Boron-Insertion-Induced Lattice Engineering of Rh Nanocrystals Toward Enhanced Electrocatalytic Conversion of Nitric Oxide to Ammonia
Corresponding Author: Ye Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 74
Abstract
Electrocatalytic nitric oxide (NO) reduction reaction (NORR) is a promising and sustainable process that can simultaneously realize green ammonia (NH3) synthesis and hazardous NO removal. However, current NORR performances are far from practical needs due to the lack of efficient electrocatalysts. Engineering the lattice of metal-based nanomaterials via phase control has emerged as an effective strategy to modulate their intrinsic electrocatalytic properties. Herein, we realize boron (B)-insertion-induced phase regulation of rhodium (Rh) nanocrystals to obtain amorphous Rh4B nanoparticles (NPs) and hexagonal close-packed (hcp) RhB NPs through a facile wet-chemical method. A high Faradaic efficiency (92.1 ± 1.2%) and NH3 yield rate (629.5 ± 11.0 µmol h−1 cm−2) are achieved over hcp RhB NPs, far superior to those of most reported NORR nanocatalysts. In situ spectro-electrochemical analysis and density functional theory simulations reveal that the excellent electrocatalytic performances of hcp RhB NPs are attributed to the upshift of d-band center, enhanced NO adsorption/activation profile, and greatly reduced energy barrier of the rate-determining step. A demonstrative Zn–NO battery is assembled using hcp RhB NPs as the cathode and delivers a peak power density of 4.33 mW cm−2, realizing simultaneous NO removal, NH3 synthesis, and electricity output.
Highlights:
1 Phase regulation of B-inserted rhodium (Rh) nanocrystals is achieved using a facile wet-chemical approach.
2 The B-inserted Rh nanocatalysts exhibit phase-dependent behaviors in electrocatalytic nitric oxide (NO) reduction reaction.
3 The hexagonal close-packed RhB nanocatalysts demonstrate superior electrocatalytic activity in NH3 production with a maximum NH3 yield rate of 629.5 µmol h−1 cm−2 and FENH3 of 92.1%.
4 Theoretical simulations reveal possible origin of the excellent electrocatalytic activity, which could be attributed to the d-band center upshift, enhanced NO adsorption/activation, and reduced energy barrier of rate-determining step.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Gruber, J.N. Galloway, An earth-system perspective of the global nitrogen cycle. Nature 451(7176), 293–296 (2008). https://doi.org/10.1038/nature06592
- M.M.M. Kuypers, H.K. Marchant, B. Kartal, The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16(5), 263–276 (2018). https://doi.org/10.1038/nrmicro.2018.9
- Y. Dong, L. Xu, Z. Yang, H. Zheng, L. Chen, Aggravation of reactive nitrogen flow driven by human production and consumption in Guangzhou City China. Nat. Commun. 11(1), 1209 (2020). https://doi.org/10.1038/s41467-020-14699-x
- C.-C. Hu, X.-Y. Liu, A.W. Driscoll, Y.-W. Kuang, E.N.J. Brookshire et al., Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants. Nat. Commun. 15(1), 6407 (2024). https://doi.org/10.1038/s41467-024-50674-6
- X. Liu, Y. Zhang, W. Han, A. Tang, J. Shen et al., Enhanced nitrogen deposition over China. Nature 494(7438), 459–462 (2013). https://doi.org/10.1038/nature11917
- J.E. Hickman, N. Andela, K. Tsigaridis, C. Galy-Lacaux, M. Ossohou et al., Reductions in NO2 burden over north equatorial Africa from decline in biomass burning in spite of growing fossil fuel use, 2005 to 2017. Proc. Natl. Acad. Sci. U. S. A. 118(7), e2002579118 (2021). https://doi.org/10.1073/pnas.2002579118
- S. Soodaeva, I. Klimanov, N. Kubysheva, N. Popova, I. Batyrshin, The state of the nitric oxide cycle in respiratory tract diseases. Oxid. Med. Cell. Longev. 2020, 4859260 (2020). https://doi.org/10.1155/2020/4859260
- H. Qian, S. Xu, J. Cao, F. Ren, W. Wei et al., Air pollution reduction and climate co-benefits in China’s industries. Nat. Sustain. 4(5), 417–425 (2021). https://doi.org/10.1038/s41893-020-00669-0
- K. Li, D.J. Jacob, H. Liao, J. Zhu, V. Shah et al., A two-pollutant strategy for improving ozone and particulate air quality in China. Nat. Geosci. 12(11), 906–910 (2019). https://doi.org/10.1038/s41561-019-0464-x
- D. Wang, Z.-W. Chen, K. Gu, C. Chen, Y. Liu et al., Hexagonal cobalt nanosheets for high-performance electrocatalytic NO reduction to NH3. J. Am. Chem. Soc. 145(12), 6899–6904 (2023). https://doi.org/10.1021/jacs.3c00276
- L. Han, S. Cai, M. Gao, J.-Y. Hasegawa, P. Wang et al., Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects. Chem. Rev. 119(19), 10916–10976 (2019). https://doi.org/10.1021/acs.chemrev.9b00202
- W. Hu, T. Selleri, F. Gramigni, E. Fenes, K.R. Rout et al., On the redox mechanism of low-temperature NH3-SCR over Cu-CHA: a combined experimental and theoretical study of the reduction half cycle. Angew. Chem. Int. Ed. 60(13), 7197–7204 (2021). https://doi.org/10.1002/anie.202014926
- J. John, D.R. MacFarlane, A.N. Simonov, The why and how of NOx electroreduction to ammonia. Nat. Catal. 6(12), 1125–1130 (2023). https://doi.org/10.1038/s41929-023-01060-w
- D. Wang, X.F. Lu, D. Luan, X.W.D. Lou, Selective electrocatalytic conversion of nitric oxide to high value-added chemicals. Adv. Mater. 36(18), e2312645 (2024). https://doi.org/10.1002/adma.202312645
- L. Xiao, S. Mou, W. Dai, W. Yang, Q. Cheng et al., Identification of Cu(111) as superior active sites for electrocatalytic NO reduction to NH3 with high single-pass conversion efficiency. Angew. Chem. Int. Ed. 63(11), e202319135 (2024). https://doi.org/10.1002/anie.202319135
- J. Long, S. Chen, Y. Zhang, C. Guo, X. Fu et al., Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem. Int. Ed. 59(24), 9711–9718 (2020). https://doi.org/10.1002/anie.202002337
- S. Zhao, J. Liu, Z. Zhang, C. Zhu, G. Shi et al., Deciphering nickel-catalyzed electrochemical ammonia synthesis from nitric oxide. Chem 9(12), 3555–3572 (2023). https://doi.org/10.1016/j.chempr.2023.08.001
- L. Zhang, J. Liang, Y. Wang, T. Mou, Y. Lin et al., High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem. Int. Ed. 60(48), 25263–25268 (2021). https://doi.org/10.1002/anie.202110879
- X. Guo, P. Wang, T. Wu, Z. Wang, J. Li et al., Aqueous electroreduction of nitric oxide to ammonia at low concentration via vacancy engineered FeOCl. Angew. Chem. Int. Ed. 63(6), e202318792 (2024). https://doi.org/10.1002/anie.202318792
- G. Zhang, F. Wang, Y. Wan, Y. Guo, K. Chu, Iron diboride (FeB2) for the electroreduction of NO to NH3. Inorg. Chem. 62(22), 8487–8493 (2023). https://doi.org/10.1021/acs.inorgchem.3c01207
- J. Meng, C. Cheng, Y. Wang, Y. Yu, B. Zhang, Carbon support enhanced mass transfer and metal–support interaction promoted activation for low-concentrated nitric oxide electroreduction to ammonia. J. Am. Chem. Soc. 146(14), 10044–10051 (2024). https://doi.org/10.1021/jacs.4c00898
- D. Wang, X. Zhu, X. Tu, X. Zhang, C. Chen et al., Oxygen-bridged copper–iron atomic pair as dual-metal active sites for boosting electrocatalytic NO reduction. Adv. Mater. 35(39), 2304646 (2023). https://doi.org/10.1002/adma.202304646
- Y. Li, Y. Li, H. Sun, L. Gao, X. Jin et al., Current status and perspectives of dual-atom catalysts towards sustainable energy utilization. Nano-Micro Lett. 16(1), 139 (2024). https://doi.org/10.1007/s40820-024-01347-y
- J. Shao, H. Jing, P. Wei, X. Fu, L. Pang et al., Electrochemical synthesis of ammonia from nitric oxide using a copper–tin alloy catalyst. Nat. Energy 8(11), 1273–1283 (2023). https://doi.org/10.1038/s41560-023-01386-6
- L. Zhang, Q. Zhou, J. Liang, L. Yue, T. Li et al., Enhancing electrocatalytic NO reduction to NH3 by the CoS nanosheet with sulfur vacancies. Inorg. Chem. 61(20), 8096–8102 (2022). https://doi.org/10.1021/acs.inorgchem.2c01112
- Z. Wu, Y. Liu, D. Wang, Y. Zhang, K. Gu et al., Cu@Co with dilatation strain for high-performance electrocatalytic reduction of low-concentration nitric oxide. Adv. Mater. 36(11), 2309470 (2024). https://doi.org/10.1002/adma.202309470
- Y. Chen, Z. Lai, X. Zhang, Z. Fan, Q. He et al., Phase engineering of nanomaterials. Nat. Rev. Chem. 4(5), 243–256 (2020). https://doi.org/10.1038/s41570-020-0173-4
- Q. Yun, Y. Ge, Z. Shi, J. Liu, X. Wang et al., Recent progress on phase engineering of nanomaterials. Chem. Rev. 123(23), 13489–13692 (2023). https://doi.org/10.1021/acs.chemrev.3c00459
- H. Zhang, Y. Li, C. Cheng, J. Zhou, P. Yin et al., Isolated electron-rich ruthenium atoms in intermetallic compounds for boosting electrochemical nitric oxide reduction to ammonia. Angew. Chem. Int. Ed. 62(4), e202213351 (2023). https://doi.org/10.1002/anie.202213351
- W. Zhou, C. Feng, X. Li, X. Jiang, L. Jing et al., Boosting electrochemical urea synthesis via constructing ordered Pd-Zn active pair. Nano-Micro Lett. 16(1), 247 (2024). https://doi.org/10.1007/s40820-024-01462-w
- L. Zheng, L. Xu, P. Gu, Y. Chen, Lattice engineering of noble metal-based nanomaterials via metal–nonmetal interactions for catalytic applications. Nanoscale 16(16), 7841–7861 (2024). https://doi.org/10.1039/D4NR00561A
- H. Chen, B. Zhang, X. Liang, X. Zou, Light alloying element-regulated noble metal catalysts for energy-related applications. Chin. J. Catal. 43(3), 611–635 (2022). https://doi.org/10.1016/S1872-2067(21)63899-8
- L. Zheng, Y. Zhang, W. Chen, X. Xu, R. Zhang, et al., Carbon‐extraction‐triggered phase engineering of rhodium nanomaterials for efficient electrocatalytic nitrate reduction reaction. Angew. Chem. Int. Ed. 64(23), e202500985, (2025). https://doi.org/10.1002/anie.202500985
- Y. Fu, P. Richardson, K. Li, H. Yu, B. Yu et al., Transition metal aluminum boride as a new candidate for ambient-condition electrochemical ammonia synthesis. Nano-Micro Lett. 12, 65 (2020). https://doi.org/10.1007/s40820-020-0400-z
- B. Petermüller, C. Neun, K. Wurst, L. Bayarjargal, D. Zimmer et al., High-pressure synthesis of β-Ir4B5 and determination of the compressibility of various iridium borides. Inorg. Chem. 57(16), 10341–10351 (2018). https://doi.org/10.1021/acs.inorgchem.8b01541
- T. Wakisaka, K. Kusada, D. Wu, T. Yamamoto, T. Toriyama et al., Rational synthesis for a noble metal carbide. J. Am. Chem. Soc. 142(3), 1247–1253 (2020). https://doi.org/10.1021/jacs.9b09219
- D. Chen, R. Yu, H. Zhao, J. Jiao, X. Mu et al., Boron-induced interstitial effects drive water oxidation on ordered Ir-B compounds. Angew. Chem. Int. Ed. 63(35), e202407577 (2024). https://doi.org/10.1002/anie.202407577
- Z. Li, X. Ai, H. Chen, X. Liang, X. Li et al., Asymmetrically strained hcp rhodium sublattice stabilized by 1D covalent boron chains as an efficient electrocatalyst. Chem. Commun. 57(41), 5075–5078 (2021). https://doi.org/10.1039/D1CC00774B
- J.C. Crowhurst, A.F. Goncharov, B. Sadigh, J.M. Zaug, D. Aberg et al., Synthesis and characterization of nitrides of iridium and palladium. J. Mater. Res. 23(1), 1–5 (2008). https://doi.org/10.1557/JMR.2008.0027
- H. Zhang, W. Li, M. Jin, J. Zeng, T. Yu et al., Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump. Nano Lett. 11(2), 898–903 (2011). https://doi.org/10.1021/nl104347j
- X. Zhang, P. Li, Á. Barreda, Y. Gutiérrez, F. González et al., Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics. Nanoscale Horiz. 1(1), 75–80 (2016). https://doi.org/10.1039/c5nh00062a
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- M. Zhao, Z. Chen, Y. Shi, Z.D. Hood, Z. Lyu et al., Kinetically controlled synthesis of rhodium nanocrystals with different shapes and a comparison study of their thermal and catalytic properties. J. Am. Chem. Soc. 143(16), 6293–6302 (2021). https://doi.org/10.1021/jacs.1c02734
- H. Nishino, T. Fujita, A. Yamamoto, T. Fujimori, A. Fujino et al., Formation mechanism of boron-based nanosheet through the reaction of MgB2 with water. J. Phys. Chem. C 121(19), 10587–10593 (2017). https://doi.org/10.1021/acs.jpcc.7b02348
- T. Chen, I. Ellis, T.J.N. Hooper, E. Liberti, L. Ye et al., Interstitial boron atoms in the palladium lattice of an industrial type of nanocatalyst: properties and structural modifications. J. Am. Chem. Soc. 141(50), 19616–19624 (2019). https://doi.org/10.1021/jacs.9b06120
- K. Deng, W. Wang, Q. Mao, H. Yu, Z. Wang et al., Boron-intercalation-induced phase evolution of Rh metallene for energy-saving H2 production by H2O2 oxidation coupled with water electrolysis. Small 18(32), 2203020 (2022). https://doi.org/10.1002/smll.202203020
- X. Fu, D. Cheng, C. Wan, S. Kumari, H. Zhang et al., Bifunctional ultrathin RhRu0.5-alloy nanowire electrocatalysts for hydrazine-assisted water splitting. Adv. Mater. 35(23), e2301533 (2023). https://doi.org/10.1002/adma.202301533
- Y. Gao, Y. Xue, L. Qi, C. Xing, X. Zheng et al., Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water. Nat. Commun. 13(1), 5227 (2022). https://doi.org/10.1038/s41467-022-32937-2
- Z.-J. Zhao, S. Liu, S. Zha, D. Cheng, F. Studt et al., Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 4(12), 792–804 (2019). https://doi.org/10.1038/s41578-019-0152-x
- B. Hammer, J.K. Nørskov, Theoretical Surface Science and Catalysis: Calculations and Concepts, in Impact of Surface Science on Catalysis (Elsevier, 2000), pp. 71–129. https://doi.org/10.1016/s0360-0564(02)45013-4
- Y. Zheng, B. Zhang, T. Ma, R. Yan, W. Geng et al., Nitrided rhodium nanoclusters with optimized water bonding and splitting effects for pH-universal H2-production. Small 20(14), 2307405 (2024). https://doi.org/10.1002/smll.202307405
- Y. Xiong, J. Dong, Z.-Q. Huang, P. Xin, W. Chen et al., Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 15(5), 390–397 (2020). https://doi.org/10.1038/s41565-020-0665-x
- Z. Xie, Y. Xu, M. Xie, X. Chen, J.H. Lee et al., Reactions of CO2 and ethane enable CO bond insertion for production of C3 oxygenates. Nat. Commun. 11(1), 1887 (2020). https://doi.org/10.1038/s41467-020-15849-x
- K. Zheng, Y. Li, B. Liu, F. Jiang, Y. Xu et al., Ti-doped CeO2 stabilized single-atom rhodium catalyst for selective and stable CO2 hydrogenation to ethanol. Angew. Chem. Int. Ed. 61(44), e202210991 (2022). https://doi.org/10.1002/anie.202210991
- J. Timoshenko, A. Kuzmin, Wavelet data analysis of EXAFS spectra. Comput. Phys. Commun. 180(6), 920–925 (2009). https://doi.org/10.1016/j.cpc.2008.12.020
- Q. Mao, X. Mu, W. Wang, K. Deng, H. Yu et al., Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading. Nat. Commun. 14(1), 5679 (2023). https://doi.org/10.1038/s41467-023-41423-2
- Z. Xia, H. Zhang, K. Shen, Y. Qu, Z. Jiang, Wavelet analysis of extended X-ray absorption fine structure data: theory, application. Phys. B Condens. Matter 542, 12–19 (2018). https://doi.org/10.1016/j.physb.2018.04.039
- Y. Wang, Y. Xiong, M. Sun, J. Zhou, F. Hao et al., Controlled synthesis of unconventional phase alloy nanobranches for highly selective electrocatalytic nitrite reduction to ammonia. Angew. Chem. Int. Ed. 63(26), e202402841 (2024). https://doi.org/10.1002/anie.202402841
- B. Wu, L. Huang, L. Yan, H. Gang, Y. Cao et al., Boron-modulated electronic-configuration tuning of cobalt for enhanced nitric oxide fixation to ammonia. Nano Lett. 23(15), 7120–7128 (2023). https://doi.org/10.1021/acs.nanolett.3c01994
- J.-Y. Fang, Q.-Z. Zheng, Y.-Y. Lou, K.-M. Zhao, S.-N. Hu et al., Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 13(1), 7899 (2022). https://doi.org/10.1038/s41467-022-35533-6
- K. Chen, J. Xiang, Y. Guo, X. Liu, X. Li et al., Pd1Cu single-atom alloys for high-current-density and durable NO-to-NH3 electroreduction. Nano Lett. 24(2), 541–548 (2024). https://doi.org/10.1021/acs.nanolett.3c02259
- S. Qian, H. Cao, Y. Wang, J. Li, Controlling the selectivity of electrocatalytic NO reduction through pH and potential regulation on single-atom catalysts. J. Am. Chem. Soc. 146(18), 12530–12537 (2024). https://doi.org/10.1021/jacs.4c00827
- J. Zhou, S. Han, R. Yang, T. Li, W. Li et al., Linear adsorption enables NO selective electroreduction to hydroxylamine on single Co sites. Angew. Chem. Int. Ed. 62(27), e202305184 (2023). https://doi.org/10.1002/anie.202305184
- S. Zhang, Y. Zha, Y. Ye, K. Li, Y. Lin et al., Oxygen-coordinated single Mn sites for efficient electrocatalytic nitrate reduction to ammonia. Nano-Micro Lett. 16(1), 9 (2023). https://doi.org/10.1007/s40820-023-01217-z
- P. Li, Z. Zhou, Q. Wang, M. Guo, S. Chen et al., Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies. J. Am. Chem. Soc. 142(28), 12430–12439 (2020). https://doi.org/10.1021/jacs.0c05097
- Y. Hua, N. Song, Z. Wu, Y. Lan, H. Luo et al., Cu–Fe synergistic active sites boost kinetics of electrochemical nitrate reduction. Adv. Funct. Mater. 34(21), 2314461 (2024). https://doi.org/10.1002/adfm.202314461
- Y. Li, C. Cheng, S. Han, Y. Huang, X. Du et al., Electrocatalytic reduction of low-concentration nitric oxide into ammonia over Ru nanosheets. ACS Energy Lett. 7(3), 1187–1194 (2022). https://doi.org/10.1021/acsenergylett.2c00207
- M.Y. Wang, Q. Wu, The density functional theory study on the adsorption and dissociation of NO on Pd (111) surface. IOP Conf. Ser. Earth Environ. Sci. 571(1), 012103 (2020). https://doi.org/10.1088/1755-1315/571/1/012103
- K. Chen, Y. Zhang, J. Xiang, X. Zhao, X. Li et al., P-block antimony single-atom catalysts for nitric oxide electroreduction to ammonia. ACS Energy Lett. 8(3), 1281–1288 (2023). https://doi.org/10.1021/acsenergylett.2c02882
- D. Wu, R. Feng, C. Xu, P.-F. Sui, J. Zhang et al., Regulating the electron localization of metallic bismuth for boosting CO2 electroreduction. Nano-Micro Lett. 14(1), 38 (2021). https://doi.org/10.1007/s40820-021-00772-7
- N. Dubouis, A. Serva, R. Berthin, G. Jeanmairet, B. Porcheron et al., Tuning water reduction through controlled nanoconfinement within an organic liquid matrix. Nat. Catal. 3(8), 656–663 (2020). https://doi.org/10.1038/s41929-020-0482-5
- H. Lin, J.-X. Liu, H. Fan, W.-X. Li, Compensation between surface energy and hcp/fcc phase energy of late transition metals from first-principles calculations. J. Phys. Chem. C 124(20), 11005–11014 (2020). https://doi.org/10.1021/acs.jpcc.0c02142
- S. Chen, K. Lian, W. Liu, Q. Liu, G. Qi et al., Engineering active sites of cathodic materials for high-performance Zn-nitrogen batteries. Nano Res. 16(7), 9214–9230 (2023). https://doi.org/10.1007/s12274-023-5798-4
References
N. Gruber, J.N. Galloway, An earth-system perspective of the global nitrogen cycle. Nature 451(7176), 293–296 (2008). https://doi.org/10.1038/nature06592
M.M.M. Kuypers, H.K. Marchant, B. Kartal, The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16(5), 263–276 (2018). https://doi.org/10.1038/nrmicro.2018.9
Y. Dong, L. Xu, Z. Yang, H. Zheng, L. Chen, Aggravation of reactive nitrogen flow driven by human production and consumption in Guangzhou City China. Nat. Commun. 11(1), 1209 (2020). https://doi.org/10.1038/s41467-020-14699-x
C.-C. Hu, X.-Y. Liu, A.W. Driscoll, Y.-W. Kuang, E.N.J. Brookshire et al., Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants. Nat. Commun. 15(1), 6407 (2024). https://doi.org/10.1038/s41467-024-50674-6
X. Liu, Y. Zhang, W. Han, A. Tang, J. Shen et al., Enhanced nitrogen deposition over China. Nature 494(7438), 459–462 (2013). https://doi.org/10.1038/nature11917
J.E. Hickman, N. Andela, K. Tsigaridis, C. Galy-Lacaux, M. Ossohou et al., Reductions in NO2 burden over north equatorial Africa from decline in biomass burning in spite of growing fossil fuel use, 2005 to 2017. Proc. Natl. Acad. Sci. U. S. A. 118(7), e2002579118 (2021). https://doi.org/10.1073/pnas.2002579118
S. Soodaeva, I. Klimanov, N. Kubysheva, N. Popova, I. Batyrshin, The state of the nitric oxide cycle in respiratory tract diseases. Oxid. Med. Cell. Longev. 2020, 4859260 (2020). https://doi.org/10.1155/2020/4859260
H. Qian, S. Xu, J. Cao, F. Ren, W. Wei et al., Air pollution reduction and climate co-benefits in China’s industries. Nat. Sustain. 4(5), 417–425 (2021). https://doi.org/10.1038/s41893-020-00669-0
K. Li, D.J. Jacob, H. Liao, J. Zhu, V. Shah et al., A two-pollutant strategy for improving ozone and particulate air quality in China. Nat. Geosci. 12(11), 906–910 (2019). https://doi.org/10.1038/s41561-019-0464-x
D. Wang, Z.-W. Chen, K. Gu, C. Chen, Y. Liu et al., Hexagonal cobalt nanosheets for high-performance electrocatalytic NO reduction to NH3. J. Am. Chem. Soc. 145(12), 6899–6904 (2023). https://doi.org/10.1021/jacs.3c00276
L. Han, S. Cai, M. Gao, J.-Y. Hasegawa, P. Wang et al., Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects. Chem. Rev. 119(19), 10916–10976 (2019). https://doi.org/10.1021/acs.chemrev.9b00202
W. Hu, T. Selleri, F. Gramigni, E. Fenes, K.R. Rout et al., On the redox mechanism of low-temperature NH3-SCR over Cu-CHA: a combined experimental and theoretical study of the reduction half cycle. Angew. Chem. Int. Ed. 60(13), 7197–7204 (2021). https://doi.org/10.1002/anie.202014926
J. John, D.R. MacFarlane, A.N. Simonov, The why and how of NOx electroreduction to ammonia. Nat. Catal. 6(12), 1125–1130 (2023). https://doi.org/10.1038/s41929-023-01060-w
D. Wang, X.F. Lu, D. Luan, X.W.D. Lou, Selective electrocatalytic conversion of nitric oxide to high value-added chemicals. Adv. Mater. 36(18), e2312645 (2024). https://doi.org/10.1002/adma.202312645
L. Xiao, S. Mou, W. Dai, W. Yang, Q. Cheng et al., Identification of Cu(111) as superior active sites for electrocatalytic NO reduction to NH3 with high single-pass conversion efficiency. Angew. Chem. Int. Ed. 63(11), e202319135 (2024). https://doi.org/10.1002/anie.202319135
J. Long, S. Chen, Y. Zhang, C. Guo, X. Fu et al., Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem. Int. Ed. 59(24), 9711–9718 (2020). https://doi.org/10.1002/anie.202002337
S. Zhao, J. Liu, Z. Zhang, C. Zhu, G. Shi et al., Deciphering nickel-catalyzed electrochemical ammonia synthesis from nitric oxide. Chem 9(12), 3555–3572 (2023). https://doi.org/10.1016/j.chempr.2023.08.001
L. Zhang, J. Liang, Y. Wang, T. Mou, Y. Lin et al., High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem. Int. Ed. 60(48), 25263–25268 (2021). https://doi.org/10.1002/anie.202110879
X. Guo, P. Wang, T. Wu, Z. Wang, J. Li et al., Aqueous electroreduction of nitric oxide to ammonia at low concentration via vacancy engineered FeOCl. Angew. Chem. Int. Ed. 63(6), e202318792 (2024). https://doi.org/10.1002/anie.202318792
G. Zhang, F. Wang, Y. Wan, Y. Guo, K. Chu, Iron diboride (FeB2) for the electroreduction of NO to NH3. Inorg. Chem. 62(22), 8487–8493 (2023). https://doi.org/10.1021/acs.inorgchem.3c01207
J. Meng, C. Cheng, Y. Wang, Y. Yu, B. Zhang, Carbon support enhanced mass transfer and metal–support interaction promoted activation for low-concentrated nitric oxide electroreduction to ammonia. J. Am. Chem. Soc. 146(14), 10044–10051 (2024). https://doi.org/10.1021/jacs.4c00898
D. Wang, X. Zhu, X. Tu, X. Zhang, C. Chen et al., Oxygen-bridged copper–iron atomic pair as dual-metal active sites for boosting electrocatalytic NO reduction. Adv. Mater. 35(39), 2304646 (2023). https://doi.org/10.1002/adma.202304646
Y. Li, Y. Li, H. Sun, L. Gao, X. Jin et al., Current status and perspectives of dual-atom catalysts towards sustainable energy utilization. Nano-Micro Lett. 16(1), 139 (2024). https://doi.org/10.1007/s40820-024-01347-y
J. Shao, H. Jing, P. Wei, X. Fu, L. Pang et al., Electrochemical synthesis of ammonia from nitric oxide using a copper–tin alloy catalyst. Nat. Energy 8(11), 1273–1283 (2023). https://doi.org/10.1038/s41560-023-01386-6
L. Zhang, Q. Zhou, J. Liang, L. Yue, T. Li et al., Enhancing electrocatalytic NO reduction to NH3 by the CoS nanosheet with sulfur vacancies. Inorg. Chem. 61(20), 8096–8102 (2022). https://doi.org/10.1021/acs.inorgchem.2c01112
Z. Wu, Y. Liu, D. Wang, Y. Zhang, K. Gu et al., Cu@Co with dilatation strain for high-performance electrocatalytic reduction of low-concentration nitric oxide. Adv. Mater. 36(11), 2309470 (2024). https://doi.org/10.1002/adma.202309470
Y. Chen, Z. Lai, X. Zhang, Z. Fan, Q. He et al., Phase engineering of nanomaterials. Nat. Rev. Chem. 4(5), 243–256 (2020). https://doi.org/10.1038/s41570-020-0173-4
Q. Yun, Y. Ge, Z. Shi, J. Liu, X. Wang et al., Recent progress on phase engineering of nanomaterials. Chem. Rev. 123(23), 13489–13692 (2023). https://doi.org/10.1021/acs.chemrev.3c00459
H. Zhang, Y. Li, C. Cheng, J. Zhou, P. Yin et al., Isolated electron-rich ruthenium atoms in intermetallic compounds for boosting electrochemical nitric oxide reduction to ammonia. Angew. Chem. Int. Ed. 62(4), e202213351 (2023). https://doi.org/10.1002/anie.202213351
W. Zhou, C. Feng, X. Li, X. Jiang, L. Jing et al., Boosting electrochemical urea synthesis via constructing ordered Pd-Zn active pair. Nano-Micro Lett. 16(1), 247 (2024). https://doi.org/10.1007/s40820-024-01462-w
L. Zheng, L. Xu, P. Gu, Y. Chen, Lattice engineering of noble metal-based nanomaterials via metal–nonmetal interactions for catalytic applications. Nanoscale 16(16), 7841–7861 (2024). https://doi.org/10.1039/D4NR00561A
H. Chen, B. Zhang, X. Liang, X. Zou, Light alloying element-regulated noble metal catalysts for energy-related applications. Chin. J. Catal. 43(3), 611–635 (2022). https://doi.org/10.1016/S1872-2067(21)63899-8
L. Zheng, Y. Zhang, W. Chen, X. Xu, R. Zhang, et al., Carbon‐extraction‐triggered phase engineering of rhodium nanomaterials for efficient electrocatalytic nitrate reduction reaction. Angew. Chem. Int. Ed. 64(23), e202500985, (2025). https://doi.org/10.1002/anie.202500985
Y. Fu, P. Richardson, K. Li, H. Yu, B. Yu et al., Transition metal aluminum boride as a new candidate for ambient-condition electrochemical ammonia synthesis. Nano-Micro Lett. 12, 65 (2020). https://doi.org/10.1007/s40820-020-0400-z
B. Petermüller, C. Neun, K. Wurst, L. Bayarjargal, D. Zimmer et al., High-pressure synthesis of β-Ir4B5 and determination of the compressibility of various iridium borides. Inorg. Chem. 57(16), 10341–10351 (2018). https://doi.org/10.1021/acs.inorgchem.8b01541
T. Wakisaka, K. Kusada, D. Wu, T. Yamamoto, T. Toriyama et al., Rational synthesis for a noble metal carbide. J. Am. Chem. Soc. 142(3), 1247–1253 (2020). https://doi.org/10.1021/jacs.9b09219
D. Chen, R. Yu, H. Zhao, J. Jiao, X. Mu et al., Boron-induced interstitial effects drive water oxidation on ordered Ir-B compounds. Angew. Chem. Int. Ed. 63(35), e202407577 (2024). https://doi.org/10.1002/anie.202407577
Z. Li, X. Ai, H. Chen, X. Liang, X. Li et al., Asymmetrically strained hcp rhodium sublattice stabilized by 1D covalent boron chains as an efficient electrocatalyst. Chem. Commun. 57(41), 5075–5078 (2021). https://doi.org/10.1039/D1CC00774B
J.C. Crowhurst, A.F. Goncharov, B. Sadigh, J.M. Zaug, D. Aberg et al., Synthesis and characterization of nitrides of iridium and palladium. J. Mater. Res. 23(1), 1–5 (2008). https://doi.org/10.1557/JMR.2008.0027
H. Zhang, W. Li, M. Jin, J. Zeng, T. Yu et al., Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump. Nano Lett. 11(2), 898–903 (2011). https://doi.org/10.1021/nl104347j
X. Zhang, P. Li, Á. Barreda, Y. Gutiérrez, F. González et al., Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics. Nanoscale Horiz. 1(1), 75–80 (2016). https://doi.org/10.1039/c5nh00062a
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
M. Zhao, Z. Chen, Y. Shi, Z.D. Hood, Z. Lyu et al., Kinetically controlled synthesis of rhodium nanocrystals with different shapes and a comparison study of their thermal and catalytic properties. J. Am. Chem. Soc. 143(16), 6293–6302 (2021). https://doi.org/10.1021/jacs.1c02734
H. Nishino, T. Fujita, A. Yamamoto, T. Fujimori, A. Fujino et al., Formation mechanism of boron-based nanosheet through the reaction of MgB2 with water. J. Phys. Chem. C 121(19), 10587–10593 (2017). https://doi.org/10.1021/acs.jpcc.7b02348
T. Chen, I. Ellis, T.J.N. Hooper, E. Liberti, L. Ye et al., Interstitial boron atoms in the palladium lattice of an industrial type of nanocatalyst: properties and structural modifications. J. Am. Chem. Soc. 141(50), 19616–19624 (2019). https://doi.org/10.1021/jacs.9b06120
K. Deng, W. Wang, Q. Mao, H. Yu, Z. Wang et al., Boron-intercalation-induced phase evolution of Rh metallene for energy-saving H2 production by H2O2 oxidation coupled with water electrolysis. Small 18(32), 2203020 (2022). https://doi.org/10.1002/smll.202203020
X. Fu, D. Cheng, C. Wan, S. Kumari, H. Zhang et al., Bifunctional ultrathin RhRu0.5-alloy nanowire electrocatalysts for hydrazine-assisted water splitting. Adv. Mater. 35(23), e2301533 (2023). https://doi.org/10.1002/adma.202301533
Y. Gao, Y. Xue, L. Qi, C. Xing, X. Zheng et al., Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water. Nat. Commun. 13(1), 5227 (2022). https://doi.org/10.1038/s41467-022-32937-2
Z.-J. Zhao, S. Liu, S. Zha, D. Cheng, F. Studt et al., Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 4(12), 792–804 (2019). https://doi.org/10.1038/s41578-019-0152-x
B. Hammer, J.K. Nørskov, Theoretical Surface Science and Catalysis: Calculations and Concepts, in Impact of Surface Science on Catalysis (Elsevier, 2000), pp. 71–129. https://doi.org/10.1016/s0360-0564(02)45013-4
Y. Zheng, B. Zhang, T. Ma, R. Yan, W. Geng et al., Nitrided rhodium nanoclusters with optimized water bonding and splitting effects for pH-universal H2-production. Small 20(14), 2307405 (2024). https://doi.org/10.1002/smll.202307405
Y. Xiong, J. Dong, Z.-Q. Huang, P. Xin, W. Chen et al., Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 15(5), 390–397 (2020). https://doi.org/10.1038/s41565-020-0665-x
Z. Xie, Y. Xu, M. Xie, X. Chen, J.H. Lee et al., Reactions of CO2 and ethane enable CO bond insertion for production of C3 oxygenates. Nat. Commun. 11(1), 1887 (2020). https://doi.org/10.1038/s41467-020-15849-x
K. Zheng, Y. Li, B. Liu, F. Jiang, Y. Xu et al., Ti-doped CeO2 stabilized single-atom rhodium catalyst for selective and stable CO2 hydrogenation to ethanol. Angew. Chem. Int. Ed. 61(44), e202210991 (2022). https://doi.org/10.1002/anie.202210991
J. Timoshenko, A. Kuzmin, Wavelet data analysis of EXAFS spectra. Comput. Phys. Commun. 180(6), 920–925 (2009). https://doi.org/10.1016/j.cpc.2008.12.020
Q. Mao, X. Mu, W. Wang, K. Deng, H. Yu et al., Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading. Nat. Commun. 14(1), 5679 (2023). https://doi.org/10.1038/s41467-023-41423-2
Z. Xia, H. Zhang, K. Shen, Y. Qu, Z. Jiang, Wavelet analysis of extended X-ray absorption fine structure data: theory, application. Phys. B Condens. Matter 542, 12–19 (2018). https://doi.org/10.1016/j.physb.2018.04.039
Y. Wang, Y. Xiong, M. Sun, J. Zhou, F. Hao et al., Controlled synthesis of unconventional phase alloy nanobranches for highly selective electrocatalytic nitrite reduction to ammonia. Angew. Chem. Int. Ed. 63(26), e202402841 (2024). https://doi.org/10.1002/anie.202402841
B. Wu, L. Huang, L. Yan, H. Gang, Y. Cao et al., Boron-modulated electronic-configuration tuning of cobalt for enhanced nitric oxide fixation to ammonia. Nano Lett. 23(15), 7120–7128 (2023). https://doi.org/10.1021/acs.nanolett.3c01994
J.-Y. Fang, Q.-Z. Zheng, Y.-Y. Lou, K.-M. Zhao, S.-N. Hu et al., Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 13(1), 7899 (2022). https://doi.org/10.1038/s41467-022-35533-6
K. Chen, J. Xiang, Y. Guo, X. Liu, X. Li et al., Pd1Cu single-atom alloys for high-current-density and durable NO-to-NH3 electroreduction. Nano Lett. 24(2), 541–548 (2024). https://doi.org/10.1021/acs.nanolett.3c02259
S. Qian, H. Cao, Y. Wang, J. Li, Controlling the selectivity of electrocatalytic NO reduction through pH and potential regulation on single-atom catalysts. J. Am. Chem. Soc. 146(18), 12530–12537 (2024). https://doi.org/10.1021/jacs.4c00827
J. Zhou, S. Han, R. Yang, T. Li, W. Li et al., Linear adsorption enables NO selective electroreduction to hydroxylamine on single Co sites. Angew. Chem. Int. Ed. 62(27), e202305184 (2023). https://doi.org/10.1002/anie.202305184
S. Zhang, Y. Zha, Y. Ye, K. Li, Y. Lin et al., Oxygen-coordinated single Mn sites for efficient electrocatalytic nitrate reduction to ammonia. Nano-Micro Lett. 16(1), 9 (2023). https://doi.org/10.1007/s40820-023-01217-z
P. Li, Z. Zhou, Q. Wang, M. Guo, S. Chen et al., Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies. J. Am. Chem. Soc. 142(28), 12430–12439 (2020). https://doi.org/10.1021/jacs.0c05097
Y. Hua, N. Song, Z. Wu, Y. Lan, H. Luo et al., Cu–Fe synergistic active sites boost kinetics of electrochemical nitrate reduction. Adv. Funct. Mater. 34(21), 2314461 (2024). https://doi.org/10.1002/adfm.202314461
Y. Li, C. Cheng, S. Han, Y. Huang, X. Du et al., Electrocatalytic reduction of low-concentration nitric oxide into ammonia over Ru nanosheets. ACS Energy Lett. 7(3), 1187–1194 (2022). https://doi.org/10.1021/acsenergylett.2c00207
M.Y. Wang, Q. Wu, The density functional theory study on the adsorption and dissociation of NO on Pd (111) surface. IOP Conf. Ser. Earth Environ. Sci. 571(1), 012103 (2020). https://doi.org/10.1088/1755-1315/571/1/012103
K. Chen, Y. Zhang, J. Xiang, X. Zhao, X. Li et al., P-block antimony single-atom catalysts for nitric oxide electroreduction to ammonia. ACS Energy Lett. 8(3), 1281–1288 (2023). https://doi.org/10.1021/acsenergylett.2c02882
D. Wu, R. Feng, C. Xu, P.-F. Sui, J. Zhang et al., Regulating the electron localization of metallic bismuth for boosting CO2 electroreduction. Nano-Micro Lett. 14(1), 38 (2021). https://doi.org/10.1007/s40820-021-00772-7
N. Dubouis, A. Serva, R. Berthin, G. Jeanmairet, B. Porcheron et al., Tuning water reduction through controlled nanoconfinement within an organic liquid matrix. Nat. Catal. 3(8), 656–663 (2020). https://doi.org/10.1038/s41929-020-0482-5
H. Lin, J.-X. Liu, H. Fan, W.-X. Li, Compensation between surface energy and hcp/fcc phase energy of late transition metals from first-principles calculations. J. Phys. Chem. C 124(20), 11005–11014 (2020). https://doi.org/10.1021/acs.jpcc.0c02142
S. Chen, K. Lian, W. Liu, Q. Liu, G. Qi et al., Engineering active sites of cathodic materials for high-performance Zn-nitrogen batteries. Nano Res. 16(7), 9214–9230 (2023). https://doi.org/10.1007/s12274-023-5798-4