Beyond the Silicon Plateau: A Convergence of Novel Materials for Transistor Evolution
Corresponding Author: Ho Won Jang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 69
Abstract
As silicon-based transistors face fundamental scaling limits, the search for breakthrough alternatives has led to innovations in 3D architectures, heterogeneous integration, and sub-3 nm semiconductor body thicknesses. However, the true effectiveness of these advancements lies in the seamless integration of alternative semiconductors tailored for next-generation transistors. In this review, we highlight key advances that enhance both scalability and switching performance by leveraging emerging semiconductor materials. Among the most promising candidates are 2D van der Waals semiconductors, Mott insulators, and amorphous oxide semiconductors, which offer not only unique electrical properties but also low-power operation and high carrier mobility. Additionally, we explore the synergistic interactions between these novel semiconductors and advanced gate dielectrics, including high-K materials, ferroelectrics, and atomically thin hexagonal boron nitride layers. Beyond introducing these novel material configurations, we address critical challenges such as leakage current and long-term device reliability, which become increasingly crucial as transistors scale down to atomic dimensions. Through concrete examples showcasing the potential of these materials in transistors, we provide key insights into overcoming fundamental obstacles—such as device reliability, scaling down limitations, and extended applications in artificial intelligence—ultimately paving the way for the development of future transistor technologies.
Highlights:
1 This review introduces promising semiconductor materials for future transistors, including two-dimensional van der Waals materials, Mott insulators, halide perovskites, and amorphous oxides, with advantages such as clean interfaces, ultra-thin channels, and defect tolerance.
2 These materials, when combined with advanced gate dielectrics and next-generation interconnects, offer synergistic solutions to scaling challenges such as carrier scattering, oxide thickness limitations, and interface degradation.
3 The review also discusses reliability concerns including thermal instability and leakage current, and explores future applications in artificial intelligence hardware, in-memory computing, and three-dimensional integration.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Nandan, A. Agarwal, S. Bhowmick, Y.S. Chauhan, Two-dimensional semiconductors based field-effect transistors: review of major milestones and challenges. Front. Electron. 4, 1277927 (2023). https://doi.org/10.3389/felec.2023.1277927
- H.H. Radamson, H. Zhu, Z. Wu, X. He, H. Lin et al., State of the art and future perspectives in advanced CMOS technology. Nanomaterials 10(8), 1555 (2020). https://doi.org/10.3390/nano10081555
- L. Colombo, J. Chambers, H. Niimi, Gate dielectric process technology for the sub-1 nm equivalent oxide thickness (EOT) era. Electrochem. Soc. Interface 16(3), 51–55 (2007). https://doi.org/10.1149/2.f07073if
- X. Chen, S.-T. Han, Y. Zhou, Scaling the contacted poly pitch of 2D transistors. Nat. Electron. 8(5), 378–379 (2025). https://doi.org/10.1038/s41928-025-01383-5
- W. Li, M. Du, C. Zhao, G. Xiong, W. Gan et al., Scaling MoS2 transistors to 1 nm node. 2024 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2024, pp. 1–4. https://doi.org/10.1109/IEDM50854.2024.10873379
- K. Uchida, H. Watanabe, A. Kinoshita, J. Koga, T. Numata et al., Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm. Digest. International Electron Devices Meeting. December 8–11, 2002, San Francisco, CA, USA. IEEE, (2002), pp. 47–50. https://doi.org/10.1109/IEDM.2002.1175776
- A.M. Jakob, S.G. Robson, V. Schmitt, V. Mourik, M. Posselt et al., Deterministic shallow dopant implantation in silicon with detection confidence upper-bound to 99.85% by ion-solid interactions. Adv. Mater. 34(3), e2103235 (2022). https://doi.org/10.1002/adma.202103235
- A.S. Al-Jawadi, M.T. Yaseen, Q.T. Algwari, Gate engineering solutions to mitigate short channel effects in a 20 nm MOSFET. E Prime Adv. Electr. Eng. Electron. Energy 11, 100934 (2025). https://doi.org/10.1016/j.prime.2025.100934
- H. Bu, FinFET devices and integration. Meet. Abstr. (2014). https://doi.org/10.1149/ma2014-01/39/1718
- J. Robertson, R.M. Wallace, High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. R. Rep. 88, 1–41 (2015). https://doi.org/10.1016/j.mser.2014.11.001
- S. Cristoloveanu, Silicon on insulator technologies and devices: from present to future. Solid State Electron. 45(8), 1403–1411 (2001). https://doi.org/10.1016/S0038-1101(00)00271-9
- N.S. Ashraf, More compelling device physics based insights over subthreshold slope (swing) saturation near cryogenic temperatures for n-FET and p-FET. J. Nanotechnol. Nanomater. 5(2), 61–63 (2024). https://doi.org/10.33696/nanotechnol.5.055
- S. Wong, A. El-Gamal, P. Griffin, Y. Nishi, F. Pease, J. Plummer, Monolithic 3D integrated circuits. IEEE (2007). https://doi.org/10.1109/VTSA.2007.378923
- S.S. Iyer, Heterogeneous integration for performance and scaling. IEEE Trans. Compon. Packag. Manuf. Technol. 6(7), 973–982 (2016). https://doi.org/10.1109/TCPMT.2015.2511626
- Y.J. Lee, Y. Kim, H. Gim, K. Hong, H.W. Jang, Nanoelectronics using metal–insulator transition. Adv. Mater. 36(5), 2305353 (2024). https://doi.org/10.1002/adma.202305353
- H. Zhu, W. Yang, Y. Reo, G. Zheng, S. Bai et al., Tin perovskite transistors and complementary circuits based on A-site cation engineering. Nat. Electron. 6(9), 650–657 (2023). https://doi.org/10.1038/s41928-023-01019-6
- A. Liu, Y.-S. Kim, M.G. Kim, Y. Reo, T. Zou et al., Selenium-alloyed tellurium oxide for amorphous p-channel transistors. Nature 629(8013), 798–802 (2024). https://doi.org/10.1038/s41586-024-07360-w
- Y.J. Lee, K. Hong, K. Na, J. Yang, T.H. Lee et al., Nonvolatile control of metal-insulator transition in VO2 by ferroelectric gating. Adv. Mater. 34(32), e2203097 (2022). https://doi.org/10.1002/adma.202203097
- S. Baek, H.H. Yoo, J.H. Ju, P. Sriboriboon, P. Singh et al., Ferroelectric field-effect-transistor integrated with ferroelectrics heterostructure. Adv. Sci. 9(21), 2200566 (2022). https://doi.org/10.1002/advs.202200566
- Y. Xu, T. Liu, K. Liu, Y. Zhao, L. Liu et al., Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nat. Mater. 22(9), 1078–1084 (2023). https://doi.org/10.1038/s41563-023-01626-w
- E. Li, C. Gao, R. Yu, X. Wang, L. He et al., MXene based saturation organic vertical photoelectric transistors with low subthreshold swing. Nat. Commun. 13(1), 2898 (2022). https://doi.org/10.1038/s41467-022-30527-w
- S.H. Kim, J. Seo, J. Koo, J. Chang, G. Jin et al., Topological semimetals for advanced node interconnects. iScience 27(12), 111460 (2024). https://doi.org/10.1016/j.isci.2024.111460
- M. Son, J. Jang, Y. Lee, J. Nam, J.Y. Hwang et al., Copper-graphene heterostructure for back-end-of-line compatible high-performance interconnects. NPJ 2D Mater. Appl. 5, 41 (2021). https://doi.org/10.1038/s41699-021-00216-1
- W.F. Brinkman, D.E. Haggan, W.W. Troutman, A history of the invention of the transistor and where it will lead us. IEEE J. Solid State Circuits 32(12), 1858–1865 (2002). https://doi.org/10.1109/4.643644
- H. Iwai, S. M. Sze, Y. Taur, H. Wong, Guide to State-of-the-Art Electron Devices, 1st edn. (Wiley-IEEE Press, 2013), pp. 21–36. https://doi.org/10.1002/9781118517543.ch2
- W. Aspray, The Intel 4004 microprocessor: what constituted invention? IEEE Ann. Hist. Comput. 19(3), 4–15 (1997). https://doi.org/10.1109/85.601727
- D.C. Brock, Understanding Moore’s Law: Four Decades of Innovation, 1st edn. (Chemical Heritage Foundation, Philadelphia, 2006), p.122
- K.Y. Kamal, The silicon age: trends in semiconductor devices industry. J. Eng. Sci. Technol. Rev. 15(1), 110–115 (2022). https://doi.org/10.25103/jestr.151.14
- T.N. Theis, H.S.P. Wong, The end of Moore’s law: a new beginning for information technology. Comput. Sci. Eng. 19(2), 41–50 (2017). https://doi.org/10.1109/MCSE.2017.29
- W. Kester, E. Bordeax, J. Horvath, C. Redmond, E. Murphy, Low voltage logic interfacing. Data Conversion Handbook. Elsevier, (2005), pp. 867–880. https://doi.org/10.1016/b978-075067841-4/50047-6
- G.G. Shahidi, D.A. Antoniadis, H.I. Smith, Reduction of channel hot-electron-generated substrate current in sub-150-nm channel length Si MOSFET’s. IEEE Electron Device Lett. 9(10), 497–499 (2002). https://doi.org/10.1109/55.17823
- International Roadmap for Devices and Systems, 2023 Update: Beyond CMOS (IRDS, 2023), pp. 71. https://doi.org/10.60627/0p45-zj55
- S.V. Shinde, Ultra-low power current reference based on flat band difference of MOSFETs. J. Phys. Conf. Ser. 1729(1), 012011 (2021). https://doi.org/10.1088/1742-6596/1729/1/012011
- S. Deshpande, S. Sopariwala, R. Singhvi, R. Khandelwal, J. Marvaniya et al., Performance analysis of silicon nanowire FET for GAA and pi gate configurations. 2022 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience & Nanotechnology (5NANO). April 28–29, 2022. Kottayam, India. IEEE, (2022), pp. 1–6. https://doi.org/10.1109/5nano53044.2022.9828888
- S.V. Kalinin, D.A. Poteryaev, D.I. Ostertak, M.A. Kuznetsov, presented at Proc. IEEE APEIE. A New Revolution in Logic Silicon IC Technology: GAA FETs are Replacing FinFETs, Novosibirsk, Russian Federation, (2023). https://doi.org/10.1109/APEIE59731.2023.10347677
- L. Wu, The next generation of gate-all-around transistors. Nat. Electron. 6(7), 469 (2023). https://doi.org/10.1038/s41928-023-01006-x
- K.P. O’Brien, C.H. Naylor, C. Dorow, K. Maxey, A.V. Penumatcha et al., Process integration and future outlook of 2D transistors. Nat. Commun. 14, 6400 (2023). https://doi.org/10.1038/s41467-023-41779-5
- U.K. Das, T.K. Bhattacharyya, Opportunities in device scaling for 3-nm node and beyond: FinFET versus GAA-FET versus UFET. IEEE Trans. Electron Devices 67(6), 2633–2638 (2020). https://doi.org/10.1109/TED.2020.2987139
- J.M. Bustillo, R.T. Howe, R.S. Muller, Surface micromachining for microelectromechanical systems. Proc. IEEE 86(8), 1552–1574 (1998). https://doi.org/10.1109/5.704260
- J. Yang, K. Chen, D. Wang, T. Liu, X. Sun et al., Impact of stress and dimension on nanosheet deformation during channel release of gate-all-around device. Micromachines 14(3), 611 (2023). https://doi.org/10.3390/mi14030611
- D. Connelly, P. Zheng, T.K. Liu, Channel stress and ballistic performance advantages of gate-all-around FETs and inserted-oxide FinFETs. IEEE Trans. Nanotechnol. 16(2), 209–216 (2017). https://doi.org/10.1109/TNANO.2017.2653099
- S. Sharma, S. Sahay, R. Dey, Parasitic capacitance model for stacked gate-all-around nanosheet FETs. IEEE Trans. Electron Devices 71(1), 37–45 (2024). https://doi.org/10.1109/TED.2023.3281530
- A. Singh, O. Maheshwari, N.R. Mohapatra, Parasitic capacitance in nanosheet FETs: extraction of different components and their analytical modeling. IEEE Trans. Electron Devices 71(5), 2894–2900 (2024). https://doi.org/10.1109/TED.2024.3382216
- X. He, Y. Zhang, M. Choi, L. Wang, A. Vandooren et al., presented at Proc. IEEE International Electron Devices Meeting (IEDM). Impact of aggressive fin width scaling on FinFET device characteristics, San Francisco, CA, USA, (2018). https://doi.org/10.1109/IEDM.2017.8268427
- A.D. Franklin, M.C. Hersam, H.S.P. Wong, Carbon nanotube transistors: making electronics from molecules. Science 378(6621), 726–732 (2022). https://doi.org/10.1126/science.abp8278
- G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee et al., Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7(9), 7931–7936 (2013). https://doi.org/10.1021/nn402954e
- M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
- Z. Lu, Y. Chen, W. Dang, L. Kong, Q. Tao et al., Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration. Nat. Commun. 14(1), 2340 (2023). https://doi.org/10.1038/s41467-023-37887-x
- A. Hasani, Q.V. Le, M. Tekalgne, M.-J. Choi, T.H. Lee et al., Direct synthesis of two-dimensional MoS2 on p-type Si and application to solar hydrogen production. NPG Asia Mater. 11, 47 (2019). https://doi.org/10.1038/s41427-019-0145-7
- T. Wei, Z. Han, X. Zhong, Q. Xiao, T. Liu et al., Two dimensional semiconducting materials for ultimately scaled transistors. iScience 25(10), 105160 (2022). https://doi.org/10.1016/j.isci.2022.105160
- W. Cao, J. Kang, W. Liu, K. Banerjee, A compact current–voltage model for 2D semiconductor based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect. IEEE Trans. Electron Devices 61(12), 4282–4290 (2014). https://doi.org/10.1109/TED.2014.2365028
- K. Uchida, H. Watanabe, A. Kinoshita, J. Koga, T. Numata et al., Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm. Digest. International Electron Devices Meeting. San Francisco, CA, USA. IEEE, 2002, pp. 47–50. https://doi.org/10.1109/iedm.2002.1175776
- J. Li, X. Yang, Y. Liu, B. Huang, R. Wu et al., General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579(7799), 368–374 (2020). https://doi.org/10.1038/s41586-020-2098-y
- Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X. Song et al., Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568(7750), 70–74 (2019). https://doi.org/10.1038/s41586-019-1052-3
- R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss et al., Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014). https://doi.org/10.1038/ncomms6143
- W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena et al., Role of metal contacts in designing high-performance monolayer n type WSe2 field effect transistors. Nano Lett. 13(5), 1983–1990 (2013). https://doi.org/10.1021/nl304777e
- C.D. English, G. Shine, V.E. Dorgan, K.C. Saraswat, E. Pop, Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 16(6), 3824–3830 (2016). https://doi.org/10.1021/acs.nanolett.6b01309
- M. Schmidt, M.C. Lemme, H.D.B. Gottlob, F. Driussi, L. Selmi et al., Mobility extraction in SOI MOSFETs with sub 1nm body thickness. Solid State Electron. 53(12), 1246–1251 (2009). https://doi.org/10.1016/j.sse.2009.09.017
- G. Long, W. Jin, F. Xia, Y. Wang, T. Bai et al., Carbon nanotube-based flexible high-speed circuits with sub-nanosecond stage delays. Nat. Commun. 13(1), 6734 (2022). https://doi.org/10.1038/s41467-022-34621-x
- A. Sebastian, R. Pendurthi, T.H. Choudhury, J.M. Redwing, S. Das, Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12(1), 693 (2021). https://doi.org/10.1038/s41467-020-20732-w
- R. Wu, Q. Tao, J. Li, W. Li, Y. Chen et al., Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron. 5(8), 497–504 (2022). https://doi.org/10.1038/s41928-022-00800-3
- K. Alam, R.K. Lake, Monolayer MoS2 transistors beyond the technology road map. IEEE Trans. Electron Devices 59(12), 3250–3254 (2012). https://doi.org/10.1109/TED.2012.2218283
- L. Ding, Z. Zhang, S. Liang, T. Pei, S. Wang et al., CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat. Commun. 3, 677 (2012). https://doi.org/10.1038/ncomms1682
- X. Sun, S. Fang, G. Zhang, L. Xu, Y.S. Ang et al., Monolayer WS2 sub-5 nm transistor for future technology nodes: a theoretical study. ACS Appl. Nano Mater. 8(24), 12594–12607 (2025). https://doi.org/10.1021/acsanm.5c01418
- X. Li, P. Zhou, X. Hu, E. Rivers, K. Watanabe et al., Cascaded logic gates based on high-performance ambipolar dual-gate WSe2 thin film transistors. ACS Nano 17, 13 (2023). https://doi.org/10.1021/acsnano.3c03932
- J. Tang, Q. Wang, J. Tian, X. Li, N. Li et al., Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 14(1), 3633 (2023). https://doi.org/10.1038/s41467-023-39390-9
- M. Kotera, K. Yagura, H. Tanaka, D. Kawano, T. Maekawa, Extreme ultraviolet lithography simulation by tracing photoelectron trajectories in resist. Jpn. J. Appl. Phys. 47(6S), 4944 (2008). https://doi.org/10.1143/jjap.47.4944
- J. Garcia-Santaclara, R. Peeters, J. van Dongen, R. van Ballegoij, S. Lok et al., High-NA EUV platform realization as next step in EUV technology. Proc. SPIE PC12750, PC1275002 (2023). https://doi.org/10.1117/12.2687756
- L.-A. Ragnarsson, M.G. Bardon, P. Wuytens, G. Mirabelli, D. Jang et al., Environmental impact of CMOS logic technologies. 2022 6th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). March 6–9, 2022. Oita, Japan. IEEE, (2022), pp. 82–84. https://doi.org/10.1109/edtm53872.2022.9798208
- S.F. Shaikh, N. El-Atab, M.M. Hussain, presented at Proc. IEEE Electronic Components and Technology Conference (IEEE ECTC), 3D Heterogeneous Integration Strategy for Physically Flexible CMOS Electronic Systems. San Diego, CA, USA, (2021)
- K. Xiao, J. Wan, H. Xie, Y. Zhu, T. Tian et al., High performance Si-MoS2 heterogeneous embedded DRAM. Nat. Commun. 15(1), 9782 (2024). https://doi.org/10.1038/s41467-024-54218-w
- D. Lim, K. Cho, S. Kim, Reconfigurable logic-in-memory using silicon transistors. Adv. Mater. Technol. 7(10), 2101504 (2022). https://doi.org/10.1002/admt.202101504
- C. Lee, C. Lee, S. Lee, J. Choi, H. Yoo et al., A reconfigurable binary/ternary logic conversion-in-memory based on drain-aligned floating-gate heterojunction transistors. Nat. Commun. 14(1), 3757 (2023). https://doi.org/10.1038/s41467-023-39394-5
- A. Agnesina, M. Pathak, B. Khailany, H. Esmaeilzadeh, presented at Proc. IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Boston, MA, USA, (2021)
- M. Zou, J. Zhou, J. Sun, C. Wang, S. Kvatinsky, Improving efficiency and lifetime of logic-in-memory by combining IMPLY and MAGIC families. J. Syst. Archit. 119, 102232 (2021). https://doi.org/10.1016/j.sysarc.2021.102232
- J. Zhu, T. Palacios, Design–technology co-optimization for 2D electronics. Nat. Electron. 6(11), 803–804 (2023). https://doi.org/10.1038/s41928-023-01072-1
- J.D. Cressler, SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications. IEEE Trans. Microw. Theory Tech. 46(5), 572–589 (1998). https://doi.org/10.1109/22.668665
- W.M. Weber, T. Mikolajick, Silicon and germanium nanowire electronics: physics of conventional and unconventional transistors. Rep. Prog. Phys. 80(6), 066502 (2017). https://doi.org/10.1088/1361-6633/aa56f0
- H. Hosono, How we made the IGZO transistor. Nat. Electron. 1(7), 428 (2018). https://doi.org/10.1038/s41928-018-0106-0
- J.Y. Kim, M.-J. Choi, Y.J. Lee, S.H. Park, S. Choi et al., High-performance ferroelectric thin film transistors with large memory window using epitaxial yttrium-doped hafnium zirconium gate oxide. ACS Appl. Mater. Interfaces 16(15), 19057–19067 (2024). https://doi.org/10.1021/acsami.3c16427
- G. Iannaccone, F. Bonaccorso, L. Colombo, G. Fiori, Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 13(3), 183–191 (2018). https://doi.org/10.1038/s41565-018-0082-6
- J.B. Goodenough, How we made the Li-ion rechargeable battery. Nat. Electron. 1(3), 204 (2018). https://doi.org/10.1038/s41928-018-0048-6
- A. Liu, H. Zhu, S. Bai, Y. Reo, T. Zou et al., High-performance inorganic metal halide perovskite transistors. Nat. Electron. 5(2), 78–83 (2022). https://doi.org/10.1038/s41928-022-00712-2
- Y.J. Lee, J.S. Han, D.E. Lee, T.H. Lee, J.Y. Kim et al., High hole mobility inorganic halide perovskite field-effect transistors with enhanced phase stability and interfacial defect tolerance. Adv. Electron. Mater. 8(1), 2100624 (2022). https://doi.org/10.1002/aelm.202100624
- A. Charnas, Z. Zhang, Z. Lin, D. Zheng, J. Zhang et al., Review-extremely thin amorphous indium oxide transistors. Adv. Mater. 36(9), e2304044 (2024). https://doi.org/10.1002/adma.202304044
- J.Y. Kim, S.H. Park, Y.J. Kim, J.H. Kim, S.K. Choi et al., Stabilization of tetragonal phase in hafnium zirconium oxide by cation doping for high-K dielectric insulators. ACS Appl. Mater. Interfaces 16(44), 60811–60818 (2024). https://doi.org/10.1021/acsami.4c12407
- Y. Shen, K. Zhu, Y. Xiao, D. Waldhör, A.H. Basher et al., Two-dimensional-materials-based transistors using hexagonal boron nitride dielectrics and metal gate electrodes with high cohesive energy. Nat. Electron. 7(10), 856–867 (2024). https://doi.org/10.1038/s41928-024-01233-w
- I. Meric, C.R. Dean, N. Petrone, L. Wang, J. Hone et al., Graphene field-effect transistors based on boron–nitride dielectrics. Proc. IEEE 101(7), 1609–1619 (2013). https://doi.org/10.1109/JPROC.2013.2257634
- H. Xu, R. Fang, S. Wu, J. An, W. Zhang et al., Li-ion-based electrolyte-gated transistors with short write-read delay for neuromorphic computing. Adv. Electron. Mater. 9(2), 2200915 (2023). https://doi.org/10.1002/aelm.202200915
- R.D. Nikam, M. Kwak, J. Lee, K.G. Rajput, W. Banerjee et al., Near ideal synaptic functionalities in Li ion synaptic transistor using Li(3)PO(x)Se(x) electrolyte with high ionic conductivity. Sci. Rep. 9(1), 18883 (2019). https://doi.org/10.1038/s41598-019-55310-8
- C.M. Smyth, R. Addou, S. McDonnell, C.L. Hinkle, R.M. Wallace, Contact metal–MoS2 interfacial reactions and potential implications on MoS2-based device performance. J. Phys. Chem. C 120(27), 14719–14729 (2016). https://doi.org/10.1021/acs.jpcc.6b04473
- C.-H. Mao, C.-C. Chung, W.-R. Syong, Y.-C. Yao, K.-Y. Hsiao et al., Bifunctional semimetal as a plasmonic resonator and ohmic contact for an ultrasensitive MoS2 photodetector. ACS Photonics 10(5), 1495–1503 (2023). https://doi.org/10.1021/acsphotonics.3c00100
- S.Y. Kim, Z. Sun, J. Roy, X. Wang, Z. Chen et al., Fundamental understanding of interface chemistry and electrical contact properties of Bi and MoS2. ACS Appl. Mater. Interfaces 16(40), 54790–54798 (2024). https://doi.org/10.1021/acsami.4c10082
- T.D. Ngo, T. Huynh, H. Jung, F. Ali, J. Jeon et al., Modulation of contact resistance of dual-gated MoS2 FETs using Fermi-level pinning-free antimony semi-metal contacts. Adv. Sci. 10(21), 2301400 (2023). https://doi.org/10.1002/advs.202301400
- T. Gupta, K. Elibol, S. Hummel, M. Stöger-Pollach, C. Mangler et al., Resolving few-layer antimonene/graphene heterostructures. NPJ 2D Mater. Appl. 5, 53 (2021). https://doi.org/10.1038/s41699-021-00230-3
- A.-S. Chou, C.-C. Cheng, S.-L. Liew, P.-H. Ho, S.-Y. Wang et al., High on-state current in chemical vapor deposited monolayer MoS2nFETs with Sn ohmic contacts. IEEE Electron Device Lett. 42(2), 272–275 (2021). https://doi.org/10.1109/led.2020.3048371
- W. Jolie, T. Michely, 1D metals for 2D electronics. Nat. Nanotechnol. 19(7), 883–884 (2024). https://doi.org/10.1038/s41565-024-01708-z
- H. Ahn, G. Moon, H.-G. Jung, B. Deng, D.-H. Yang et al., Integrated 1D epitaxial mirror twin boundaries for ultrascaled 2D MoS2 field-effect transistors. Nat. Nanotechnol. 19(7), 955–961 (2024). https://doi.org/10.1038/s41565-024-01706-1
- Q. Qian, J. Lei, J. Wei, Z. Zhang, G. Tang et al., 2D materials as semiconducting gate for field-effect transistors with inherent over-voltage protection and boosted on-current. Npj 2D Mater. Appl. 3, 24 (2019). https://doi.org/10.1038/s41699-019-0106-6
- T. Harada, T. Nagai, M. Oishi, Y. Masahiro, Sputter-grown c-axis-oriented PdCoO2 thin films. J. Appl. Phys. 133(8), 085302 (2023). https://doi.org/10.1063/5.0136749
- V. Eyert, R. Frésard, A. Maignan, On the metallic conductivity of the delafossites PdCoO2 and PtCoO2. Chem. Mater. 20(6), 2370–2373 (2008). https://doi.org/10.1021/cm703404e
- S. Kumar, Y.-H. Tu, S. Luo, N.A. Lanzillo, T.-R. Chang et al., Surface-dominated conductance scaling in Weyl semimetal NbAs. NPJ Comput. Mater. 10, 84 (2024). https://doi.org/10.1038/s41524-024-01263-0
- C. Zhang, Z. Ni, J. Zhang, X. Yuan, Y. Liu et al., Ultrahigh conductivity in Weyl semimetal NbAs nanobelts. Nat. Mater. 18(5), 482–488 (2019). https://doi.org/10.1038/s41563-019-0320-9
- S. Salahuddin, K. Ni, S. Datta, The era of hyper-scaling in electronics. Nat. Electron. 1(8), 442–450 (2018). https://doi.org/10.1038/s41928-018-0117-x
- P.R. Wilson, B. Ferreira, J. Zhang, C. DiMarino, IEEE itrw: international technology roadmap for wide-bandgap power semiconductors: an overview. IEEE Power Electron. Mag. 5(2), 22–25 (2018). https://doi.org/10.1109/MPEL.2018.2821938
- C. Varnava, FinFETs for cryptography. Nat. Electron 3(12), 732 (2020). https://doi.org/10.1038/s41928-020-00521-5
- W. Wang, K. Li, J. Lan, M. Shen, Z. Wang et al., CMOS backend-of-line compatible memory array and logic circuitries enabled by high performance atomic layer deposited ZnO thin-film transistor. Nat. Commun. 14(1), 6079 (2023). https://doi.org/10.1038/s41467-023-41868-5
- J. Liao, W. Wen, J. Wu, Y. Zhou, S. Hussain et al., Van der Waals ferroelectric semiconductor field effect transistor for in-memory computing. ACS Nano 17(6), 6095–6102 (2023). https://doi.org/10.1021/acsnano.3c01198
- Y. He, L. Zhu, Y. Zhu, C. Chen, S. Jiang et al., Recent progress on emerging transistor-based neuromorphic devices. Adv. Intell. Syst. 3(7), 2000210 (2021). https://doi.org/10.1002/aisy.202000210
- M. Neisser, S. Wurm, ITRS lithography roadmap: status and challenges. Adv. Opt. Technol. 1(4), 217–222 (2012). https://doi.org/10.1515/aot-2012-0045
- S. Kim, S. Kim, K. Cho, T. Shin, H. Park et al., Signal integrity and computing performance analysis of a processing-in-memory of high bandwidth memory (PIM-HBM) scheme. IEEE Trans. Compon. Packag. Manuf. Technol. 11(11), 1955–1970 (2021). https://doi.org/10.1109/TCPMT.2021.3117071
- G. Migliato Marega, Y. Zhao, A. Avsar, Z. Wang, M. Tripathi et al., Logic-in-memory based on an atomically thin semiconductor. Nature 587(7832), 72–77 (2020). https://doi.org/10.1038/s41586-020-2861-0
- K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353(6298), aac9439 (2016). https://doi.org/10.1126/science.aac9439
- D. Geng, H.Y. Yang, Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides. Adv. Mater. 30(45), 1800865 (2018). https://doi.org/10.1002/adma.201800865
- H.F. Liu, S.L. Wong, D.Z. Chi, CVD growth of MoS2-based two-dimensional materials. Chem. Vap. Deposition 21(10–12), 241–259 (2015). https://doi.org/10.1002/cvde.201500060
- M. Chubarov, T.H. Choudhury, D.R. Hickey, S. Bachu, T. Zhang et al., Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano 15(2), 2532–2541 (2021). https://doi.org/10.1021/acsnano.0c06750
- Y.-C. Lin, B. Jariwala, B.M. Bersch, K. Xu, Y. Nie et al., Realizing large-scale, electronic-grade two-dimensional semiconductors. ACS Nano 12(2), 965–975 (2018). https://doi.org/10.1021/acsnano.7b07059
- C. Zhang, J. Huang, R. Tu, S. Zhang, M. Yang et al., Transfer-free growth of graphene on Al2O3 (0001) using a three-step method. Carbon 131, 10–17 (2018). https://doi.org/10.1016/j.carbon.2018.01.088
- X. Yang, J. Li, R. Song, B. Zhao, J. Tang et al., Highly reproducible van der Waals integration of two-dimensional electronics on the wafer scale. Nat. Nanotechnol. 18(5), 471–478 (2023). https://doi.org/10.1038/s41565-023-01342-1
- D. Xiang, T. Liu, Monolayer transistors at wafer scales. Nat. Electron. 4(12), 868–869 (2021). https://doi.org/10.1038/s41928-021-00694-7
- X. Chen, Y. Xie, Y. Sheng, H. Tang, Z. Wang et al., Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning. Nat. Commun. 12(1), 5953 (2021). https://doi.org/10.1038/s41467-021-26230-x
- J. Park, W.C. Mitchel, L. Grazulis, H.E. Smith, K.G. Eyink et al., Epitaxial graphene growth by carbon molecular beam epitaxy (CMBE). Adv. Mater. 22(37), 4140–4145 (2010). https://doi.org/10.1002/adma.201000756
- S.M. Poh, X. Zhao, S.J.R. Tan, D. Fu, W. Fei et al., Molecular beam epitaxy of highly crystalline MoSe(2) on hexagonal boron nitride. ACS Nano 12(8), 7562–7570 (2018). https://doi.org/10.1021/acsnano.8b04037
- R. Yue, A.T. Barton, H. Zhu, A. Azcatl, L.F. Pena et al., Hfse2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. ACS Nano 9(1), 474–480 (2015). https://doi.org/10.1021/nn5056496
- H.C. Diaz, R. Chaghi, Y. Ma, M. Batzill, Molecular beam epitaxy of the van der Waals heterostructure MoTe2 on MoS2: phase, thermal, and chemical stability. 2D Mater. 2(4), 044010 (2015). https://doi.org/10.1088/2053-1583/2/4/044010
- M. Dave, R. Vaidya, S.G. Patel, A.R. Jani, High pressure effect on MoS2 and MoSe2 single crystals grown by CVT method. Bull. Mater. Sci. 27(2), 213–216 (2004). https://doi.org/10.1007/BF02708507
- M. Khurram, Z. Sun, Z. Zhang, Q. Yan, Chemical vapor transport growth of bulk black phosphorus single crystals. Inorg. Chem. Front. 7(15), 2867–2879 (2020). https://doi.org/10.1039/d0qi00582g
- X. Zhang, F. Lou, C. Li, X. Zhang, N. Jia et al., Flux method growth of bulk MoS2 single crystals and their application as a saturable absorber. Cryst. Eng. Comm. 17(21), 4026–4032 (2015). https://doi.org/10.1039/C5CE00484E
- D. Gerchman, A.K. Alves, Solution-processable exfoliation and suspension of atomically thin WSe2. J. Colloid Interface Sci. 468, 247–252 (2016). https://doi.org/10.1016/j.jcis.2016.01.073
- Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu et al., Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562(7726), 254–258 (2018). https://doi.org/10.1038/s41586-018-0574-4
- O. Song, D. Rhee, J. Kim, Y. Jeon, V. Mazánek et al., All inkjet-printed electronics based on electrochemically exfoliated two-dimensional metal, semiconductor, and dielectric. NPJ 2D Mater. Appl. 6, 64 (2022). https://doi.org/10.1038/s41699-022-00337-1
- J. Kim, D. Rhee, O. Song, M. Kim, Y.H. Kwon et al., All-solution-processed van der Waals heterostructures for wafer-scale electronics. Adv. Mater. 34(12), e2106110 (2022). https://doi.org/10.1002/adma.202106110
- W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002
- J.-H. Lee, E.K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim et al., Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344(6181), 286–289 (2014). https://doi.org/10.1126/science.1252268
- S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010). https://doi.org/10.1038/nnano.2010.132
- Z. Yu, Z.-Y. Ong, Y. Pan, Y. Cui, R. Xin et al., Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28(3), 547–552 (2016). https://doi.org/10.1002/adma.201503033
- J.-G. Song, J. Park, W. Lee, T. Choi, H. Jung et al., Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano 7(12), 11333–11340 (2013). https://doi.org/10.1021/nn405194e
- D. Moon, W. Lee, C. Lim, J. Kim, J. Kim et al., Hypotaxy of wafer-scale single-crystal transition metal dichalcogenides. Nature 638(8052), 957–964 (2025). https://doi.org/10.1038/s41586-024-08492-9
- D. Fu, X. Zhao, Y.-Y. Zhang, L. Li, H. Xu et al., Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J. Am. Chem. Soc. 139(27), 9392–9400 (2017). https://doi.org/10.1021/jacs.7b05131
- Y.A. Kwon, J. Kim, S.B. Jo, D.G. Roe, D. Rhee et al., Wafer-scale transistor arrays fabricated using slot-die printing of molybdenum disulfide and sodium-embedded alumina. Nat. Electron. 6(6), 443–450 (2023). https://doi.org/10.1038/s41928-023-00971-7
- Y.A. Kwon, J. Kim, S.B. Jo, D.G. Roe, D. Rhee, Y. Song, B. Kang, D. Kim, J. Kim, D.W. Kim, M.S. Kang, J. Kang, J.H. Cho, Nat. Electron. 6, 443 (2023). https://doi.org/10.1038/s41928-023-00971-7
- J. Miao, L. Tian, H. Zhang, R. Duan, Y. Wu et al., Lateral electric field engineering in scaled transistors based on 2D materials via phase transition. ACS Nano 19(19), 18292–18300 (2025). https://doi.org/10.1021/acsnano.5c00234
- F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren et al., Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603(7900), 259–264 (2022). https://doi.org/10.1038/s41586-021-04323-3
- M. Li, C.-Y. Lin, S.-H. Yang, Y.-M. Chang, J.-K. Chang et al., High mobilities in layered InSe transistors with indium-encapsulation-induced surface charge doping. Adv. Mater. 30(44), e1803690 (2018). https://doi.org/10.1002/adma.201803690
- S. Yang, K. Zhang, A.G. Ricciardulli, P. Zhang, Z. Liao et al., A delamination strategy for thinly layered defect-free high-mobility black phosphorus flakes. Angew. Chem. Int. Ed. 57(17), 4677–4681 (2018). https://doi.org/10.1002/anie.201801265
- J. Kang, D. Jariwala, C.R. Ryder, S.A. Wells, Y. Choi et al., Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors. Nano Lett. 16(4), 2580–2585 (2016). https://doi.org/10.1021/acs.nanolett.6b00144
- J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9(11), 927–932 (2014). https://doi.org/10.1038/nnano.2014.181
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
- T. Zou, H.-J. Kim, S. Kim, A. Liu, M.-Y. Choi et al., High-performance solution-processed 2D P-type WSe2 transistors and circuits through molecular doping. Adv. Mater. 35(7), 2208934 (2023). https://doi.org/10.1002/adma.202208934
- C.R. Ryder, J.D. Wood, S.A. Wells, Y. Yang, D. Jariwala et al., Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8(6), 597–602 (2016). https://doi.org/10.1038/nchem.2505
- X. Cui, G.-H. Lee, Y.D. Kim, G. Arefe, P.Y. Huang et al., Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10(6), 534–540 (2015). https://doi.org/10.1038/nnano.2015.70
- D. Lembke, A. Kis, High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. ACS Nano 6, 10070 (2012). https://doi.org/10.1021/nn303772b
- D.A. Bandurin, A.V. Tyurnina, G.L. Yu, A. Mishchenko, V. Zólyomi et al., High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223 (2017). https://doi.org/10.1038/nnano.2016.242
- S. Sucharitakul, N.J. Goble, U.R. Kumar, R. Sankar, Z.A. Bogorad et al., Intrinsic electron mobility exceeding 103 cm2/(v s) in multilayer InSe FETs. Nano Lett. 15(6), 3815–3819 (2015). https://doi.org/10.1021/acs.nanolett.5b00493
- H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi et al., High-performance single layered WSe₂ p-FETs with chemically doped contacts. Nano Lett. 12(7), 3788–3792 (2012). https://doi.org/10.1021/nl301702r
- A. Allain, A. Kis, Electron and hole mobilities in single-layer WSe2. ACS Nano 8(7), 7180–7185 (2014). https://doi.org/10.1021/nn5021538
- W. Feng, W. Zheng, W. Cao, P. Hu, Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. Adv. Mater. 26(38), 6587–6593 (2014). https://doi.org/10.1002/adma.201402427
- Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136(2), 622–625 (2014). https://doi.org/10.1021/ja411509g
- W. Li, J. Zhou, S. Cai, Z. Yu, J. Zhang et al., Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2(12), 563–571 (2019). https://doi.org/10.1038/s41928-019-0334-y
- P.-C. Shen, C. Su, Y. Lin, A.-S. Chou, C.-C. Cheng et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593(7858), 211–217 (2021). https://doi.org/10.1038/s41586-021-03472-9
- L.M. Herz, Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2(7), 1539–1548 (2017). https://doi.org/10.1021/acsenergylett.7b00276
- R.E. Brandt, V. Stevanović, D.S. Ginley, T. Buonassisi, Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5(2), 265–275 (2015). https://doi.org/10.1557/mrc.2015.26
- M. Vasilopoulou, ARbin Mohd Yusoff, Y. Chai, M.-A. Kourtis, T. Matsushima et al., Neuromorphic computing based on halide perovskites. Nat. Electron. 6(12), 949–962 (2023). https://doi.org/10.1038/s41928-023-01082-z
- Y. Zhou, I. Poli, D. Meggiolaro, F. De Angelis, A. Petrozza, Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6(11), 986–1002 (2021). https://doi.org/10.1038/s41578-021-00331-x
- Q.A. Akkerman, L. Manna, What defines a halide perovskite? ACS Energy Lett. 5(2), 604–610 (2020). https://doi.org/10.1021/acsenergylett.0c00039
- A. Liu, H. Zhu, S. Bai, Y. Reo, M. Caironi et al., High-performance metal halide perovskite transistors. Nat. Electron. 6(8), 559–571 (2023). https://doi.org/10.1038/s41928-023-01001-2
- W.A. Dunlap-Shohl, Y. Zhou, N.P. Padture, D.B. Mitzi, Synthetic approaches for halide perovskite thin films. Chem. Rev. 119(5), 3193–3295 (2019). https://doi.org/10.1021/acs.chemrev.8b00318
- Y. Zhou, M. Yang, W. Wu, A.L. Vasiliev, K. Zhu et al., Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J. Mater. Chem. A 3(15), 8178–8184 (2015). https://doi.org/10.1039/c5ta00477b
- M. Era, T. Hattori, T. Taira, T. Tsutsui, Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition. Chem. Mater. 9(1), 8–10 (1997). https://doi.org/10.1021/cm960434m
- S. Chakraborty, W. Xie, N. Mathews, M. Sherburne, R. Ahuja et al., Rational design: a high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid perovskites. ACS Energy Lett. 2(4), 837–845 (2017). https://doi.org/10.1021/acsenergylett.7b00035
- R. Kurchin, P. Gorai, T. Buonassisi, V. Stevanović, Structural and chemical features giving rise to defect tolerance of binary semiconductors. Chem. Mater. 30(16), 5583–5592 (2018). https://doi.org/10.1021/acs.chemmater.8b01505
- G. Tang, J. Hong, Direct tuning of the band gap via electronically-active organic cations and large piezoelectric response in one-dimensional hybrid halides from first-principles. J. Mater. Chem. C 6(28), 7671–7676 (2018). https://doi.org/10.1039/C8TC02131G
- S. Shao, W. Talsma, M. Pitaro, J. Dong, S. Kahmann et al., Field-effect transistors based on formamidinium tin triiodide perovskite. Adv. Funct. Mater. 31(11), 2008478 (2021). https://doi.org/10.1002/adfm.202008478
- H. Zhu, A. Liu, K.I. Shim, H. Jung, T. Zou et al., High-performance hysteresis-free perovskite transistors through anion engineering. Nat. Commun. 13, 1741 (2022). https://doi.org/10.1038/s41467-022-29434-x
- C. Kagan, D. Mitzi, C. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286(5441), 945–947 (1999). https://doi.org/10.1126/science.286.5441.945
- Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W.J. Yoo et al., High-performance perovskite–graphene hybrid photodetector. Adv. Mater. 27(1), 41–46 (2015). https://doi.org/10.1002/adma.201402271
- Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu et al., Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 105(16), 163508 (2014). https://doi.org/10.1063/1.4899051
- B. Jeong, P. Gkoupidenis, K. Asadi, Solution-processed perovskite field-effect transistor artificial synapses. Adv. Mater. 33(52), e2104034 (2021). https://doi.org/10.1002/adma.202104034
- L. Wang, P. Wang, J. Huang, B. Peng, C. Jia et al., A general one-step plug-and-probe approach to top-gated transistors for rapidly probing delicate electronic materials. Nat. Nanotechnol. 17(11), 1206–1213 (2022). https://doi.org/10.1038/s41565-022-01221-1
- S. Hong, S.H. Choi, J. Park, H. Yoo, J.Y. Oh et al., Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1–xIx)3 perovskite and MoS2 hybrid structure. ACS Nano 14(8), 9796–9806 (2020). https://doi.org/10.1021/acsnano.0c01689
- G. Tang, P. Ghosez, J. Hong, Band-edge orbital engineering of perovskite semiconductors for optoelectronic applications. J. Phys. Chem. Lett. 12(17), 4227–4239 (2021). https://doi.org/10.1021/acs.jpclett.0c03816
- E. Janod, J. Tranchant, B. Corraze, M. Querré, P. Stoliar, M. Rozenberg, T. Cren, D. Roditchev, V.T. Phuoc, M.P. Besland, L. Cario, Adv. Funct. Mater. 25, 6287 (2015). https://doi.org/10.1002/adfm.201500823
- J.B. Krieger, M. Nightingale, Resistive switching in mott insulators and correlated systems. Phys. Rev. B 4, 1266 (1971). https://doi.org/10.1103/PhysRevB.4.1266
- C.R. Martin, Membrane-based synthesis of nanomaterials. Chem. Mater. 8(8), 1739–1746 (1996). https://doi.org/10.1021/cm960166s
- R. Singh, P. Chithaiah, C.N.R. Rao, A new precursor route for the growth of NbO2 thin films by chemical vapor deposition. Nanotechnology 34(14), 145705 (2023). https://doi.org/10.1088/1361-6528/acb216
- B. Dong, N. Shen, C. Cao, Z. Chen, H. Luo et al., Phase and morphology evolution of VO2 nanops using a novel hydrothermal system for thermochromic applications: the growth mechanism and effect of ammonium (NH4+). RSC Adv. 6(85), 81559–81568 (2016). https://doi.org/10.1039/C6RA14569H
- M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono et al., Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487(7408), 459–462 (2012). https://doi.org/10.1038/nature11296
- K. Appavoo, B. Wang, N.F. Brady, M. Seo, J. Nag et al., Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. Nano Lett. 14(3), 1127–1133 (2014). https://doi.org/10.1021/nl4044828
- N. Shukla, A.V. Thathachary, A. Agrawal, H. Paik, A. Aziz et al., A steep-slope transistor based on abrupt electronic phase transition. Nat. Commun. 6, 7812 (2015). https://doi.org/10.1038/ncomms8812
- T. Yajima, Y. Samata, S. Hamasuna, S.P. Pati, A. Toriumi, Zero-dimensionality of a scaled-down VO2 metal-insulator transition via high-resolution electrostatic gating. NPG Asia Mater. 15, 39 (2023). https://doi.org/10.1038/s41427-023-00486-9
- M. Yamamoto, R. Nouchi, T. Kanki, A.N. Hattori, K. Watanabe et al., Gate-tunable thermal metal–insulator transition in VO2 monolithically integrated into a WSe2 field-effect transistor. ACS Appl. Mater. Interfaces 11(3), 3224–3230 (2019). https://doi.org/10.1021/acsami.8b18745
- J.F. Wager, B. Yeh, R.L. Hoffman, D.A. Keszler, An amorphous oxide semiconductor thin-film transistor route to oxide electronics. Curr. Opin. Solid State Mater. Sci. 18(2), 53–61 (2014). https://doi.org/10.1016/j.cossms.2013.07.002
- S.Y. Lee, Comprehensive review on amorphous oxide semiconductor thin film transistor. Trans. Electr. Electron. Mater. 21(3), 235–248 (2020). https://doi.org/10.1007/s42341-020-00197-w
- K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488–492 (2004). https://doi.org/10.1038/nature03090
- J.S. Park, W.-J. Maeng, H.-S. Kim, J.-S. Park, Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 520(6), 1679–1693 (2012). https://doi.org/10.1016/j.tsf.2011.07.018
- K.A. Stewart, B.S. Yeh, J.F. Wager, Amorphous semiconductor mobility limits. J. Non-Cryst. Solids 432, 196 (2016). https://doi.org/10.1016/j.jnoncrysol.2015.10.005
- J.-H. Lin, J.-R. Lou, L.-K. Ye, B.-L. Hu, P.-C. Zhuge et al., Halogen engineering to realize regulable multipolar axes, nonlinear optical response, and piezoelectricity in plastic ferroelectrics. Inorg. Chem. 62(6), 2870–2876 (2023). https://doi.org/10.1021/acs.inorgchem.2c04295
- M.C. Wingert, J. Zheng, S. Kwon, R. Chen, Thermal transport in amorphous materials: a review. Semicond. Sci. Technol. 31(11), 113003 (2016). https://doi.org/10.1088/0268-1242/31/11/113003
- K. Ide, K. Nomura, H. Hosono, T. Kamiya, Electronic defects in amorphous oxide semiconductors: a review. Phys. Status Solidi A 216(5), 1800372 (2019). https://doi.org/10.1002/pssa.201800372
- E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24(22), 2945–2986 (2012). https://doi.org/10.1002/adma.201103228
- G.W. Shim, W. Hong, J.-H. Cha, J.H. Park, K.J. Lee et al., Tft channel materials for display applications: from amorphous silicon to transition metal dichalcogenides. Adv. Mater. 32(35), 1907166 (2020). https://doi.org/10.1002/adma.201907166
- J.F. Conley, Instabilities in amorphous oxide semiconductor thin-film transistors. IEEE Trans. Device Mater. Reliab. 10(4), 460–475 (2010). https://doi.org/10.1109/TDMR.2010.2069561
- K. Yim, Y. Youn, M. Lee, D. Yoo, J. Lee et al., Computational discovery of p-type transparent oxide semiconductors using hydrogen descriptor. NPJ Comput. Mater. 4, 17 (2018). https://doi.org/10.1038/s41524-018-0073-z
- X. Yang, D. Lu, R. He, Y. Chen, Z. Lu et al., Van der Waals lamination for effective bottom channel modulation of oxide transistors. Nano Lett. 25(14), 5747–5753 (2025). https://doi.org/10.1021/acs.nanolett.5c00313
- J.Y. Kim, H. Kim, D. Kim, H.W. Jang, Advancements of amorphous IGZO-based transistors: materials, processing, and devices. ACS Appl. Electron. Mater. 7(11), 4703–4728 (2025). https://doi.org/10.1021/acsaelm.5c00605
- G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014). https://doi.org/10.1038/nnano.2014.207
- M. Jag, M. Cetina, R.S. Lous, R. Grimm, J. Levinsen et al., Lifetime of Feshbach dimers in a Fermi-Fermi mixture of Li6 and K40. Phys. Rev. A 94(6), 062706 (2016). https://doi.org/10.1103/physreva.94.062706
- J. Kumar, S. Birla, G. Agarwal, A review on effect of various high-k dielectric materials on the performance of FinFET device. Mater. Today Proc. 79, 297–302 (2023). https://doi.org/10.1016/j.matpr.2022.11.204
- M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1(11), 16052 (2016). https://doi.org/10.1038/natrevmats.2016.52
- J. Robertson, High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69(2), 327–396 (2006). https://doi.org/10.1088/0034-4885/69/2/r02
- S. Wang, X. Liu, M. Xu, L. Liu, D. Yang et al., Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21(11), 1225–1239 (2022). https://doi.org/10.1038/s41563-022-01383-2
- B. Wang, W. Huang, L. Chi, M. Al-Hashimi, T.J. Marks et al., High- k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118(11), 5690–5754 (2018). https://doi.org/10.1021/acs.chemrev.8b00045
- J.Y. Kim, M.-J. Choi, H.W. Jang, Ferroelectric field effect transistors: progress and perspective. APL Mater. 9(2), 021102 (2021). https://doi.org/10.1063/5.0035515
- S.H. Park, J.Y. Kim, J.Y. Song, H.W. Jang, Overcoming size effects in ferroelectric thin films. Adv. Phys. Res. 2(6), 2200096 (2023). https://doi.org/10.1002/apxr.202200096
- M. Si, A.K. Saha, S. Gao, G. Qiu, J. Qin et al., A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2(12), 580–586 (2019). https://doi.org/10.1038/s41928-019-0338-7
- M. Lanza, Bilayer HfO2/Sb2O3 gate dielectric stacks for transistors with 2D semiconducting channels. Sci. Bull. 68(22), 2684–2686 (2023). https://doi.org/10.1016/j.scib.2023.10.007
- P.V. Pham, S.C. Bodepudi, K. Shehzad, Y. Liu, Y. Xu et al., 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges. Chem. Rev. 122(6), 6514–6613 (2022). https://doi.org/10.1021/acs.chemrev.1c00735
- Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, Van der Waals heterostructures and devices. Nat. Rev. Mater. 1(9), 16042 (2016). https://doi.org/10.1038/natrevmats.2016.42
- P. Wang, C. Jia, Y. Huang, X. Duan, Van der Waals heterostructures by design: from 1D and 2D to 3D. Matter 4(2), 552–581 (2021). https://doi.org/10.1016/j.matt.2020.12.015
- A. Laturia, M.L. Van de Put, W.G. Vandenberghe, Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. NPJ 2D Mater. Appl. 2, 6 (2018). https://doi.org/10.1038/s41699-018-0050-x
- S. Fukamachi, P. Solís-Fernández, K. Kawahara, D. Tanaka, T. Otake et al., Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays. Nat. Electron. 6(2), 126–136 (2023). https://doi.org/10.1038/s41928-022-00911-x
- Q.A. Vu, Y.S. Shin, Y.R. Kim, V.L. Nguyen, W.T. Kang et al., Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 7, 12725 (2016). https://doi.org/10.1038/ncomms12725
- Y. Ji, C. Pan, M. Zhang, S. Long, X. Lian et al., Boron nitride as two dimensional dielectric: reliability and dielectric breakdown. Appl. Phys. Lett. 108(1), 012905 (2016). https://doi.org/10.1063/1.4939131
- I.G. Juma, G. Kim, D. Jariwala, S.K. Behura, Direct growth of hexagonal boron nitride on non-metallic substrates and its heterostructures with graphene. iScience 24(11), 103374 (2021). https://doi.org/10.1016/j.isci.2021.103374
- T. Li, T. Tu, Y. Sun, H. Fu, J. Yu et al., A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 3(8), 473–478 (2020). https://doi.org/10.1038/s41928-020-0444-6
- H. Park, J.H. Hwang, S.H. Oh, J.J. Ryu, K. Jeon et al., Direct growth of Bi2SeO5 thin films for high-k dielectrics via atomic layer deposition. ACS Nano 18(33), 22071–22079 (2024). https://doi.org/10.1021/acsnano.4c05273
- J. Chen, Z. Liu, X. Dong, Z. Gao, Y. Lin et al., Vertically grown ultrathin Bi(2)SiO(5) as high-κ single-crystalline gate dielectric. Nat. Commun. 14(1), 4406 (2023). https://doi.org/10.1038/s41467-023-40123-1
- C. Tan, M. Yu, J. Tang, X. Gao, Y. Yin et al., 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616(7955), 66–72 (2023). https://doi.org/10.1038/s41586-023-05797-z
- J. Tang, J. Jiang, X. Gao, X. Gao, C. Zhang et al., Low-power 2D gate-all-around logics via epitaxial monolithic 3D integration. Nat. Mater. 24(4), 519–526 (2025). https://doi.org/10.1038/s41563-025-02117-w
- C. Zhang, T. Tu, J. Wang, Y. Zhu, C. Tan et al., Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 22(7), 832–837 (2023). https://doi.org/10.1038/s41563-023-01502-7
- J.G. Ryan, R.M. Geffken, N.R. Poulin, J.R. Paraszczak, The evolution of interconnection technology at IBM. IBM J. Res. Dev. 39(4), 371–381 (1995). https://doi.org/10.1147/rd.394.0371
- B. Li, T.D. Sullivan, T.C. Lee, D. Badami, Reliability challenges for copper interconnects. Microelectron. Reliab. 44, 365 (2004). https://doi.org/10.1016/j.microrel.2003.11.004
- M. Shimada, M. Moriyama, K. Ito, S. Tsukimoto, M. Murakami, Electrical resistivity of polycrystalline Cu interconnects with nano-scale linewidth. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 24(1), 190–194 (2006). https://doi.org/10.1116/1.2151910
- J.H. Moon, S. Kim, T. Kim, Y.S. Jeon, Y. Kim et al., Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires. J. Mater. Sci. Technol. 105, 17–25 (2022). https://doi.org/10.1016/j.jmst.2021.06.073
- L. Jablonka, L. Riekehr, Z. Zhang, S.-L. Zhang, T. Kubart, Highly conductive ultrathin Co films by high-power impulse magnetron sputtering. Appl. Phys. Lett. 112(4), 043103 (2018). https://doi.org/10.1063/1.5011109
- L.G. Wen, P. Roussel, O.V. Pedreira, B. Briggs, B. Groven et al., Atomic layer deposition of ruthenium with TiN interface for sub-10 nm advanced interconnects beyond copper. ACS Appl. Mater. Interfaces 8(39), 26119–26125 (2016). https://doi.org/10.1021/acsami.6b07181
- Y. Tian, Q. Yang, W. Li, Y. Gong, Q. Zhao et al., Anti-corrosion applications of 2D transition metal based layered materials. Mater. Adv. 5(7), 2655–2667 (2024). https://doi.org/10.1039/d3ma00919j
- M.J. Swamynadhan, S. Ghosh, Designing multifunctional two-dimensional layered transition metal phosphorous chalcogenides. Phys. Rev. Mater. 5(5), 054409 (2021). https://doi.org/10.1103/physrevmaterials.5.054409
- D.K. Lim, O. Kubo, Y. Shingaya, T. Nakayama, Y.H. Kim et al., Low resistivity of Pt silicide nanowires measured using double-scanning-probe tunneling microscope. Appl. Phys. Lett. 92(20), 203114 (2008). https://doi.org/10.1063/1.2935329
- C.-I. Tsai, P.-H. Yeh, C.-Y. Wang, H.-W. Wu, U.-S. Chen et al., Cobalt silicide nanostructures: synthesis, electron transport, and field emission properties. Cryst. Growth Des. 9(10), 4514–4518 (2009). https://doi.org/10.1021/cg900531x
- M. Todeschini, A. Bastos da Silva Fanta, F. Jensen, J.B. Wagner, A. Han, Influence of Ti and Cr adhesion layers on ultrathin Au films. ACS Appl. Mater. Interfaces 9(42), 37374–37385 (2017). https://doi.org/10.1021/acsami.7b10136
- S.B. Eadi, H.-S. Song, H.-D. Song, J. Oh, H.-D. Lee, Improved reduction of contact resistance in NiSi/Si junction using Holmium interlayer. Microelectron. Eng. 219, 111153 (2020). https://doi.org/10.1016/j.mee.2019.111153
- T. Sonehara, A. Hokazono, H. Akutsu, T. Sasaki, H. Uchida et al., Mechanism of contact resistance reduction in nickel silicide films by Pt incorporation. IEEE Trans. Electron Devices 58(11), 3778–3786 (2011). https://doi.org/10.1109/TED.2011.2166557
- P. Kreiml, M. Rausch, V.L. Terziyska, H. Köstenbauer, J. Winkler et al., Improved electro-mechanical reliability of flexible systems with alloyed Mo-Ta adhesion layers. Thin Solid Films 720, 138533 (2021). https://doi.org/10.1016/j.tsf.2021.138533
- G. Dong, Y. Xiong, L. Zhao, J. Feng, J. Li et al., Low contact resistivity of Bi2Te3-based films and metals interfaces enabled by orientation regulation. Adv. Mater. Interfaces 11(20), 2400106 (2024). https://doi.org/10.1002/admi.202400106
- S.B. Mitta, M.S. Choi, A. Nipane, F. Ali, C. Kim et al., Electrical characterization of 2D materials-based field-effect transistors. 2D Mater. 8(1), 012002 (2021). https://doi.org/10.1088/2053-1583/abc187
- J. Kang, W. Liu, K. Banerjee, High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl. Phys. Lett. 104(9), 093106 (2014). https://doi.org/10.1063/1.4866340
- G. Yoo, S. Lee, B. Yoo, C. Han, S. Kim et al., Electrical contact analysis of multilayer MoS2 transistor with molybdenum source/drain electrodes. IEEE Electron Device Lett. 36(11), 1215–1218 (2015). https://doi.org/10.1109/LED.2015.2478899
- Y. Li, Y. Li, Q. Zhang, X. Liu, N. Xiao et al., Structural and electronic properties of Weyl semimetal WTe2 under high pressure. J. Solid State Chem. 323, 124015 (2023). https://doi.org/10.1016/j.jssc.2023.124015
- T. Holder, C.-W. Huang, P.M. Ostrovsky, Electronic properties of disordered Weyl semimetals at charge neutrality. Phys. Rev. B 96(17), 174205 (2017). https://doi.org/10.1103/physrevb.96.174205
- L. Rocchino, F. Balduini, H. Schmid, A. Molinari, M. Luisier et al., Magnetoresistive-coupled transistor using the Weyl semimetal NbP. Nat. Commun. 15(1), 710 (2024). https://doi.org/10.1038/s41467-024-44961-5
- E. Zhai, T. Liang, R. Liu, M. Cai, R. Li et al., The rise of semi-metal electronics. Nat. Rev. Electr. Eng. 1(8), 497–515 (2024). https://doi.org/10.1038/s44287-024-00068-z
- E. Amat, T. Kauerauf, R. Rodriguez, M. Nafria, X. Aymerich et al., A comprehensive study of channel hot-carrier degradation in short channel MOSFETs with high-k dielectrics. Microelectron. Eng. 103, 144–149 (2013). https://doi.org/10.1016/j.mee.2012.10.011
- S. Mahapatra, U. Sharma, A review of hot carrier degradation in n-channel MOSFETs: part I: physical mechanism. IEEE Trans. Electron Devices 67(7), 2660–2671 (2020). https://doi.org/10.1109/TED.2020.2994302
- A. Elhami Khorasani, M. Griswold, T.L. Alford, A fast I–V screening measurement for TDDB assessment of ultra-thick inter-metal dielectrics. IEEE Electron Device Lett. 35(1), 117–119 (2014). https://doi.org/10.1109/LED.2013.2290538
- S. Mahapatra, N. Goel, S. Desai, S. Gupta, B. Jose et al., A comparative study of different physics-based NBTI models. IEEE Trans. Electron Devices 60(3), 901–916 (2013). https://doi.org/10.1109/TED.2013.2238237
- M.A. Alam, S. Mahapatra, A comprehensive model of PMOS NBTI degradation. Microelectron. Reliab. 45(1), 71–81 (2005). https://doi.org/10.1016/j.microrel.2004.03.019
- J.H. Stathis, S. Zafar, The negative bias temperature instability in MOS devices: a review. Microelectron. Reliab. 46(2–4), 270–286 (2006). https://doi.org/10.1016/j.microrel.2005.08.001
- J.F. Zhang, M. Duan, Z. Ji, W. Zhang, Time-dependent device-to-device variation accounting for within-device fluctuation (TVF): a new characterization technique. 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). October 28–31, 2014, Guilin, China. IEEE, (2014), pp. 1–4. https://doi.org/10.1109/ICSICT.2014.7021223
- J.W. McPherson, Time dependent dielectric breakdown physics–models revisited. Microelectron. Reliab. 52(9–10), 1753–1760 (2012). https://doi.org/10.1016/j.microrel.2012.06.007
- H.B. Park, B. Ju, C.Y. Kang, C. Park, C.S. Park et al., Performance and reliability improvement of HfSiON gate dielectrics using chlorine plasma treatment. Appl. Phys. Lett. 94(4), 042911 (2009). https://doi.org/10.1063/1.3078277
- M.R. Visokay, J.J. Chambers, A.L.P. Rotondaro, A. Shanware, L. Colombo, Application of HfSiON as a gate dielectric material. Appl. Phys. Lett. 80(17), 3183–3185 (2002). https://doi.org/10.1063/1.1476397
- Y. Tao, M. Duce, A. Erickson, Tunnel oxide passivating contact enabled by polysilicon on ultra-thin SiO2 for advanced silicon radiation detectors. Sci. Rep. 14(1), 17307 (2024). https://doi.org/10.1038/s41598-024-68368-w
- S.-S. Wani, C.C. Hsu, Y.-Z. Kuo, K.M.M.D.K. Kimbulapitiya, C.-C. Chung et al., Enhanced electrical transport properties of molybdenum disulfide field-effect transistors by using alkali metal fluorides as dielectric capping layers. ACS Nano 18(16), 10776–10787 (2024). https://doi.org/10.1021/acsnano.3c11025
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- Y. Lei, T. Zhang, Y.-C. Lin, T. Granzier-Nakajima, G. Bepete et al., Graphene and beyond: recent advances in two-dimensional materials synthesis, properties, and devices. ACS Nanosci. Au 2(6), 450–485 (2022). https://doi.org/10.1021/acsnanoscienceau.2c00017
- T. Knobloch, B. Uzlu, Y.Y. Illarionov, Z. Wang, M. Otto et al., Improving stability in two-dimensional transistors with amorphous gate oxides by Fermi-level tuning. Nat. Electron. 5(6), 356–366 (2022). https://doi.org/10.1038/s41928-022-00768-0
- J. Pothoof, R.J.E. Westbrook, R. Giridharagopal, M.D. Breshears, D.S. Ginger, Surface passivation suppresses local ion motion in halide perovskites. J. Phys. Chem. Lett. 14(26), 6092–6098 (2023). https://doi.org/10.1021/acs.jpclett.3c01089
- N.-G. Park, Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv. Energy Mater. 10(13), 1903106 (2020). https://doi.org/10.1002/aenm.201903106
- W. Tress, Perovskite solar cells on the way to their radiative efficiency limit–insights into a success story of high open-circuit voltage and low recombination. Adv. Energy Mater. 7(14), 1602358 (2017). https://doi.org/10.1002/aenm.201602358
- J. Han, K. Park, S. Tan, Y. Vaynzof, J. Xue et al., Perovskite solar cells. Nat. Rev. Meth. Primers 5, 3 (2025). https://doi.org/10.1038/s43586-024-00373-9
- G. Mazza, A. Amaricci, M. Capone, M. Fabrizio, Field-driven mott gap collapse and resistive switch in correlated insulators. Phys. Rev. Lett. 117(17), 176401 (2016). https://doi.org/10.1103/PhysRevLett.117.176401
- Y. Kalcheim, A. Camjayi, J. Del Valle, P. Salev, M. Rozenberg et al., Non-thermal resistive switching in Mott insulator nanowires. Nat. Commun. 11(1), 2985 (2020). https://doi.org/10.1038/s41467-020-16752-1
- N. Suzumura, M. Ogasawara, K. Makabe, T. Kamoshima, T. Ouchi et al., Comprehensive TDDB lifetime prediction methodology for intrinsic and extrinsic failures in Cu interconnect dielectrics. Microelectron. Eng. 106, 200–204 (2013). https://doi.org/10.1016/j.mee.2013.01.015
- J.F. Zhang, Z. Ji, W. Zhang, As-grown-generation (AG) model of NBTI: a shift from fitting test data to prediction. Microelectron. Reliab. 80, 109–123 (2018). https://doi.org/10.1016/j.microrel.2017.11.026
- J. Raja, K. Jang, N. Balaji, W. Choi, T.T. Trinh et al., Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors. Appl. Phys. Lett. 102(8), 083505 (2013). https://doi.org/10.1063/1.4793535
- S.S. Cheema, N. Shanker, L.-C. Wang, C.-H. Hsu, S.-L. Hsu et al., Ultrathin ferroic HfO(2)-ZrO(2) superlattice gate stack for advanced transistors. Nature 604(7904), 65–71 (2022). https://doi.org/10.1038/s41586-022-04425-6
- L. Danial, E. Pikhay, E. Herbelin, N. Wainstein, V. Gupta et al., Two-terminal floating-gate transistors with a low-power memristive operation mode for analogue neuromorphic computing. Nat. Electron. 2(12), 596–605 (2019). https://doi.org/10.1038/s41928-019-0331-1
- H. Wang, H. Guo, R. Guzman, N. JiaziLa, K. Wu et al., Ultrafast non-volatile floating-gate memory based on all-2D materials. Adv. Mater. 36(24), e2311652 (2024). https://doi.org/10.1002/adma.202311652
- T. Ando, Ultimate scaling of high-κ gate dielectrics: higher-κ or interfacial layer scavenging? Materials 5(3), 478–500 (2012). https://doi.org/10.3390/ma5030478
- L.-Å. Ragnarsson, T. Chiarella, M. Togo, T. Schram, P. Absil et al., Ultrathin EOT high-κ/metal gate devices for future technologies: challenges, achievements and perspectives (invited). Microelectron. Eng. 88(7), 1317–1322 (2011). https://doi.org/10.1016/j.mee.2011.03.121
- Q. Yang, H.J. Cho, Z. Bian, M. Yoshimura, J. Lee, H. Jeen, J. Lin, J. Wei, B. Feng, Y. Ikuhara, H. Ohta, Solid-state electrochemical thermal transistors. Adv. Funct. Mater. 33, 70 (2023). https://doi.org/10.1038/s41699-024-00509-1
- S.J. Kim, H.-J. Lee, C.-H. Lee, H.W. Jang, 2D materials-based 3D integration for neuromorphic hardware. NPJ 2D Mater. Appl. 8, 70 (2024). https://doi.org/10.1038/s41699-024-00509-1
- D. Jayachandran, N.U. Sakib, S. Das, 3D integration of 2D electronics. Nat. Rev. Electr. Eng. 1(5), 300–316 (2024). https://doi.org/10.1038/s44287-024-00038-5
- J.H. Lau, State-of-the-art of advanced packaging, in Chiplet design and heterogeneous integration packaging. (Springer, Singapore, 2023), p.1. https://doi.org/10.1007/978-981-19-9917-8
- M.-F. Chen, F.-C. Chen, W.-C. Chiou, D.C.H. Yu, System on integrated chips (SoIC(TM) for 3D heterogeneous integration. 2019 IEEE 69th Electronic Components and Technology Conference (ECTC). May 28–31, 2019. Las Vegas, NV, USA. IEEE, (2019), pp. 594–599. https://doi.org/10.1109/ectc.2019.00095
- D.B. Ingerly, K. Enamul, W. Gomes, D. Jones, K.C. Kolluru et al., Foveros: 3D integration and the use of face-to-face chip stacking for logic devices. Proc. IEEE Int. Electron Devices Meet. 2019, 466–469 (2019). https://doi.org/10.1109/IEDM19573.2019.8993637
- K. Croes, J. De Messemaeker, Y. Li, W. Guo, O. Varela Pedreira et al., Reliability challenges related to TSV integration and 3-D stacking. IEEE Des. Test. 33(3), 37–45 (2016). https://doi.org/10.1109/MDAT.2015.2501302
- T. Kim, S. Cho, S. Hwang, K. Lee, Y. Hong et al., Multi-stack wafer bonding demonstration utilizing Cu to Cu hybrid bonding and TSV enabling diverse 3D integration. 2021 IEEE 71st Electronic Components and Technology Conference (ECTC). June 1-July 4, 2021. San Diego, CA, USA. IEEE, (2021), pp. 415–419. https://doi.org/10.1109/ectc32696.2021.00076
- M. Vinet, P. Batude, C. Fenouillet-Beranger, F. Clermidy, L. Brunet et al., Monolithic 3D integration: a powerful alternative to classical 2D scaling. 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). October 6–9, 2014. Millbrae, CA, USA. IEEE, (2014), pp. 1–3. https://doi.org/10.1109/s3s.2014.7028194
- Z. Or-Bach, The monolithic 3D advantage: Monolithic 3D is far more than just an alternative to 0.7× scaling. 2013 IEEE International 3D Systems Integration Conference (3DIC). October 2–4, 2013, San Francisco, CA, USA. IEEE, (2013), pp. 1–7. https://doi.org/10.1109/3DIC.2013.6702316
- M.M. Shulaker, T.F. Wu, M.M. Sabry, H. Wei, H.-S. Philip Wong et al., Monolithic 3D integration: a path from concept to reality. Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015. March 9–13, 2015. Grenoble, France. IEEE Conference Publications, (2015), pp. 1197–1202. https://doi.org/10.7873/date.2015.1111
- K. Dhananjay, P. Shukla, V.F. Pavlidis, A. Coskun, E. Salman, Monolithic 3D integrated circuits: recent trends and future prospects. IEEE Trans. Circuits Syst. II Express Briefs 68(3), 837–843 (2021). https://doi.org/10.1109/TCSII.2021.3051250
- S.H. Park, H.J. Lee, M.H. Park, J. Kim, H.W. Jang, Ferroelectric tunnel junctions: promise, achievements and challenges. J. Phys. D Appl. Phys. 57(25), 253002 (2024). https://doi.org/10.1088/1361-6463/ad33f5
- J. Aziz, H. Kim, T. Hussain, H. Lee, T. Choi et al., Power efficient transistors with low subthreshold swing using abrupt switching devices. Nano Energy 95, 107060 (2022). https://doi.org/10.1016/j.nanoen.2022.107060
- H. Yamauchi, A low vth SRAM reducing mismatch of cell-stability with an elevated cell biasing scheme. JSTS J. Semicond. Technol. Sci. 10(2), 118–129 (2010). https://doi.org/10.5573/jsts.2010.10.2.118
- L. Qin, H. Tian, C. Li, Z. Xie, Y. Wei et al., Steep slope field effect transistors based on 2D materials. Adv. Electron. Mater. 10(8), 2300625 (2024). https://doi.org/10.1002/aelm.202300625
- S. Kamaei, A. Saeidi, C. Gastaldi, T. Rosca, L. Capua et al., Gate energy efficiency and negative capacitance in ferroelectric 2D/2D TFET from cryogenic to high temperatures. NPJ 2D Mater. Appl. 5, 76 (2021). https://doi.org/10.1038/s41699-021-00257-6
- C. Wang, K. Vafai, Heat transfer enhancement for 3D chip thermal simulation and prediction. Appl. Therm. Eng. 236, 121499 (2024). https://doi.org/10.1016/j.applthermaleng.2023.121499
- B. Rakesh, K. Mahindra, M. Sai Venkat Goud, N. Arun Vignesh, T. Padma et al., Facile approach to mitigate thermal issues in 3D IC integration using effective FIN orientation. Mater. Today Proc. 33, 3085–3088 (2020). https://doi.org/10.1016/j.matpr.2020.03.663
- S. Lu, K. Vafai, Optimization of the thermal performance of three-dimen
References
K. Nandan, A. Agarwal, S. Bhowmick, Y.S. Chauhan, Two-dimensional semiconductors based field-effect transistors: review of major milestones and challenges. Front. Electron. 4, 1277927 (2023). https://doi.org/10.3389/felec.2023.1277927
H.H. Radamson, H. Zhu, Z. Wu, X. He, H. Lin et al., State of the art and future perspectives in advanced CMOS technology. Nanomaterials 10(8), 1555 (2020). https://doi.org/10.3390/nano10081555
L. Colombo, J. Chambers, H. Niimi, Gate dielectric process technology for the sub-1 nm equivalent oxide thickness (EOT) era. Electrochem. Soc. Interface 16(3), 51–55 (2007). https://doi.org/10.1149/2.f07073if
X. Chen, S.-T. Han, Y. Zhou, Scaling the contacted poly pitch of 2D transistors. Nat. Electron. 8(5), 378–379 (2025). https://doi.org/10.1038/s41928-025-01383-5
W. Li, M. Du, C. Zhao, G. Xiong, W. Gan et al., Scaling MoS2 transistors to 1 nm node. 2024 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2024, pp. 1–4. https://doi.org/10.1109/IEDM50854.2024.10873379
K. Uchida, H. Watanabe, A. Kinoshita, J. Koga, T. Numata et al., Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm. Digest. International Electron Devices Meeting. December 8–11, 2002, San Francisco, CA, USA. IEEE, (2002), pp. 47–50. https://doi.org/10.1109/IEDM.2002.1175776
A.M. Jakob, S.G. Robson, V. Schmitt, V. Mourik, M. Posselt et al., Deterministic shallow dopant implantation in silicon with detection confidence upper-bound to 99.85% by ion-solid interactions. Adv. Mater. 34(3), e2103235 (2022). https://doi.org/10.1002/adma.202103235
A.S. Al-Jawadi, M.T. Yaseen, Q.T. Algwari, Gate engineering solutions to mitigate short channel effects in a 20 nm MOSFET. E Prime Adv. Electr. Eng. Electron. Energy 11, 100934 (2025). https://doi.org/10.1016/j.prime.2025.100934
H. Bu, FinFET devices and integration. Meet. Abstr. (2014). https://doi.org/10.1149/ma2014-01/39/1718
J. Robertson, R.M. Wallace, High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. R. Rep. 88, 1–41 (2015). https://doi.org/10.1016/j.mser.2014.11.001
S. Cristoloveanu, Silicon on insulator technologies and devices: from present to future. Solid State Electron. 45(8), 1403–1411 (2001). https://doi.org/10.1016/S0038-1101(00)00271-9
N.S. Ashraf, More compelling device physics based insights over subthreshold slope (swing) saturation near cryogenic temperatures for n-FET and p-FET. J. Nanotechnol. Nanomater. 5(2), 61–63 (2024). https://doi.org/10.33696/nanotechnol.5.055
S. Wong, A. El-Gamal, P. Griffin, Y. Nishi, F. Pease, J. Plummer, Monolithic 3D integrated circuits. IEEE (2007). https://doi.org/10.1109/VTSA.2007.378923
S.S. Iyer, Heterogeneous integration for performance and scaling. IEEE Trans. Compon. Packag. Manuf. Technol. 6(7), 973–982 (2016). https://doi.org/10.1109/TCPMT.2015.2511626
Y.J. Lee, Y. Kim, H. Gim, K. Hong, H.W. Jang, Nanoelectronics using metal–insulator transition. Adv. Mater. 36(5), 2305353 (2024). https://doi.org/10.1002/adma.202305353
H. Zhu, W. Yang, Y. Reo, G. Zheng, S. Bai et al., Tin perovskite transistors and complementary circuits based on A-site cation engineering. Nat. Electron. 6(9), 650–657 (2023). https://doi.org/10.1038/s41928-023-01019-6
A. Liu, Y.-S. Kim, M.G. Kim, Y. Reo, T. Zou et al., Selenium-alloyed tellurium oxide for amorphous p-channel transistors. Nature 629(8013), 798–802 (2024). https://doi.org/10.1038/s41586-024-07360-w
Y.J. Lee, K. Hong, K. Na, J. Yang, T.H. Lee et al., Nonvolatile control of metal-insulator transition in VO2 by ferroelectric gating. Adv. Mater. 34(32), e2203097 (2022). https://doi.org/10.1002/adma.202203097
S. Baek, H.H. Yoo, J.H. Ju, P. Sriboriboon, P. Singh et al., Ferroelectric field-effect-transistor integrated with ferroelectrics heterostructure. Adv. Sci. 9(21), 2200566 (2022). https://doi.org/10.1002/advs.202200566
Y. Xu, T. Liu, K. Liu, Y. Zhao, L. Liu et al., Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nat. Mater. 22(9), 1078–1084 (2023). https://doi.org/10.1038/s41563-023-01626-w
E. Li, C. Gao, R. Yu, X. Wang, L. He et al., MXene based saturation organic vertical photoelectric transistors with low subthreshold swing. Nat. Commun. 13(1), 2898 (2022). https://doi.org/10.1038/s41467-022-30527-w
S.H. Kim, J. Seo, J. Koo, J. Chang, G. Jin et al., Topological semimetals for advanced node interconnects. iScience 27(12), 111460 (2024). https://doi.org/10.1016/j.isci.2024.111460
M. Son, J. Jang, Y. Lee, J. Nam, J.Y. Hwang et al., Copper-graphene heterostructure for back-end-of-line compatible high-performance interconnects. NPJ 2D Mater. Appl. 5, 41 (2021). https://doi.org/10.1038/s41699-021-00216-1
W.F. Brinkman, D.E. Haggan, W.W. Troutman, A history of the invention of the transistor and where it will lead us. IEEE J. Solid State Circuits 32(12), 1858–1865 (2002). https://doi.org/10.1109/4.643644
H. Iwai, S. M. Sze, Y. Taur, H. Wong, Guide to State-of-the-Art Electron Devices, 1st edn. (Wiley-IEEE Press, 2013), pp. 21–36. https://doi.org/10.1002/9781118517543.ch2
W. Aspray, The Intel 4004 microprocessor: what constituted invention? IEEE Ann. Hist. Comput. 19(3), 4–15 (1997). https://doi.org/10.1109/85.601727
D.C. Brock, Understanding Moore’s Law: Four Decades of Innovation, 1st edn. (Chemical Heritage Foundation, Philadelphia, 2006), p.122
K.Y. Kamal, The silicon age: trends in semiconductor devices industry. J. Eng. Sci. Technol. Rev. 15(1), 110–115 (2022). https://doi.org/10.25103/jestr.151.14
T.N. Theis, H.S.P. Wong, The end of Moore’s law: a new beginning for information technology. Comput. Sci. Eng. 19(2), 41–50 (2017). https://doi.org/10.1109/MCSE.2017.29
W. Kester, E. Bordeax, J. Horvath, C. Redmond, E. Murphy, Low voltage logic interfacing. Data Conversion Handbook. Elsevier, (2005), pp. 867–880. https://doi.org/10.1016/b978-075067841-4/50047-6
G.G. Shahidi, D.A. Antoniadis, H.I. Smith, Reduction of channel hot-electron-generated substrate current in sub-150-nm channel length Si MOSFET’s. IEEE Electron Device Lett. 9(10), 497–499 (2002). https://doi.org/10.1109/55.17823
International Roadmap for Devices and Systems, 2023 Update: Beyond CMOS (IRDS, 2023), pp. 71. https://doi.org/10.60627/0p45-zj55
S.V. Shinde, Ultra-low power current reference based on flat band difference of MOSFETs. J. Phys. Conf. Ser. 1729(1), 012011 (2021). https://doi.org/10.1088/1742-6596/1729/1/012011
S. Deshpande, S. Sopariwala, R. Singhvi, R. Khandelwal, J. Marvaniya et al., Performance analysis of silicon nanowire FET for GAA and pi gate configurations. 2022 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience & Nanotechnology (5NANO). April 28–29, 2022. Kottayam, India. IEEE, (2022), pp. 1–6. https://doi.org/10.1109/5nano53044.2022.9828888
S.V. Kalinin, D.A. Poteryaev, D.I. Ostertak, M.A. Kuznetsov, presented at Proc. IEEE APEIE. A New Revolution in Logic Silicon IC Technology: GAA FETs are Replacing FinFETs, Novosibirsk, Russian Federation, (2023). https://doi.org/10.1109/APEIE59731.2023.10347677
L. Wu, The next generation of gate-all-around transistors. Nat. Electron. 6(7), 469 (2023). https://doi.org/10.1038/s41928-023-01006-x
K.P. O’Brien, C.H. Naylor, C. Dorow, K. Maxey, A.V. Penumatcha et al., Process integration and future outlook of 2D transistors. Nat. Commun. 14, 6400 (2023). https://doi.org/10.1038/s41467-023-41779-5
U.K. Das, T.K. Bhattacharyya, Opportunities in device scaling for 3-nm node and beyond: FinFET versus GAA-FET versus UFET. IEEE Trans. Electron Devices 67(6), 2633–2638 (2020). https://doi.org/10.1109/TED.2020.2987139
J.M. Bustillo, R.T. Howe, R.S. Muller, Surface micromachining for microelectromechanical systems. Proc. IEEE 86(8), 1552–1574 (1998). https://doi.org/10.1109/5.704260
J. Yang, K. Chen, D. Wang, T. Liu, X. Sun et al., Impact of stress and dimension on nanosheet deformation during channel release of gate-all-around device. Micromachines 14(3), 611 (2023). https://doi.org/10.3390/mi14030611
D. Connelly, P. Zheng, T.K. Liu, Channel stress and ballistic performance advantages of gate-all-around FETs and inserted-oxide FinFETs. IEEE Trans. Nanotechnol. 16(2), 209–216 (2017). https://doi.org/10.1109/TNANO.2017.2653099
S. Sharma, S. Sahay, R. Dey, Parasitic capacitance model for stacked gate-all-around nanosheet FETs. IEEE Trans. Electron Devices 71(1), 37–45 (2024). https://doi.org/10.1109/TED.2023.3281530
A. Singh, O. Maheshwari, N.R. Mohapatra, Parasitic capacitance in nanosheet FETs: extraction of different components and their analytical modeling. IEEE Trans. Electron Devices 71(5), 2894–2900 (2024). https://doi.org/10.1109/TED.2024.3382216
X. He, Y. Zhang, M. Choi, L. Wang, A. Vandooren et al., presented at Proc. IEEE International Electron Devices Meeting (IEDM). Impact of aggressive fin width scaling on FinFET device characteristics, San Francisco, CA, USA, (2018). https://doi.org/10.1109/IEDM.2017.8268427
A.D. Franklin, M.C. Hersam, H.S.P. Wong, Carbon nanotube transistors: making electronics from molecules. Science 378(6621), 726–732 (2022). https://doi.org/10.1126/science.abp8278
G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee et al., Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7(9), 7931–7936 (2013). https://doi.org/10.1021/nn402954e
M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
Z. Lu, Y. Chen, W. Dang, L. Kong, Q. Tao et al., Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration. Nat. Commun. 14(1), 2340 (2023). https://doi.org/10.1038/s41467-023-37887-x
A. Hasani, Q.V. Le, M. Tekalgne, M.-J. Choi, T.H. Lee et al., Direct synthesis of two-dimensional MoS2 on p-type Si and application to solar hydrogen production. NPG Asia Mater. 11, 47 (2019). https://doi.org/10.1038/s41427-019-0145-7
T. Wei, Z. Han, X. Zhong, Q. Xiao, T. Liu et al., Two dimensional semiconducting materials for ultimately scaled transistors. iScience 25(10), 105160 (2022). https://doi.org/10.1016/j.isci.2022.105160
W. Cao, J. Kang, W. Liu, K. Banerjee, A compact current–voltage model for 2D semiconductor based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect. IEEE Trans. Electron Devices 61(12), 4282–4290 (2014). https://doi.org/10.1109/TED.2014.2365028
K. Uchida, H. Watanabe, A. Kinoshita, J. Koga, T. Numata et al., Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm. Digest. International Electron Devices Meeting. San Francisco, CA, USA. IEEE, 2002, pp. 47–50. https://doi.org/10.1109/iedm.2002.1175776
J. Li, X. Yang, Y. Liu, B. Huang, R. Wu et al., General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579(7799), 368–374 (2020). https://doi.org/10.1038/s41586-020-2098-y
Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X. Song et al., Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568(7750), 70–74 (2019). https://doi.org/10.1038/s41586-019-1052-3
R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss et al., Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014). https://doi.org/10.1038/ncomms6143
W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena et al., Role of metal contacts in designing high-performance monolayer n type WSe2 field effect transistors. Nano Lett. 13(5), 1983–1990 (2013). https://doi.org/10.1021/nl304777e
C.D. English, G. Shine, V.E. Dorgan, K.C. Saraswat, E. Pop, Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 16(6), 3824–3830 (2016). https://doi.org/10.1021/acs.nanolett.6b01309
M. Schmidt, M.C. Lemme, H.D.B. Gottlob, F. Driussi, L. Selmi et al., Mobility extraction in SOI MOSFETs with sub 1nm body thickness. Solid State Electron. 53(12), 1246–1251 (2009). https://doi.org/10.1016/j.sse.2009.09.017
G. Long, W. Jin, F. Xia, Y. Wang, T. Bai et al., Carbon nanotube-based flexible high-speed circuits with sub-nanosecond stage delays. Nat. Commun. 13(1), 6734 (2022). https://doi.org/10.1038/s41467-022-34621-x
A. Sebastian, R. Pendurthi, T.H. Choudhury, J.M. Redwing, S. Das, Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12(1), 693 (2021). https://doi.org/10.1038/s41467-020-20732-w
R. Wu, Q. Tao, J. Li, W. Li, Y. Chen et al., Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron. 5(8), 497–504 (2022). https://doi.org/10.1038/s41928-022-00800-3
K. Alam, R.K. Lake, Monolayer MoS2 transistors beyond the technology road map. IEEE Trans. Electron Devices 59(12), 3250–3254 (2012). https://doi.org/10.1109/TED.2012.2218283
L. Ding, Z. Zhang, S. Liang, T. Pei, S. Wang et al., CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat. Commun. 3, 677 (2012). https://doi.org/10.1038/ncomms1682
X. Sun, S. Fang, G. Zhang, L. Xu, Y.S. Ang et al., Monolayer WS2 sub-5 nm transistor for future technology nodes: a theoretical study. ACS Appl. Nano Mater. 8(24), 12594–12607 (2025). https://doi.org/10.1021/acsanm.5c01418
X. Li, P. Zhou, X. Hu, E. Rivers, K. Watanabe et al., Cascaded logic gates based on high-performance ambipolar dual-gate WSe2 thin film transistors. ACS Nano 17, 13 (2023). https://doi.org/10.1021/acsnano.3c03932
J. Tang, Q. Wang, J. Tian, X. Li, N. Li et al., Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 14(1), 3633 (2023). https://doi.org/10.1038/s41467-023-39390-9
M. Kotera, K. Yagura, H. Tanaka, D. Kawano, T. Maekawa, Extreme ultraviolet lithography simulation by tracing photoelectron trajectories in resist. Jpn. J. Appl. Phys. 47(6S), 4944 (2008). https://doi.org/10.1143/jjap.47.4944
J. Garcia-Santaclara, R. Peeters, J. van Dongen, R. van Ballegoij, S. Lok et al., High-NA EUV platform realization as next step in EUV technology. Proc. SPIE PC12750, PC1275002 (2023). https://doi.org/10.1117/12.2687756
L.-A. Ragnarsson, M.G. Bardon, P. Wuytens, G. Mirabelli, D. Jang et al., Environmental impact of CMOS logic technologies. 2022 6th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). March 6–9, 2022. Oita, Japan. IEEE, (2022), pp. 82–84. https://doi.org/10.1109/edtm53872.2022.9798208
S.F. Shaikh, N. El-Atab, M.M. Hussain, presented at Proc. IEEE Electronic Components and Technology Conference (IEEE ECTC), 3D Heterogeneous Integration Strategy for Physically Flexible CMOS Electronic Systems. San Diego, CA, USA, (2021)
K. Xiao, J. Wan, H. Xie, Y. Zhu, T. Tian et al., High performance Si-MoS2 heterogeneous embedded DRAM. Nat. Commun. 15(1), 9782 (2024). https://doi.org/10.1038/s41467-024-54218-w
D. Lim, K. Cho, S. Kim, Reconfigurable logic-in-memory using silicon transistors. Adv. Mater. Technol. 7(10), 2101504 (2022). https://doi.org/10.1002/admt.202101504
C. Lee, C. Lee, S. Lee, J. Choi, H. Yoo et al., A reconfigurable binary/ternary logic conversion-in-memory based on drain-aligned floating-gate heterojunction transistors. Nat. Commun. 14(1), 3757 (2023). https://doi.org/10.1038/s41467-023-39394-5
A. Agnesina, M. Pathak, B. Khailany, H. Esmaeilzadeh, presented at Proc. IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Boston, MA, USA, (2021)
M. Zou, J. Zhou, J. Sun, C. Wang, S. Kvatinsky, Improving efficiency and lifetime of logic-in-memory by combining IMPLY and MAGIC families. J. Syst. Archit. 119, 102232 (2021). https://doi.org/10.1016/j.sysarc.2021.102232
J. Zhu, T. Palacios, Design–technology co-optimization for 2D electronics. Nat. Electron. 6(11), 803–804 (2023). https://doi.org/10.1038/s41928-023-01072-1
J.D. Cressler, SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications. IEEE Trans. Microw. Theory Tech. 46(5), 572–589 (1998). https://doi.org/10.1109/22.668665
W.M. Weber, T. Mikolajick, Silicon and germanium nanowire electronics: physics of conventional and unconventional transistors. Rep. Prog. Phys. 80(6), 066502 (2017). https://doi.org/10.1088/1361-6633/aa56f0
H. Hosono, How we made the IGZO transistor. Nat. Electron. 1(7), 428 (2018). https://doi.org/10.1038/s41928-018-0106-0
J.Y. Kim, M.-J. Choi, Y.J. Lee, S.H. Park, S. Choi et al., High-performance ferroelectric thin film transistors with large memory window using epitaxial yttrium-doped hafnium zirconium gate oxide. ACS Appl. Mater. Interfaces 16(15), 19057–19067 (2024). https://doi.org/10.1021/acsami.3c16427
G. Iannaccone, F. Bonaccorso, L. Colombo, G. Fiori, Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 13(3), 183–191 (2018). https://doi.org/10.1038/s41565-018-0082-6
J.B. Goodenough, How we made the Li-ion rechargeable battery. Nat. Electron. 1(3), 204 (2018). https://doi.org/10.1038/s41928-018-0048-6
A. Liu, H. Zhu, S. Bai, Y. Reo, T. Zou et al., High-performance inorganic metal halide perovskite transistors. Nat. Electron. 5(2), 78–83 (2022). https://doi.org/10.1038/s41928-022-00712-2
Y.J. Lee, J.S. Han, D.E. Lee, T.H. Lee, J.Y. Kim et al., High hole mobility inorganic halide perovskite field-effect transistors with enhanced phase stability and interfacial defect tolerance. Adv. Electron. Mater. 8(1), 2100624 (2022). https://doi.org/10.1002/aelm.202100624
A. Charnas, Z. Zhang, Z. Lin, D. Zheng, J. Zhang et al., Review-extremely thin amorphous indium oxide transistors. Adv. Mater. 36(9), e2304044 (2024). https://doi.org/10.1002/adma.202304044
J.Y. Kim, S.H. Park, Y.J. Kim, J.H. Kim, S.K. Choi et al., Stabilization of tetragonal phase in hafnium zirconium oxide by cation doping for high-K dielectric insulators. ACS Appl. Mater. Interfaces 16(44), 60811–60818 (2024). https://doi.org/10.1021/acsami.4c12407
Y. Shen, K. Zhu, Y. Xiao, D. Waldhör, A.H. Basher et al., Two-dimensional-materials-based transistors using hexagonal boron nitride dielectrics and metal gate electrodes with high cohesive energy. Nat. Electron. 7(10), 856–867 (2024). https://doi.org/10.1038/s41928-024-01233-w
I. Meric, C.R. Dean, N. Petrone, L. Wang, J. Hone et al., Graphene field-effect transistors based on boron–nitride dielectrics. Proc. IEEE 101(7), 1609–1619 (2013). https://doi.org/10.1109/JPROC.2013.2257634
H. Xu, R. Fang, S. Wu, J. An, W. Zhang et al., Li-ion-based electrolyte-gated transistors with short write-read delay for neuromorphic computing. Adv. Electron. Mater. 9(2), 2200915 (2023). https://doi.org/10.1002/aelm.202200915
R.D. Nikam, M. Kwak, J. Lee, K.G. Rajput, W. Banerjee et al., Near ideal synaptic functionalities in Li ion synaptic transistor using Li(3)PO(x)Se(x) electrolyte with high ionic conductivity. Sci. Rep. 9(1), 18883 (2019). https://doi.org/10.1038/s41598-019-55310-8
C.M. Smyth, R. Addou, S. McDonnell, C.L. Hinkle, R.M. Wallace, Contact metal–MoS2 interfacial reactions and potential implications on MoS2-based device performance. J. Phys. Chem. C 120(27), 14719–14729 (2016). https://doi.org/10.1021/acs.jpcc.6b04473
C.-H. Mao, C.-C. Chung, W.-R. Syong, Y.-C. Yao, K.-Y. Hsiao et al., Bifunctional semimetal as a plasmonic resonator and ohmic contact for an ultrasensitive MoS2 photodetector. ACS Photonics 10(5), 1495–1503 (2023). https://doi.org/10.1021/acsphotonics.3c00100
S.Y. Kim, Z. Sun, J. Roy, X. Wang, Z. Chen et al., Fundamental understanding of interface chemistry and electrical contact properties of Bi and MoS2. ACS Appl. Mater. Interfaces 16(40), 54790–54798 (2024). https://doi.org/10.1021/acsami.4c10082
T.D. Ngo, T. Huynh, H. Jung, F. Ali, J. Jeon et al., Modulation of contact resistance of dual-gated MoS2 FETs using Fermi-level pinning-free antimony semi-metal contacts. Adv. Sci. 10(21), 2301400 (2023). https://doi.org/10.1002/advs.202301400
T. Gupta, K. Elibol, S. Hummel, M. Stöger-Pollach, C. Mangler et al., Resolving few-layer antimonene/graphene heterostructures. NPJ 2D Mater. Appl. 5, 53 (2021). https://doi.org/10.1038/s41699-021-00230-3
A.-S. Chou, C.-C. Cheng, S.-L. Liew, P.-H. Ho, S.-Y. Wang et al., High on-state current in chemical vapor deposited monolayer MoS2nFETs with Sn ohmic contacts. IEEE Electron Device Lett. 42(2), 272–275 (2021). https://doi.org/10.1109/led.2020.3048371
W. Jolie, T. Michely, 1D metals for 2D electronics. Nat. Nanotechnol. 19(7), 883–884 (2024). https://doi.org/10.1038/s41565-024-01708-z
H. Ahn, G. Moon, H.-G. Jung, B. Deng, D.-H. Yang et al., Integrated 1D epitaxial mirror twin boundaries for ultrascaled 2D MoS2 field-effect transistors. Nat. Nanotechnol. 19(7), 955–961 (2024). https://doi.org/10.1038/s41565-024-01706-1
Q. Qian, J. Lei, J. Wei, Z. Zhang, G. Tang et al., 2D materials as semiconducting gate for field-effect transistors with inherent over-voltage protection and boosted on-current. Npj 2D Mater. Appl. 3, 24 (2019). https://doi.org/10.1038/s41699-019-0106-6
T. Harada, T. Nagai, M. Oishi, Y. Masahiro, Sputter-grown c-axis-oriented PdCoO2 thin films. J. Appl. Phys. 133(8), 085302 (2023). https://doi.org/10.1063/5.0136749
V. Eyert, R. Frésard, A. Maignan, On the metallic conductivity of the delafossites PdCoO2 and PtCoO2. Chem. Mater. 20(6), 2370–2373 (2008). https://doi.org/10.1021/cm703404e
S. Kumar, Y.-H. Tu, S. Luo, N.A. Lanzillo, T.-R. Chang et al., Surface-dominated conductance scaling in Weyl semimetal NbAs. NPJ Comput. Mater. 10, 84 (2024). https://doi.org/10.1038/s41524-024-01263-0
C. Zhang, Z. Ni, J. Zhang, X. Yuan, Y. Liu et al., Ultrahigh conductivity in Weyl semimetal NbAs nanobelts. Nat. Mater. 18(5), 482–488 (2019). https://doi.org/10.1038/s41563-019-0320-9
S. Salahuddin, K. Ni, S. Datta, The era of hyper-scaling in electronics. Nat. Electron. 1(8), 442–450 (2018). https://doi.org/10.1038/s41928-018-0117-x
P.R. Wilson, B. Ferreira, J. Zhang, C. DiMarino, IEEE itrw: international technology roadmap for wide-bandgap power semiconductors: an overview. IEEE Power Electron. Mag. 5(2), 22–25 (2018). https://doi.org/10.1109/MPEL.2018.2821938
C. Varnava, FinFETs for cryptography. Nat. Electron 3(12), 732 (2020). https://doi.org/10.1038/s41928-020-00521-5
W. Wang, K. Li, J. Lan, M. Shen, Z. Wang et al., CMOS backend-of-line compatible memory array and logic circuitries enabled by high performance atomic layer deposited ZnO thin-film transistor. Nat. Commun. 14(1), 6079 (2023). https://doi.org/10.1038/s41467-023-41868-5
J. Liao, W. Wen, J. Wu, Y. Zhou, S. Hussain et al., Van der Waals ferroelectric semiconductor field effect transistor for in-memory computing. ACS Nano 17(6), 6095–6102 (2023). https://doi.org/10.1021/acsnano.3c01198
Y. He, L. Zhu, Y. Zhu, C. Chen, S. Jiang et al., Recent progress on emerging transistor-based neuromorphic devices. Adv. Intell. Syst. 3(7), 2000210 (2021). https://doi.org/10.1002/aisy.202000210
M. Neisser, S. Wurm, ITRS lithography roadmap: status and challenges. Adv. Opt. Technol. 1(4), 217–222 (2012). https://doi.org/10.1515/aot-2012-0045
S. Kim, S. Kim, K. Cho, T. Shin, H. Park et al., Signal integrity and computing performance analysis of a processing-in-memory of high bandwidth memory (PIM-HBM) scheme. IEEE Trans. Compon. Packag. Manuf. Technol. 11(11), 1955–1970 (2021). https://doi.org/10.1109/TCPMT.2021.3117071
G. Migliato Marega, Y. Zhao, A. Avsar, Z. Wang, M. Tripathi et al., Logic-in-memory based on an atomically thin semiconductor. Nature 587(7832), 72–77 (2020). https://doi.org/10.1038/s41586-020-2861-0
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353(6298), aac9439 (2016). https://doi.org/10.1126/science.aac9439
D. Geng, H.Y. Yang, Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides. Adv. Mater. 30(45), 1800865 (2018). https://doi.org/10.1002/adma.201800865
H.F. Liu, S.L. Wong, D.Z. Chi, CVD growth of MoS2-based two-dimensional materials. Chem. Vap. Deposition 21(10–12), 241–259 (2015). https://doi.org/10.1002/cvde.201500060
M. Chubarov, T.H. Choudhury, D.R. Hickey, S. Bachu, T. Zhang et al., Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano 15(2), 2532–2541 (2021). https://doi.org/10.1021/acsnano.0c06750
Y.-C. Lin, B. Jariwala, B.M. Bersch, K. Xu, Y. Nie et al., Realizing large-scale, electronic-grade two-dimensional semiconductors. ACS Nano 12(2), 965–975 (2018). https://doi.org/10.1021/acsnano.7b07059
C. Zhang, J. Huang, R. Tu, S. Zhang, M. Yang et al., Transfer-free growth of graphene on Al2O3 (0001) using a three-step method. Carbon 131, 10–17 (2018). https://doi.org/10.1016/j.carbon.2018.01.088
X. Yang, J. Li, R. Song, B. Zhao, J. Tang et al., Highly reproducible van der Waals integration of two-dimensional electronics on the wafer scale. Nat. Nanotechnol. 18(5), 471–478 (2023). https://doi.org/10.1038/s41565-023-01342-1
D. Xiang, T. Liu, Monolayer transistors at wafer scales. Nat. Electron. 4(12), 868–869 (2021). https://doi.org/10.1038/s41928-021-00694-7
X. Chen, Y. Xie, Y. Sheng, H. Tang, Z. Wang et al., Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning. Nat. Commun. 12(1), 5953 (2021). https://doi.org/10.1038/s41467-021-26230-x
J. Park, W.C. Mitchel, L. Grazulis, H.E. Smith, K.G. Eyink et al., Epitaxial graphene growth by carbon molecular beam epitaxy (CMBE). Adv. Mater. 22(37), 4140–4145 (2010). https://doi.org/10.1002/adma.201000756
S.M. Poh, X. Zhao, S.J.R. Tan, D. Fu, W. Fei et al., Molecular beam epitaxy of highly crystalline MoSe(2) on hexagonal boron nitride. ACS Nano 12(8), 7562–7570 (2018). https://doi.org/10.1021/acsnano.8b04037
R. Yue, A.T. Barton, H. Zhu, A. Azcatl, L.F. Pena et al., Hfse2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. ACS Nano 9(1), 474–480 (2015). https://doi.org/10.1021/nn5056496
H.C. Diaz, R. Chaghi, Y. Ma, M. Batzill, Molecular beam epitaxy of the van der Waals heterostructure MoTe2 on MoS2: phase, thermal, and chemical stability. 2D Mater. 2(4), 044010 (2015). https://doi.org/10.1088/2053-1583/2/4/044010
M. Dave, R. Vaidya, S.G. Patel, A.R. Jani, High pressure effect on MoS2 and MoSe2 single crystals grown by CVT method. Bull. Mater. Sci. 27(2), 213–216 (2004). https://doi.org/10.1007/BF02708507
M. Khurram, Z. Sun, Z. Zhang, Q. Yan, Chemical vapor transport growth of bulk black phosphorus single crystals. Inorg. Chem. Front. 7(15), 2867–2879 (2020). https://doi.org/10.1039/d0qi00582g
X. Zhang, F. Lou, C. Li, X. Zhang, N. Jia et al., Flux method growth of bulk MoS2 single crystals and their application as a saturable absorber. Cryst. Eng. Comm. 17(21), 4026–4032 (2015). https://doi.org/10.1039/C5CE00484E
D. Gerchman, A.K. Alves, Solution-processable exfoliation and suspension of atomically thin WSe2. J. Colloid Interface Sci. 468, 247–252 (2016). https://doi.org/10.1016/j.jcis.2016.01.073
Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu et al., Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562(7726), 254–258 (2018). https://doi.org/10.1038/s41586-018-0574-4
O. Song, D. Rhee, J. Kim, Y. Jeon, V. Mazánek et al., All inkjet-printed electronics based on electrochemically exfoliated two-dimensional metal, semiconductor, and dielectric. NPJ 2D Mater. Appl. 6, 64 (2022). https://doi.org/10.1038/s41699-022-00337-1
J. Kim, D. Rhee, O. Song, M. Kim, Y.H. Kwon et al., All-solution-processed van der Waals heterostructures for wafer-scale electronics. Adv. Mater. 34(12), e2106110 (2022). https://doi.org/10.1002/adma.202106110
W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002
J.-H. Lee, E.K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim et al., Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344(6181), 286–289 (2014). https://doi.org/10.1126/science.1252268
S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010). https://doi.org/10.1038/nnano.2010.132
Z. Yu, Z.-Y. Ong, Y. Pan, Y. Cui, R. Xin et al., Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28(3), 547–552 (2016). https://doi.org/10.1002/adma.201503033
J.-G. Song, J. Park, W. Lee, T. Choi, H. Jung et al., Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano 7(12), 11333–11340 (2013). https://doi.org/10.1021/nn405194e
D. Moon, W. Lee, C. Lim, J. Kim, J. Kim et al., Hypotaxy of wafer-scale single-crystal transition metal dichalcogenides. Nature 638(8052), 957–964 (2025). https://doi.org/10.1038/s41586-024-08492-9
D. Fu, X. Zhao, Y.-Y. Zhang, L. Li, H. Xu et al., Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J. Am. Chem. Soc. 139(27), 9392–9400 (2017). https://doi.org/10.1021/jacs.7b05131
Y.A. Kwon, J. Kim, S.B. Jo, D.G. Roe, D. Rhee et al., Wafer-scale transistor arrays fabricated using slot-die printing of molybdenum disulfide and sodium-embedded alumina. Nat. Electron. 6(6), 443–450 (2023). https://doi.org/10.1038/s41928-023-00971-7
Y.A. Kwon, J. Kim, S.B. Jo, D.G. Roe, D. Rhee, Y. Song, B. Kang, D. Kim, J. Kim, D.W. Kim, M.S. Kang, J. Kang, J.H. Cho, Nat. Electron. 6, 443 (2023). https://doi.org/10.1038/s41928-023-00971-7
J. Miao, L. Tian, H. Zhang, R. Duan, Y. Wu et al., Lateral electric field engineering in scaled transistors based on 2D materials via phase transition. ACS Nano 19(19), 18292–18300 (2025). https://doi.org/10.1021/acsnano.5c00234
F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren et al., Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603(7900), 259–264 (2022). https://doi.org/10.1038/s41586-021-04323-3
M. Li, C.-Y. Lin, S.-H. Yang, Y.-M. Chang, J.-K. Chang et al., High mobilities in layered InSe transistors with indium-encapsulation-induced surface charge doping. Adv. Mater. 30(44), e1803690 (2018). https://doi.org/10.1002/adma.201803690
S. Yang, K. Zhang, A.G. Ricciardulli, P. Zhang, Z. Liao et al., A delamination strategy for thinly layered defect-free high-mobility black phosphorus flakes. Angew. Chem. Int. Ed. 57(17), 4677–4681 (2018). https://doi.org/10.1002/anie.201801265
J. Kang, D. Jariwala, C.R. Ryder, S.A. Wells, Y. Choi et al., Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors. Nano Lett. 16(4), 2580–2585 (2016). https://doi.org/10.1021/acs.nanolett.6b00144
J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9(11), 927–932 (2014). https://doi.org/10.1038/nnano.2014.181
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
T. Zou, H.-J. Kim, S. Kim, A. Liu, M.-Y. Choi et al., High-performance solution-processed 2D P-type WSe2 transistors and circuits through molecular doping. Adv. Mater. 35(7), 2208934 (2023). https://doi.org/10.1002/adma.202208934
C.R. Ryder, J.D. Wood, S.A. Wells, Y. Yang, D. Jariwala et al., Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8(6), 597–602 (2016). https://doi.org/10.1038/nchem.2505
X. Cui, G.-H. Lee, Y.D. Kim, G. Arefe, P.Y. Huang et al., Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10(6), 534–540 (2015). https://doi.org/10.1038/nnano.2015.70
D. Lembke, A. Kis, High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. ACS Nano 6, 10070 (2012). https://doi.org/10.1021/nn303772b
D.A. Bandurin, A.V. Tyurnina, G.L. Yu, A. Mishchenko, V. Zólyomi et al., High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223 (2017). https://doi.org/10.1038/nnano.2016.242
S. Sucharitakul, N.J. Goble, U.R. Kumar, R. Sankar, Z.A. Bogorad et al., Intrinsic electron mobility exceeding 103 cm2/(v s) in multilayer InSe FETs. Nano Lett. 15(6), 3815–3819 (2015). https://doi.org/10.1021/acs.nanolett.5b00493
H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi et al., High-performance single layered WSe₂ p-FETs with chemically doped contacts. Nano Lett. 12(7), 3788–3792 (2012). https://doi.org/10.1021/nl301702r
A. Allain, A. Kis, Electron and hole mobilities in single-layer WSe2. ACS Nano 8(7), 7180–7185 (2014). https://doi.org/10.1021/nn5021538
W. Feng, W. Zheng, W. Cao, P. Hu, Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. Adv. Mater. 26(38), 6587–6593 (2014). https://doi.org/10.1002/adma.201402427
Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136(2), 622–625 (2014). https://doi.org/10.1021/ja411509g
W. Li, J. Zhou, S. Cai, Z. Yu, J. Zhang et al., Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2(12), 563–571 (2019). https://doi.org/10.1038/s41928-019-0334-y
P.-C. Shen, C. Su, Y. Lin, A.-S. Chou, C.-C. Cheng et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593(7858), 211–217 (2021). https://doi.org/10.1038/s41586-021-03472-9
L.M. Herz, Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2(7), 1539–1548 (2017). https://doi.org/10.1021/acsenergylett.7b00276
R.E. Brandt, V. Stevanović, D.S. Ginley, T. Buonassisi, Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5(2), 265–275 (2015). https://doi.org/10.1557/mrc.2015.26
M. Vasilopoulou, ARbin Mohd Yusoff, Y. Chai, M.-A. Kourtis, T. Matsushima et al., Neuromorphic computing based on halide perovskites. Nat. Electron. 6(12), 949–962 (2023). https://doi.org/10.1038/s41928-023-01082-z
Y. Zhou, I. Poli, D. Meggiolaro, F. De Angelis, A. Petrozza, Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6(11), 986–1002 (2021). https://doi.org/10.1038/s41578-021-00331-x
Q.A. Akkerman, L. Manna, What defines a halide perovskite? ACS Energy Lett. 5(2), 604–610 (2020). https://doi.org/10.1021/acsenergylett.0c00039
A. Liu, H. Zhu, S. Bai, Y. Reo, M. Caironi et al., High-performance metal halide perovskite transistors. Nat. Electron. 6(8), 559–571 (2023). https://doi.org/10.1038/s41928-023-01001-2
W.A. Dunlap-Shohl, Y. Zhou, N.P. Padture, D.B. Mitzi, Synthetic approaches for halide perovskite thin films. Chem. Rev. 119(5), 3193–3295 (2019). https://doi.org/10.1021/acs.chemrev.8b00318
Y. Zhou, M. Yang, W. Wu, A.L. Vasiliev, K. Zhu et al., Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J. Mater. Chem. A 3(15), 8178–8184 (2015). https://doi.org/10.1039/c5ta00477b
M. Era, T. Hattori, T. Taira, T. Tsutsui, Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition. Chem. Mater. 9(1), 8–10 (1997). https://doi.org/10.1021/cm960434m
S. Chakraborty, W. Xie, N. Mathews, M. Sherburne, R. Ahuja et al., Rational design: a high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid perovskites. ACS Energy Lett. 2(4), 837–845 (2017). https://doi.org/10.1021/acsenergylett.7b00035
R. Kurchin, P. Gorai, T. Buonassisi, V. Stevanović, Structural and chemical features giving rise to defect tolerance of binary semiconductors. Chem. Mater. 30(16), 5583–5592 (2018). https://doi.org/10.1021/acs.chemmater.8b01505
G. Tang, J. Hong, Direct tuning of the band gap via electronically-active organic cations and large piezoelectric response in one-dimensional hybrid halides from first-principles. J. Mater. Chem. C 6(28), 7671–7676 (2018). https://doi.org/10.1039/C8TC02131G
S. Shao, W. Talsma, M. Pitaro, J. Dong, S. Kahmann et al., Field-effect transistors based on formamidinium tin triiodide perovskite. Adv. Funct. Mater. 31(11), 2008478 (2021). https://doi.org/10.1002/adfm.202008478
H. Zhu, A. Liu, K.I. Shim, H. Jung, T. Zou et al., High-performance hysteresis-free perovskite transistors through anion engineering. Nat. Commun. 13, 1741 (2022). https://doi.org/10.1038/s41467-022-29434-x
C. Kagan, D. Mitzi, C. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286(5441), 945–947 (1999). https://doi.org/10.1126/science.286.5441.945
Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W.J. Yoo et al., High-performance perovskite–graphene hybrid photodetector. Adv. Mater. 27(1), 41–46 (2015). https://doi.org/10.1002/adma.201402271
Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu et al., Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 105(16), 163508 (2014). https://doi.org/10.1063/1.4899051
B. Jeong, P. Gkoupidenis, K. Asadi, Solution-processed perovskite field-effect transistor artificial synapses. Adv. Mater. 33(52), e2104034 (2021). https://doi.org/10.1002/adma.202104034
L. Wang, P. Wang, J. Huang, B. Peng, C. Jia et al., A general one-step plug-and-probe approach to top-gated transistors for rapidly probing delicate electronic materials. Nat. Nanotechnol. 17(11), 1206–1213 (2022). https://doi.org/10.1038/s41565-022-01221-1
S. Hong, S.H. Choi, J. Park, H. Yoo, J.Y. Oh et al., Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1–xIx)3 perovskite and MoS2 hybrid structure. ACS Nano 14(8), 9796–9806 (2020). https://doi.org/10.1021/acsnano.0c01689
G. Tang, P. Ghosez, J. Hong, Band-edge orbital engineering of perovskite semiconductors for optoelectronic applications. J. Phys. Chem. Lett. 12(17), 4227–4239 (2021). https://doi.org/10.1021/acs.jpclett.0c03816
E. Janod, J. Tranchant, B. Corraze, M. Querré, P. Stoliar, M. Rozenberg, T. Cren, D. Roditchev, V.T. Phuoc, M.P. Besland, L. Cario, Adv. Funct. Mater. 25, 6287 (2015). https://doi.org/10.1002/adfm.201500823
J.B. Krieger, M. Nightingale, Resistive switching in mott insulators and correlated systems. Phys. Rev. B 4, 1266 (1971). https://doi.org/10.1103/PhysRevB.4.1266
C.R. Martin, Membrane-based synthesis of nanomaterials. Chem. Mater. 8(8), 1739–1746 (1996). https://doi.org/10.1021/cm960166s
R. Singh, P. Chithaiah, C.N.R. Rao, A new precursor route for the growth of NbO2 thin films by chemical vapor deposition. Nanotechnology 34(14), 145705 (2023). https://doi.org/10.1088/1361-6528/acb216
B. Dong, N. Shen, C. Cao, Z. Chen, H. Luo et al., Phase and morphology evolution of VO2 nanops using a novel hydrothermal system for thermochromic applications: the growth mechanism and effect of ammonium (NH4+). RSC Adv. 6(85), 81559–81568 (2016). https://doi.org/10.1039/C6RA14569H
M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono et al., Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487(7408), 459–462 (2012). https://doi.org/10.1038/nature11296
K. Appavoo, B. Wang, N.F. Brady, M. Seo, J. Nag et al., Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. Nano Lett. 14(3), 1127–1133 (2014). https://doi.org/10.1021/nl4044828
N. Shukla, A.V. Thathachary, A. Agrawal, H. Paik, A. Aziz et al., A steep-slope transistor based on abrupt electronic phase transition. Nat. Commun. 6, 7812 (2015). https://doi.org/10.1038/ncomms8812
T. Yajima, Y. Samata, S. Hamasuna, S.P. Pati, A. Toriumi, Zero-dimensionality of a scaled-down VO2 metal-insulator transition via high-resolution electrostatic gating. NPG Asia Mater. 15, 39 (2023). https://doi.org/10.1038/s41427-023-00486-9
M. Yamamoto, R. Nouchi, T. Kanki, A.N. Hattori, K. Watanabe et al., Gate-tunable thermal metal–insulator transition in VO2 monolithically integrated into a WSe2 field-effect transistor. ACS Appl. Mater. Interfaces 11(3), 3224–3230 (2019). https://doi.org/10.1021/acsami.8b18745
J.F. Wager, B. Yeh, R.L. Hoffman, D.A. Keszler, An amorphous oxide semiconductor thin-film transistor route to oxide electronics. Curr. Opin. Solid State Mater. Sci. 18(2), 53–61 (2014). https://doi.org/10.1016/j.cossms.2013.07.002
S.Y. Lee, Comprehensive review on amorphous oxide semiconductor thin film transistor. Trans. Electr. Electron. Mater. 21(3), 235–248 (2020). https://doi.org/10.1007/s42341-020-00197-w
K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488–492 (2004). https://doi.org/10.1038/nature03090
J.S. Park, W.-J. Maeng, H.-S. Kim, J.-S. Park, Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 520(6), 1679–1693 (2012). https://doi.org/10.1016/j.tsf.2011.07.018
K.A. Stewart, B.S. Yeh, J.F. Wager, Amorphous semiconductor mobility limits. J. Non-Cryst. Solids 432, 196 (2016). https://doi.org/10.1016/j.jnoncrysol.2015.10.005
J.-H. Lin, J.-R. Lou, L.-K. Ye, B.-L. Hu, P.-C. Zhuge et al., Halogen engineering to realize regulable multipolar axes, nonlinear optical response, and piezoelectricity in plastic ferroelectrics. Inorg. Chem. 62(6), 2870–2876 (2023). https://doi.org/10.1021/acs.inorgchem.2c04295
M.C. Wingert, J. Zheng, S. Kwon, R. Chen, Thermal transport in amorphous materials: a review. Semicond. Sci. Technol. 31(11), 113003 (2016). https://doi.org/10.1088/0268-1242/31/11/113003
K. Ide, K. Nomura, H. Hosono, T. Kamiya, Electronic defects in amorphous oxide semiconductors: a review. Phys. Status Solidi A 216(5), 1800372 (2019). https://doi.org/10.1002/pssa.201800372
E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24(22), 2945–2986 (2012). https://doi.org/10.1002/adma.201103228
G.W. Shim, W. Hong, J.-H. Cha, J.H. Park, K.J. Lee et al., Tft channel materials for display applications: from amorphous silicon to transition metal dichalcogenides. Adv. Mater. 32(35), 1907166 (2020). https://doi.org/10.1002/adma.201907166
J.F. Conley, Instabilities in amorphous oxide semiconductor thin-film transistors. IEEE Trans. Device Mater. Reliab. 10(4), 460–475 (2010). https://doi.org/10.1109/TDMR.2010.2069561
K. Yim, Y. Youn, M. Lee, D. Yoo, J. Lee et al., Computational discovery of p-type transparent oxide semiconductors using hydrogen descriptor. NPJ Comput. Mater. 4, 17 (2018). https://doi.org/10.1038/s41524-018-0073-z
X. Yang, D. Lu, R. He, Y. Chen, Z. Lu et al., Van der Waals lamination for effective bottom channel modulation of oxide transistors. Nano Lett. 25(14), 5747–5753 (2025). https://doi.org/10.1021/acs.nanolett.5c00313
J.Y. Kim, H. Kim, D. Kim, H.W. Jang, Advancements of amorphous IGZO-based transistors: materials, processing, and devices. ACS Appl. Electron. Mater. 7(11), 4703–4728 (2025). https://doi.org/10.1021/acsaelm.5c00605
G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014). https://doi.org/10.1038/nnano.2014.207
M. Jag, M. Cetina, R.S. Lous, R. Grimm, J. Levinsen et al., Lifetime of Feshbach dimers in a Fermi-Fermi mixture of Li6 and K40. Phys. Rev. A 94(6), 062706 (2016). https://doi.org/10.1103/physreva.94.062706
J. Kumar, S. Birla, G. Agarwal, A review on effect of various high-k dielectric materials on the performance of FinFET device. Mater. Today Proc. 79, 297–302 (2023). https://doi.org/10.1016/j.matpr.2022.11.204
M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1(11), 16052 (2016). https://doi.org/10.1038/natrevmats.2016.52
J. Robertson, High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69(2), 327–396 (2006). https://doi.org/10.1088/0034-4885/69/2/r02
S. Wang, X. Liu, M. Xu, L. Liu, D. Yang et al., Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21(11), 1225–1239 (2022). https://doi.org/10.1038/s41563-022-01383-2
B. Wang, W. Huang, L. Chi, M. Al-Hashimi, T.J. Marks et al., High- k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118(11), 5690–5754 (2018). https://doi.org/10.1021/acs.chemrev.8b00045
J.Y. Kim, M.-J. Choi, H.W. Jang, Ferroelectric field effect transistors: progress and perspective. APL Mater. 9(2), 021102 (2021). https://doi.org/10.1063/5.0035515
S.H. Park, J.Y. Kim, J.Y. Song, H.W. Jang, Overcoming size effects in ferroelectric thin films. Adv. Phys. Res. 2(6), 2200096 (2023). https://doi.org/10.1002/apxr.202200096
M. Si, A.K. Saha, S. Gao, G. Qiu, J. Qin et al., A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2(12), 580–586 (2019). https://doi.org/10.1038/s41928-019-0338-7
M. Lanza, Bilayer HfO2/Sb2O3 gate dielectric stacks for transistors with 2D semiconducting channels. Sci. Bull. 68(22), 2684–2686 (2023). https://doi.org/10.1016/j.scib.2023.10.007
P.V. Pham, S.C. Bodepudi, K. Shehzad, Y. Liu, Y. Xu et al., 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges. Chem. Rev. 122(6), 6514–6613 (2022). https://doi.org/10.1021/acs.chemrev.1c00735
Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, Van der Waals heterostructures and devices. Nat. Rev. Mater. 1(9), 16042 (2016). https://doi.org/10.1038/natrevmats.2016.42
P. Wang, C. Jia, Y. Huang, X. Duan, Van der Waals heterostructures by design: from 1D and 2D to 3D. Matter 4(2), 552–581 (2021). https://doi.org/10.1016/j.matt.2020.12.015
A. Laturia, M.L. Van de Put, W.G. Vandenberghe, Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. NPJ 2D Mater. Appl. 2, 6 (2018). https://doi.org/10.1038/s41699-018-0050-x
S. Fukamachi, P. Solís-Fernández, K. Kawahara, D. Tanaka, T. Otake et al., Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays. Nat. Electron. 6(2), 126–136 (2023). https://doi.org/10.1038/s41928-022-00911-x
Q.A. Vu, Y.S. Shin, Y.R. Kim, V.L. Nguyen, W.T. Kang et al., Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 7, 12725 (2016). https://doi.org/10.1038/ncomms12725
Y. Ji, C. Pan, M. Zhang, S. Long, X. Lian et al., Boron nitride as two dimensional dielectric: reliability and dielectric breakdown. Appl. Phys. Lett. 108(1), 012905 (2016). https://doi.org/10.1063/1.4939131
I.G. Juma, G. Kim, D. Jariwala, S.K. Behura, Direct growth of hexagonal boron nitride on non-metallic substrates and its heterostructures with graphene. iScience 24(11), 103374 (2021). https://doi.org/10.1016/j.isci.2021.103374
T. Li, T. Tu, Y. Sun, H. Fu, J. Yu et al., A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 3(8), 473–478 (2020). https://doi.org/10.1038/s41928-020-0444-6
H. Park, J.H. Hwang, S.H. Oh, J.J. Ryu, K. Jeon et al., Direct growth of Bi2SeO5 thin films for high-k dielectrics via atomic layer deposition. ACS Nano 18(33), 22071–22079 (2024). https://doi.org/10.1021/acsnano.4c05273
J. Chen, Z. Liu, X. Dong, Z. Gao, Y. Lin et al., Vertically grown ultrathin Bi(2)SiO(5) as high-κ single-crystalline gate dielectric. Nat. Commun. 14(1), 4406 (2023). https://doi.org/10.1038/s41467-023-40123-1
C. Tan, M. Yu, J. Tang, X. Gao, Y. Yin et al., 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616(7955), 66–72 (2023). https://doi.org/10.1038/s41586-023-05797-z
J. Tang, J. Jiang, X. Gao, X. Gao, C. Zhang et al., Low-power 2D gate-all-around logics via epitaxial monolithic 3D integration. Nat. Mater. 24(4), 519–526 (2025). https://doi.org/10.1038/s41563-025-02117-w
C. Zhang, T. Tu, J. Wang, Y. Zhu, C. Tan et al., Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 22(7), 832–837 (2023). https://doi.org/10.1038/s41563-023-01502-7
J.G. Ryan, R.M. Geffken, N.R. Poulin, J.R. Paraszczak, The evolution of interconnection technology at IBM. IBM J. Res. Dev. 39(4), 371–381 (1995). https://doi.org/10.1147/rd.394.0371
B. Li, T.D. Sullivan, T.C. Lee, D. Badami, Reliability challenges for copper interconnects. Microelectron. Reliab. 44, 365 (2004). https://doi.org/10.1016/j.microrel.2003.11.004
M. Shimada, M. Moriyama, K. Ito, S. Tsukimoto, M. Murakami, Electrical resistivity of polycrystalline Cu interconnects with nano-scale linewidth. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 24(1), 190–194 (2006). https://doi.org/10.1116/1.2151910
J.H. Moon, S. Kim, T. Kim, Y.S. Jeon, Y. Kim et al., Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires. J. Mater. Sci. Technol. 105, 17–25 (2022). https://doi.org/10.1016/j.jmst.2021.06.073
L. Jablonka, L. Riekehr, Z. Zhang, S.-L. Zhang, T. Kubart, Highly conductive ultrathin Co films by high-power impulse magnetron sputtering. Appl. Phys. Lett. 112(4), 043103 (2018). https://doi.org/10.1063/1.5011109
L.G. Wen, P. Roussel, O.V. Pedreira, B. Briggs, B. Groven et al., Atomic layer deposition of ruthenium with TiN interface for sub-10 nm advanced interconnects beyond copper. ACS Appl. Mater. Interfaces 8(39), 26119–26125 (2016). https://doi.org/10.1021/acsami.6b07181
Y. Tian, Q. Yang, W. Li, Y. Gong, Q. Zhao et al., Anti-corrosion applications of 2D transition metal based layered materials. Mater. Adv. 5(7), 2655–2667 (2024). https://doi.org/10.1039/d3ma00919j
M.J. Swamynadhan, S. Ghosh, Designing multifunctional two-dimensional layered transition metal phosphorous chalcogenides. Phys. Rev. Mater. 5(5), 054409 (2021). https://doi.org/10.1103/physrevmaterials.5.054409
D.K. Lim, O. Kubo, Y. Shingaya, T. Nakayama, Y.H. Kim et al., Low resistivity of Pt silicide nanowires measured using double-scanning-probe tunneling microscope. Appl. Phys. Lett. 92(20), 203114 (2008). https://doi.org/10.1063/1.2935329
C.-I. Tsai, P.-H. Yeh, C.-Y. Wang, H.-W. Wu, U.-S. Chen et al., Cobalt silicide nanostructures: synthesis, electron transport, and field emission properties. Cryst. Growth Des. 9(10), 4514–4518 (2009). https://doi.org/10.1021/cg900531x
M. Todeschini, A. Bastos da Silva Fanta, F. Jensen, J.B. Wagner, A. Han, Influence of Ti and Cr adhesion layers on ultrathin Au films. ACS Appl. Mater. Interfaces 9(42), 37374–37385 (2017). https://doi.org/10.1021/acsami.7b10136
S.B. Eadi, H.-S. Song, H.-D. Song, J. Oh, H.-D. Lee, Improved reduction of contact resistance in NiSi/Si junction using Holmium interlayer. Microelectron. Eng. 219, 111153 (2020). https://doi.org/10.1016/j.mee.2019.111153
T. Sonehara, A. Hokazono, H. Akutsu, T. Sasaki, H. Uchida et al., Mechanism of contact resistance reduction in nickel silicide films by Pt incorporation. IEEE Trans. Electron Devices 58(11), 3778–3786 (2011). https://doi.org/10.1109/TED.2011.2166557
P. Kreiml, M. Rausch, V.L. Terziyska, H. Köstenbauer, J. Winkler et al., Improved electro-mechanical reliability of flexible systems with alloyed Mo-Ta adhesion layers. Thin Solid Films 720, 138533 (2021). https://doi.org/10.1016/j.tsf.2021.138533
G. Dong, Y. Xiong, L. Zhao, J. Feng, J. Li et al., Low contact resistivity of Bi2Te3-based films and metals interfaces enabled by orientation regulation. Adv. Mater. Interfaces 11(20), 2400106 (2024). https://doi.org/10.1002/admi.202400106
S.B. Mitta, M.S. Choi, A. Nipane, F. Ali, C. Kim et al., Electrical characterization of 2D materials-based field-effect transistors. 2D Mater. 8(1), 012002 (2021). https://doi.org/10.1088/2053-1583/abc187
J. Kang, W. Liu, K. Banerjee, High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl. Phys. Lett. 104(9), 093106 (2014). https://doi.org/10.1063/1.4866340
G. Yoo, S. Lee, B. Yoo, C. Han, S. Kim et al., Electrical contact analysis of multilayer MoS2 transistor with molybdenum source/drain electrodes. IEEE Electron Device Lett. 36(11), 1215–1218 (2015). https://doi.org/10.1109/LED.2015.2478899
Y. Li, Y. Li, Q. Zhang, X. Liu, N. Xiao et al., Structural and electronic properties of Weyl semimetal WTe2 under high pressure. J. Solid State Chem. 323, 124015 (2023). https://doi.org/10.1016/j.jssc.2023.124015
T. Holder, C.-W. Huang, P.M. Ostrovsky, Electronic properties of disordered Weyl semimetals at charge neutrality. Phys. Rev. B 96(17), 174205 (2017). https://doi.org/10.1103/physrevb.96.174205
L. Rocchino, F. Balduini, H. Schmid, A. Molinari, M. Luisier et al., Magnetoresistive-coupled transistor using the Weyl semimetal NbP. Nat. Commun. 15(1), 710 (2024). https://doi.org/10.1038/s41467-024-44961-5
E. Zhai, T. Liang, R. Liu, M. Cai, R. Li et al., The rise of semi-metal electronics. Nat. Rev. Electr. Eng. 1(8), 497–515 (2024). https://doi.org/10.1038/s44287-024-00068-z
E. Amat, T. Kauerauf, R. Rodriguez, M. Nafria, X. Aymerich et al., A comprehensive study of channel hot-carrier degradation in short channel MOSFETs with high-k dielectrics. Microelectron. Eng. 103, 144–149 (2013). https://doi.org/10.1016/j.mee.2012.10.011
S. Mahapatra, U. Sharma, A review of hot carrier degradation in n-channel MOSFETs: part I: physical mechanism. IEEE Trans. Electron Devices 67(7), 2660–2671 (2020). https://doi.org/10.1109/TED.2020.2994302
A. Elhami Khorasani, M. Griswold, T.L. Alford, A fast I–V screening measurement for TDDB assessment of ultra-thick inter-metal dielectrics. IEEE Electron Device Lett. 35(1), 117–119 (2014). https://doi.org/10.1109/LED.2013.2290538
S. Mahapatra, N. Goel, S. Desai, S. Gupta, B. Jose et al., A comparative study of different physics-based NBTI models. IEEE Trans. Electron Devices 60(3), 901–916 (2013). https://doi.org/10.1109/TED.2013.2238237
M.A. Alam, S. Mahapatra, A comprehensive model of PMOS NBTI degradation. Microelectron. Reliab. 45(1), 71–81 (2005). https://doi.org/10.1016/j.microrel.2004.03.019
J.H. Stathis, S. Zafar, The negative bias temperature instability in MOS devices: a review. Microelectron. Reliab. 46(2–4), 270–286 (2006). https://doi.org/10.1016/j.microrel.2005.08.001
J.F. Zhang, M. Duan, Z. Ji, W. Zhang, Time-dependent device-to-device variation accounting for within-device fluctuation (TVF): a new characterization technique. 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). October 28–31, 2014, Guilin, China. IEEE, (2014), pp. 1–4. https://doi.org/10.1109/ICSICT.2014.7021223
J.W. McPherson, Time dependent dielectric breakdown physics–models revisited. Microelectron. Reliab. 52(9–10), 1753–1760 (2012). https://doi.org/10.1016/j.microrel.2012.06.007
H.B. Park, B. Ju, C.Y. Kang, C. Park, C.S. Park et al., Performance and reliability improvement of HfSiON gate dielectrics using chlorine plasma treatment. Appl. Phys. Lett. 94(4), 042911 (2009). https://doi.org/10.1063/1.3078277
M.R. Visokay, J.J. Chambers, A.L.P. Rotondaro, A. Shanware, L. Colombo, Application of HfSiON as a gate dielectric material. Appl. Phys. Lett. 80(17), 3183–3185 (2002). https://doi.org/10.1063/1.1476397
Y. Tao, M. Duce, A. Erickson, Tunnel oxide passivating contact enabled by polysilicon on ultra-thin SiO2 for advanced silicon radiation detectors. Sci. Rep. 14(1), 17307 (2024). https://doi.org/10.1038/s41598-024-68368-w
S.-S. Wani, C.C. Hsu, Y.-Z. Kuo, K.M.M.D.K. Kimbulapitiya, C.-C. Chung et al., Enhanced electrical transport properties of molybdenum disulfide field-effect transistors by using alkali metal fluorides as dielectric capping layers. ACS Nano 18(16), 10776–10787 (2024). https://doi.org/10.1021/acsnano.3c11025
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
Y. Lei, T. Zhang, Y.-C. Lin, T. Granzier-Nakajima, G. Bepete et al., Graphene and beyond: recent advances in two-dimensional materials synthesis, properties, and devices. ACS Nanosci. Au 2(6), 450–485 (2022). https://doi.org/10.1021/acsnanoscienceau.2c00017
T. Knobloch, B. Uzlu, Y.Y. Illarionov, Z. Wang, M. Otto et al., Improving stability in two-dimensional transistors with amorphous gate oxides by Fermi-level tuning. Nat. Electron. 5(6), 356–366 (2022). https://doi.org/10.1038/s41928-022-00768-0
J. Pothoof, R.J.E. Westbrook, R. Giridharagopal, M.D. Breshears, D.S. Ginger, Surface passivation suppresses local ion motion in halide perovskites. J. Phys. Chem. Lett. 14(26), 6092–6098 (2023). https://doi.org/10.1021/acs.jpclett.3c01089
N.-G. Park, Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv. Energy Mater. 10(13), 1903106 (2020). https://doi.org/10.1002/aenm.201903106
W. Tress, Perovskite solar cells on the way to their radiative efficiency limit–insights into a success story of high open-circuit voltage and low recombination. Adv. Energy Mater. 7(14), 1602358 (2017). https://doi.org/10.1002/aenm.201602358
J. Han, K. Park, S. Tan, Y. Vaynzof, J. Xue et al., Perovskite solar cells. Nat. Rev. Meth. Primers 5, 3 (2025). https://doi.org/10.1038/s43586-024-00373-9
G. Mazza, A. Amaricci, M. Capone, M. Fabrizio, Field-driven mott gap collapse and resistive switch in correlated insulators. Phys. Rev. Lett. 117(17), 176401 (2016). https://doi.org/10.1103/PhysRevLett.117.176401
Y. Kalcheim, A. Camjayi, J. Del Valle, P. Salev, M. Rozenberg et al., Non-thermal resistive switching in Mott insulator nanowires. Nat. Commun. 11(1), 2985 (2020). https://doi.org/10.1038/s41467-020-16752-1
N. Suzumura, M. Ogasawara, K. Makabe, T. Kamoshima, T. Ouchi et al., Comprehensive TDDB lifetime prediction methodology for intrinsic and extrinsic failures in Cu interconnect dielectrics. Microelectron. Eng. 106, 200–204 (2013). https://doi.org/10.1016/j.mee.2013.01.015
J.F. Zhang, Z. Ji, W. Zhang, As-grown-generation (AG) model of NBTI: a shift from fitting test data to prediction. Microelectron. Reliab. 80, 109–123 (2018). https://doi.org/10.1016/j.microrel.2017.11.026
J. Raja, K. Jang, N. Balaji, W. Choi, T.T. Trinh et al., Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors. Appl. Phys. Lett. 102(8), 083505 (2013). https://doi.org/10.1063/1.4793535
S.S. Cheema, N. Shanker, L.-C. Wang, C.-H. Hsu, S.-L. Hsu et al., Ultrathin ferroic HfO(2)-ZrO(2) superlattice gate stack for advanced transistors. Nature 604(7904), 65–71 (2022). https://doi.org/10.1038/s41586-022-04425-6
L. Danial, E. Pikhay, E. Herbelin, N. Wainstein, V. Gupta et al., Two-terminal floating-gate transistors with a low-power memristive operation mode for analogue neuromorphic computing. Nat. Electron. 2(12), 596–605 (2019). https://doi.org/10.1038/s41928-019-0331-1
H. Wang, H. Guo, R. Guzman, N. JiaziLa, K. Wu et al., Ultrafast non-volatile floating-gate memory based on all-2D materials. Adv. Mater. 36(24), e2311652 (2024). https://doi.org/10.1002/adma.202311652
T. Ando, Ultimate scaling of high-κ gate dielectrics: higher-κ or interfacial layer scavenging? Materials 5(3), 478–500 (2012). https://doi.org/10.3390/ma5030478
L.-Å. Ragnarsson, T. Chiarella, M. Togo, T. Schram, P. Absil et al., Ultrathin EOT high-κ/metal gate devices for future technologies: challenges, achievements and perspectives (invited). Microelectron. Eng. 88(7), 1317–1322 (2011). https://doi.org/10.1016/j.mee.2011.03.121
Q. Yang, H.J. Cho, Z. Bian, M. Yoshimura, J. Lee, H. Jeen, J. Lin, J. Wei, B. Feng, Y. Ikuhara, H. Ohta, Solid-state electrochemical thermal transistors. Adv. Funct. Mater. 33, 70 (2023). https://doi.org/10.1038/s41699-024-00509-1
S.J. Kim, H.-J. Lee, C.-H. Lee, H.W. Jang, 2D materials-based 3D integration for neuromorphic hardware. NPJ 2D Mater. Appl. 8, 70 (2024). https://doi.org/10.1038/s41699-024-00509-1
D. Jayachandran, N.U. Sakib, S. Das, 3D integration of 2D electronics. Nat. Rev. Electr. Eng. 1(5), 300–316 (2024). https://doi.org/10.1038/s44287-024-00038-5
J.H. Lau, State-of-the-art of advanced packaging, in Chiplet design and heterogeneous integration packaging. (Springer, Singapore, 2023), p.1. https://doi.org/10.1007/978-981-19-9917-8
M.-F. Chen, F.-C. Chen, W.-C. Chiou, D.C.H. Yu, System on integrated chips (SoIC(TM) for 3D heterogeneous integration. 2019 IEEE 69th Electronic Components and Technology Conference (ECTC). May 28–31, 2019. Las Vegas, NV, USA. IEEE, (2019), pp. 594–599. https://doi.org/10.1109/ectc.2019.00095
D.B. Ingerly, K. Enamul, W. Gomes, D. Jones, K.C. Kolluru et al., Foveros: 3D integration and the use of face-to-face chip stacking for logic devices. Proc. IEEE Int. Electron Devices Meet. 2019, 466–469 (2019). https://doi.org/10.1109/IEDM19573.2019.8993637
K. Croes, J. De Messemaeker, Y. Li, W. Guo, O. Varela Pedreira et al., Reliability challenges related to TSV integration and 3-D stacking. IEEE Des. Test. 33(3), 37–45 (2016). https://doi.org/10.1109/MDAT.2015.2501302
T. Kim, S. Cho, S. Hwang, K. Lee, Y. Hong et al., Multi-stack wafer bonding demonstration utilizing Cu to Cu hybrid bonding and TSV enabling diverse 3D integration. 2021 IEEE 71st Electronic Components and Technology Conference (ECTC). June 1-July 4, 2021. San Diego, CA, USA. IEEE, (2021), pp. 415–419. https://doi.org/10.1109/ectc32696.2021.00076
M. Vinet, P. Batude, C. Fenouillet-Beranger, F. Clermidy, L. Brunet et al., Monolithic 3D integration: a powerful alternative to classical 2D scaling. 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). October 6–9, 2014. Millbrae, CA, USA. IEEE, (2014), pp. 1–3. https://doi.org/10.1109/s3s.2014.7028194
Z. Or-Bach, The monolithic 3D advantage: Monolithic 3D is far more than just an alternative to 0.7× scaling. 2013 IEEE International 3D Systems Integration Conference (3DIC). October 2–4, 2013, San Francisco, CA, USA. IEEE, (2013), pp. 1–7. https://doi.org/10.1109/3DIC.2013.6702316
M.M. Shulaker, T.F. Wu, M.M. Sabry, H. Wei, H.-S. Philip Wong et al., Monolithic 3D integration: a path from concept to reality. Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015. March 9–13, 2015. Grenoble, France. IEEE Conference Publications, (2015), pp. 1197–1202. https://doi.org/10.7873/date.2015.1111
K. Dhananjay, P. Shukla, V.F. Pavlidis, A. Coskun, E. Salman, Monolithic 3D integrated circuits: recent trends and future prospects. IEEE Trans. Circuits Syst. II Express Briefs 68(3), 837–843 (2021). https://doi.org/10.1109/TCSII.2021.3051250
S.H. Park, H.J. Lee, M.H. Park, J. Kim, H.W. Jang, Ferroelectric tunnel junctions: promise, achievements and challenges. J. Phys. D Appl. Phys. 57(25), 253002 (2024). https://doi.org/10.1088/1361-6463/ad33f5
J. Aziz, H. Kim, T. Hussain, H. Lee, T. Choi et al., Power efficient transistors with low subthreshold swing using abrupt switching devices. Nano Energy 95, 107060 (2022). https://doi.org/10.1016/j.nanoen.2022.107060
H. Yamauchi, A low vth SRAM reducing mismatch of cell-stability with an elevated cell biasing scheme. JSTS J. Semicond. Technol. Sci. 10(2), 118–129 (2010). https://doi.org/10.5573/jsts.2010.10.2.118
L. Qin, H. Tian, C. Li, Z. Xie, Y. Wei et al., Steep slope field effect transistors based on 2D materials. Adv. Electron. Mater. 10(8), 2300625 (2024). https://doi.org/10.1002/aelm.202300625
S. Kamaei, A. Saeidi, C. Gastaldi, T. Rosca, L. Capua et al., Gate energy efficiency and negative capacitance in ferroelectric 2D/2D TFET from cryogenic to high temperatures. NPJ 2D Mater. Appl. 5, 76 (2021). https://doi.org/10.1038/s41699-021-00257-6
C. Wang, K. Vafai, Heat transfer enhancement for 3D chip thermal simulation and prediction. Appl. Therm. Eng. 236, 121499 (2024). https://doi.org/10.1016/j.applthermaleng.2023.121499
B. Rakesh, K. Mahindra, M. Sai Venkat Goud, N. Arun Vignesh, T. Padma et al., Facile approach to mitigate thermal issues in 3D IC integration using effective FIN orientation. Mater. Today Proc. 33, 3085–3088 (2020). https://doi.org/10.1016/j.matpr.2020.03.663
S. Lu, K. Vafai, Optimization of the thermal performance of three-dimen