm.202504599
H. Lee, X. Ren, C. Niu, L. Yu, M. Engelhard et al., Suppressing lithium dendrite growth by metallic coating on a separator. Adv. Funct. Mater. 27(45), 1704391 (2017). https://doi.org/10.1002/adfm.201704391
L. Wei, N. Deng, J. Ju, J. Kang, X. Wang et al., A review on nanofiber materials for lithium-metal batteries to suppress the dendritic lithium growth. Chem. Eng. J. 433, 134392 (2022). https://doi.org/10.1016/j.cej.2021.134392
G. Lin, K. Jia, Z. Bai, C. Liu, S. Liu et al., Metal-organic framework sandwiching porous super-engineering polymeric membranes as anionphilic separators for dendrite-free lithium metal batteries. Adv. Funct. Mater. 32(47), 2207969 (2022). https://doi.org/10.1002/adfm.202207969
G. Sun, J. Cui, Q. Zhang, Y. Zhou, X. Li et al., Polybenzimidazolium-reinforced polyimide separators to inhibit dendrites for high-security lithium-ion batteries. Sci. China Chem. 68(7), 3221–3229 (2025). https://doi.org/10.1007/s11426-024-2451-y
Q. Zhang, L. Chen, X. Li, B. Hou, X. Wu et al., Robust, high-temperature-resistant polyimide separators with vertically aligned uniform nanochannels for high-performance lithium-ion batteries. ACS Nano 18(46), 32162–32174 (2024). https://doi.org/10.1021/acsnano.4c11217
Y. Guo, Y. Wang, L. Tao, T. Wang, Q. Wang et al., Engineering thermal and light dual-triggered thermosetting shape memory polyimide nanocomposites with superior toughness and rapid remote actuation properties. Adv. Eng. Mater. 25(9), 2201555 (2023). https://doi.org/10.1002/adem.202201555
D. Wang, L.-S. Tan, Origami-inspired fabrication: self-folding or self-unfolding of cross-linked-polyimide objects in extremely hot ambience. ACS Macro Lett. 8(5), 546–552 (2019). https://doi.org/10.1021/acsmacrolett.9b00198
M. Behl, A. Lendlein, Shape-memory polymers. Mater. Today 10, 20–28 (2007). https://doi.org/10.1016/S1369-7021(07)70047-0
B. Yang, C. Deng, N. Chen, F. Zhang, K. Hu et al., Super-ionic conductor soft filler promotes Li+ transport in integrated cathode–electrolyte for solid-state battery at room temperature. Adv. Mater. 36(27), 2403078 (2024). https://doi.org/10.1002/adma.202403078
M. Wang, W. Chen, X. Shen, W. Wang, K. Wang et al., “Hybrid bidirectional-gradient” phase change separator for battery all-temperature-range performance enhancement. Chem. Eng. J. 511, 161940 (2025). https://doi.org/10.1016/j.cej.2025.161940
J.-L. Yang, X.-X. Zhao, H.-H. Liu, J.-M. Cao, H.-J. Liang et al., Nature-inspired separator with thermal sealing reinforcement toward sustainable sodium-ion batteries. ACS Nano 19(16), 15983–15993 (2025). https://doi.org/10.1021/acsnano.5c02393
A. Ghosh, S. Tian, M. Zhang, I. Gómez, Q. Chen et al., Deciphering a new electrolyte formulation for intelligent modulation of thermal runaway to improve the safety of lithium-ion batteries. Adv. Funct. Mater. 35(39), 2502761 (2025). https://doi.org/10.1002/adfm.202502761
L. Du, G. Xu, C. Sun, Y.-H. Zhang, H. Zhang et al., Smart gel polymer electrolytes enlightening high safety and long life sodium ion batteries. Nat. Commun. 16(1), 2979 (2025). https://doi.org/10.1038/s41467-025-57964-7
K. Wang, W. Wang, Y. Wang, M. Wang, Dual phase change separator combining cooling and thermal shutdown functions for Li-ion battery with enhanced safety. Chem. Eng. J. 481, 148538 (2024). https://doi.org/10.1016/j.cej.2024.148538
Z. Zhang, G. Li, X. Du, L. Huang, G. Kang et al., Rapid thermal shutdown of deep-eutectic-polymer electrolyte enabling overheating self-protection of lithium metal batteries. Adv. Sci. 11(48), 2409628 (2024). https://doi.org/10.1002/advs.202409628
J. Richard, N. Solati, A. Singh, V. Meunier, Y. Toda et al., Functional composite separators with cation-trapping abilities. ACS Appl. Energy Mater. 7(10), 4335–4346 (2024). https://doi.org/10.1021/acsaem.4c00094
L.-L. Jiang, Y.-Z. Deng, T. Luo, R. Xie, X.-J. Ju et al., A smart membrane with negative thermo-responsiveness in battery electrolyte solution. J. Membr. Sci. 692, 122266 (2024). https://doi.org/10.1016/j.memsci.2023.122266
X. Hu, Y. Li, Z. Chen, Y. Sun, C. Duan et al., Facile fabrication of PMIA composite separator with bi-functional sodium-alginate coating layer for synergistically increasing performance of lithium-ion batteries. J. Colloid Interface Sci. 648, 951–962 (2023). https://doi.org/10.1016/j.jcis.2023.06.060
T. Dong, H. Zhang, L. Huang, J. Ma, P. Mu et al., A smart polymer electrolyte coordinates the trade-off between thermal safety and energy density of lithium batteries. Energy Storage Mater. 58, 123–131 (2023). https://doi.org/10.1016/j.ensm.2023.03.013
M. Luo, X. Zhang, S. Wang, J. Ye, Y. Zhao et al., A thermal-ball-valve structure separator for highly safe lithium-ion batteries. Small 20(18), e2309523 (2024). https://doi.org/10.1002/smll.202309523
T. Gao, P. Tian, Q. Xu, H. Pang, J. Ye et al., Class of boehmite/polyacrylonitrile membranes with different thermal shutdown temperatures for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 15(1), 2112–2123 (2023). https://doi.org/10.1021/acsami.2c18058
J. Zhang, H. Wu, X. Du, H. Zhang, L. Huang et al., Smart deep eutectic electrolyte enabling thermally induced shutdown toward high-safety lithium metal batteries. Adv. Energy Mater. 13(3), 2202529 (2023). https://doi.org/10.1002/aenm.202202529
Z. Wei, N. Zhang, T. Feng, F. Wu, T. Zhao et al., A copolymer microspheres-coated separator to enhance thermal stability of lithium-sulfur batteries. Chem. Eng. J. 430, 132678 (2022). https://doi.org/10.1016/j.cej.2021.132678
Y. Xiao, A. Fu, Y. Zou, L. Huang, H. Wang et al., High safety lithium-ion battery enabled by a thermal-induced shutdown separator. Chem. Eng. J. 438, 135550 (2022). https://doi.org/10.1016/j.cej.2022.135550
Z. Liu, Y. Peng, T. Meng, L. Yu, S. Wang et al., Thermal-triggered fire-extinguishing separators by phase change materials for high-safety lithium-ion batteries. Energy Storage Mater. 47, 445–452 (2022). https://doi.org/10.1016/j.ensm.2022.02.020
M.-C. Long, G. Wu, X.-L. Wang, Y.-Z. Wang, Self-adaptable gel polymer electrolytes enable high-performance and all-round safety lithium ion batteries. Energy Storage Mater. 53, 62–71 (2022). https://doi.org/10.1016/j.ensm.2022.08.044
L. Ding, N. Yan, S. Zhang, R. Xu, T. Wu et al., Low-cost mass manufacturing technique for the shutdown-functionalized lithium-ion battery separator based on Al2O3 coating online construction during the β-iPP cavitation process. ACS Appl. Mater. Interfaces 14(5), 6714–6728 (2022). https://doi.org/10.1021/acsami.1c22080
G. Sun, B. Liu, H. Niu, F. Hao, N. Chen et al., In situ welding: superb strength, good wettability and fire resistance tri-layer separator with shutdown function for high-safety lithium ion battery. J. Membr. Sci. 595, 117509 (2020). https://doi.org/10.1016/j.memsci.2019.117509
Q. Zhou, S. Dong, Z. Lv, G. Xu, L. Huang et al., A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries. Adv. Energy Mater. 10(6), 1903441 (2020). https://doi.org/10.1002/aenm.201903441
Q. An, H.-E. Wang, G. Zhao, S. Wang, L. Xu et al., Understanding dual-polar group functionalized COFs for accelerating Li-ion transport and dendrite-free deposition in lithium metal anodes. Energy Environ. Mater. 6(2), e12345 (2023). https://doi.org/10.1002/eem2.12345