Real-Time Tunable Gas Sensing Platform Based on SnO2 Nanoparticles Activated by Blue Micro-Light-Emitting Diodes
Corresponding Author: Ho Won Jang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 261
Abstract
Micro-light-emitting diodes (μLEDs) have gained significant interest as an activation source for gas sensors owing to their advantages, including room temperature operation and low power consumption. However, despite these benefits, challenges still exist such as a limited range of detectable gases and slow response. In this study, we present a blue μLED-integrated light-activated gas sensor array based on SnO2 nanoparticles (NPs) that exhibit excellent sensitivity, tunable selectivity, and rapid detection with micro-watt level power consumption. The optimal power for μLED is observed at the highest gas response, supported by finite-difference time-domain simulation. Additionally, we first report the visible light-activated selective detection of reducing gases using noble metal-decorated SnO2 NPs. The noble metals induce catalytic interaction with reducing gases, clearly distinguishing NH3, H2, and C2H5OH. Real-time gas monitoring based on a fully hardware-implemented light-activated sensing array was demonstrated, opening up new avenues for advancements in light-activated electronic nose technologies.
Highlights:
1 Blue micro-light-emitting diodes (μLED)-integrated gas sensors were fabricated as monolithic structure by directly loading sensing materials onto the μLED.
2 SnO2 nanoparticles are activated by blue μLED and exhibit outstanding sensitivity to NO2 at μ-Watt power levels.
3 Noble metal (Au, Pd, Pt)-decorated SnO2 showed the tunable gas selectivity for 4 target gases under blue light illumination.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.Y. Park, Y. Kim, T. Kim, T.H. Eom, S.Y. Kim et al., Chemoresistive materials for electronic nose: Progress, perspectives, and challenges. InfoMat 1, 289–316 (2019). https://doi.org/10.1002/inf2.12029
- S.H. Cho, J.M. Suh, T.H. Eom, T. Kim, H.W. Jang, Colorimetric sensors for toxic and hazardous gas detection: a review. Electron. Mater. Lett. 17, 1–17 (2021). https://doi.org/10.1007/s13391-020-00254-9
- H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuat. B Chem. 192, 607–627 (2014). https://doi.org/10.1016/j.snb.2013.11.005
- R. Kumar, X. Liu, J. Zhang, M. Kuma, r Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials. Nano-Micro Lett. 12, 164 (2020). https://doi.org/10.1007/s40820-020-00503-4
- S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim, Recent advances in energy-saving chemiresistive gas sensors: a review. Nano Energy 79, 105369 (2021). https://doi.org/10.1016/j.nanoen.2020.105369
- N. Luo, C. Wang, D. Zhang, M. Guo, X. Wang et al., Ultralow detection limit MEMS hydrogen sensor based on SnO2 with oxygen vacancies. Sens. Actuat. B Chem. 354, 130982 (2022). https://doi.org/10.1016/j.snb.2021.130982
- J.M. Suh, T.H. Eom, S.H. Cho, T. Kim, H.W. Jang, Light-activated gas sensing: a perspective of integration with micro-LEDs and plasmonic nanops. Mater. Adv. 2, 827–844 (2021). https://doi.org/10.1039/d0ma00685h
- J. Wang, H. Shen, Y. Xia, S. Komarneni, Light-activated room-temperature gas sensors based on metal oxide nanostructures: a review on recent advances. Ceram. Int. 47, 7353–7368 (2021). https://doi.org/10.1016/j.ceramint.2020.11.187
- T.H. Eom, S.H. Cho, J.M. Suh, T. Kim, T.H. Lee et al., Substantially improved room temperature NO2 sensing in 2-dimensional SnS2 nanoflowers enabled by visible light illumination. J. Mater. Chem. A 9, 11168–11178 (2021). https://doi.org/10.1039/d1ta00953b
- H.-Y. Li, J.-W. Yoon, C.-S. Lee, K. Lim, J.-W. Yoon et al., Visible light assisted NO2 sensing at room temperature by CdS nanoflake array. Sens. Actuat. B Chem. 255, 2963–2970 (2018). https://doi.org/10.1016/j.snb.2017.09.118
- G. Li, Z. Sun, D. Zhang, Q. Xu, L. Meng et al., Mechanism of sensitivity enhancement of a ZnO nanofilm gas sensor by UV light illumination. ACS Sens. 4, 1577–1585 (2019). https://doi.org/10.1021/acssensors.9b00259
- H.K. Biesalski, U.C. Obermueller-Jevic, UV light, beta-carotene and human skin—beneficial and potentially harmful effects. Arch. Biochem. Biophys. 389, 1–6 (2001). https://doi.org/10.1006/abbi.2001.2313
- H. Van Loveren, W. Goettsch, W. Slob, J. Garssen, Risk assessment for the harmful effects of immunotoxic agents on the immunological resistance to infectious diseases: ultraviolet light as an example. Toxicology 119, 59–64 (1997). https://doi.org/10.1016/s0300-483x(96)03597-4
- T.H. Eom, S.H. Cho, J.M. Suh, T. Kim, J.W. Yang et al., Visible light driven ultrasensitive and selective NO2 detection in tin oxide nanops with sulfur doping assisted by l-cysteine. Small 18, e2106613 (2022). https://doi.org/10.1002/smll.202106613
- X. Li, W. Ge, P. Wang, K. Han, H. Zhao et al., Near-infrared enhanced SnO2/SnSe2 heterostructures for room-temperature NO2 detection: Experiments and DFT calculations. Sens. Actuat. B Chem. 397, 134643 (2023). https://doi.org/10.1016/j.snb.2023.134643
- T. Kim, T.H. Lee, S.Y. Park, T.H. Eom, I. Cho et al., Drastic gas sensing selectivity in 2-dimensional MoS2 nanoflakes by noble metal decoration. ACS Nano 17, 4404–4413 (2023). https://doi.org/10.1021/acsnano.2c09733
- S. Park, Y. Lim, D. Oh, J. Ahn, C. Park et al., Steering selectivity in the detection of exhaled biomarkers over oxide nanofibers dispersed with noble metals. J. Mater. Chem. A 11, 3535–3545 (2023). https://doi.org/10.1039/d2ta07226b
- H.W. Jang, S.Y. Kim, J.-L. Lee, Mechanism for ohmic contact formation of oxidized Ni/Au on p-type GaN. J. Appl. Phys. 94, 1748–1752 (2003). https://doi.org/10.1063/1.1586983
- C.-Y. Hsu, W.-H. Lan, Y.S. Wu, Effect of thermal annealing of Ni/Au ohmic contact on the leakage current of GaN based light emitting diodes. Appl. Phys. Lett. 83, 2447–2449 (2003). https://doi.org/10.1063/1.1601306
- Y.C. Lin, S.J. Chang, Y.K. Su, T.Y. Tsai, C.S. Chang et al., InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts. Solid State Electron. 47, 849–853 (2003). https://doi.org/10.1016/S0038-1101(02)00440-9
- S.H. Mohamed, SnO2 dendrites–nanowires for optoelectronic and gas sensing applications. J. Alloys Compd. 510, 119–124 (2012). https://doi.org/10.1016/j.jallcom.2011.09.006
- E.D. Palik, Handbook of optical constants of solids (Academic press; 1998).
- E. Tea, J. Huang, C. Hin, First principles study of band line up at defective metal-oxide interface: oxygen point defects at Al/SiO2 interface. J. Phys. D Appl. Phys. 49, 095304 (2016). https://doi.org/10.1088/0022-3727/49/9/095304
- H. Matsui, K. Santhi, S. Sugiyama, M. Yoshihara, S. Karuppuchamy, Visible light-induced photocatalytic activity of SiO2/carbon cluster composite materials. Ceram. Int. 40, 2169–2172 (2014). https://doi.org/10.1016/j.ceramint.2013.07.134
- J.E. Ryu, S. Park, Y. Park, S.W. Ryu, K. Hwang et al., Technological breakthroughs in chip fabrication, transfer, and color conversion for high-performance micro-LED displays. Adv. Mater. 35, e2204947 (2023). https://doi.org/10.1002/adma.202204947
- W. Tian, J. Li, Size-dependent optical-electrical characteristics of blue GaN/InGaN micro-light-emitting diodes. Appl. Opt. 59, 9225–9232 (2020). https://doi.org/10.1364/AO.405572
- R.-H. Horng, C.-X. Ye, P.-W. Chen, D. Iida, K. Ohkawa et al., Study on the effect of size on InGaN red micro-LEDs. Sci. Rep. 12, 1324 (2022). https://doi.org/10.1038/s41598-022-05370-0
- T. Mukai, M. Yamada, S. Nakamura, Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes. Jpn. J. Appl. Phys. 37, L1358 (1998). https://doi.org/10.1143/jjap.37.l1358
- S.J. Chang, W.C. Lai, Y.K. Su, J.F. Chen, C.H. Liu et al., InGaN-GaN multiquantum-well blue and green light-emitting diodes. IEEE J. Sel. Top. Quantum Electron. 8, 278–283 (2002). https://doi.org/10.1109/2944.999181
- F. Trani, M. Causà, D. Ninno, G. Cantele, V. Barone, Density functional study of oxygen vacancies at the SnO2 surface and subsurface sites. Phys. Rev. B 77, 245410 (2008). https://doi.org/10.1103/physrevb.77.245410
- N. Zamand, A.N. Pour, M.R. Housaindokht, M. Izadyar, Surface decomposition of dimethyl methylphosphonate on SnO2 nanops: role of nanop size. Prog. React. Kinet. Mech. 42, 99–110 (2017). https://doi.org/10.3184/146867817x14806858831785
- C. Kílíç, A. Zunger, Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett. 88, 095501 (2002). https://doi.org/10.1103/PhysRevLett.88.095501
- A. Das Mahapatra, D. Basak, Investigation on sub-band gap defects aided UV to NIR broad-band low-intensity photodetection by SnO2 thin film. Sens. Actuat. A Phys. 312, 112168 (2020). https://doi.org/10.1016/j.sna.2020.112168
- J. Wang, Z. Chen, Y. Liu, C.-H. Shek, C.M.L. Wu et al., Heterojunctions and optical properties of ZnO/SnO2 nanocomposites adorned with quantum dots. Sol. Energy Mater. Sol. Cells 128, 254–259 (2014). https://doi.org/10.1016/j.solmat.2014.05.038
- C. Hu, L. Chen, Y. Hu, A. Chen, L. Chen et al., Light-motivated SnO2/TiO2 heterojunctions enabling the breakthrough in energy density for lithium-ion batteries. Adv. Mater. 33, e2103558 (2021). https://doi.org/10.1002/adma.202103558
- J. Wang, H. Li, S. Meng, X. Ye, X. Fu et al., Controlled synthesis of Sn-based oxides via a hydrothermal method and their visible light photocatalytic performances. RSC Adv. 7, 27024–27032 (2017). https://doi.org/10.1039/C7RA04041E
- W. Dong, J. Xu, C. Wang, Y. Lu, X. Liu et al., A robust and conductive black tin oxide nanostructure makes efficient lithium-ion batteries possible. Adv. Mater. 29, 1700136 (2017). https://doi.org/10.1002/adma.201700136
- M. Fondell, M. Gorgoi, M. Boman, A. Lindblad, An HAXPES study of Sn, SnS, SnO and SnO2. J. Electron Spectrosc. Relat. Phenom. 195, 195–199 (2014). https://doi.org/10.1016/j.elspec.2014.07.012
- M. Karmaoui, A.B. Jorge, P.F. McMillan, A.E. Aliev, R.C. Pullar et al., One-step synthesis, structure, and band gap properties of SnO2 nanops made by a low temperature nonaqueous sol-gel technique. ACS Omega 3, 13227–13238 (2018). https://doi.org/10.1021/acsomega.8b02122
- Y. Porte, R. Maller, H. Faber, H.N. AlShareef, T.D. Anthopoulos et al., Exploring and controlling intrinsic defect formation in SnO2 thin films. J. Mater. Chem. C 4, 758–765 (2016). https://doi.org/10.1039/c5tc03520a
- S. Deepa, K. Prasanna Kumari, B. Thomas, Contribution of oxygen-vacancy defect-types in enhanced CO2 sensing of nanoparticulate Zn-doped SnO2 films. Ceram. Int. 43, 17128–17141 (2017). https://doi.org/10.1016/j.ceramint.2017.09.134
- M. Egashira, M. Nakashima, S. Kawasumi, T. Selyama, Temperature programmed desorption study of water adsorbed on metal oxides. 2. Tin oxide surfaces. J. Phys. Chem. 85, 4125–4130 (1981). https://doi.org/10.1021/j150626a034
- E. Wongrat, T. Nuengnit, R. Panyathip, N. Chanlek, N. Hongsith et al., Highly selective room temperature ammonia sensors based on ZnO nanostructures decorated with graphene quantum dots (GQDs). Sens. Actuat. B Chem. 326, 128983 (2021). https://doi.org/10.1016/j.snb.2020.128983
- P. Srinivasan, D. Prakalya, B.G. Jeyaprakash, UV-activated ZnO/CdO n-n isotype heterostructure as breath sensor. J. Alloys Compd. 819, 152985 (2020). https://doi.org/10.1016/j.jallcom.2019.152985
- Q. Geng, X. Lin, R. Si, X. Chen, W. Dai et al., The correlation between the ethylene response and its oxidation over TiO2 under UV irradiation. Sens. Actuat. B Chem. 174, 449–457 (2012). https://doi.org/10.1016/j.snb.2012.08.062
- H. Dong, L.-X. Zhang, H. Xu, Y.-Y. Yin, Y.-F. Liu et al., A highly efficient humidity sensor based on lead (II) coordination polymer via in situ decarboxylation and hydrolysis synthesis. Rare Met. 41, 1652–1660 (2022). https://doi.org/10.1007/s12598-021-01913-y
- Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3, 274–295 (2005). https://doi.org/10.1166/sl.2005.045
- J.M. Suh, T.H. Lee, K. Hong, Y.G. Song, S.H. Cho et al., Extremely sensitive and selective NO2 detection at relative humidity 90% in 2-dimensional tin sulfides/SnO2 nanorod heterostructure. Sens. Actuat. B Chem. 369, 132319 (2022). https://doi.org/10.1016/j.snb.2022.132319
- I. Cho, Y.C. Sim, K. Lee, M. Cho, J. Park et al., Nanowatt-level photoactivated gas sensor based on fully-integrated visible MicroLED and plasmonic nanomaterials. Small 19, e2207165 (2023). https://doi.org/10.1002/smll.202207165
- I. Cho, Y.C. Sim, M. Cho, Y.H. Cho, I. Park, Monolithic micro light-emitting diode/metal oxide nanowire gas sensor with microwatt-level power consumption. ACS Sens. 5, 563–570 (2020). https://doi.org/10.1021/acssensors.9b02487
- D. Cho, J.M. Suh, S.H. Nam, S.Y. Park, M. Park et al., Optically activated 3D thin-shell TiO2 for super-sensitive chemoresistive responses: toward visible light activation. Adv. Sci. 8, 2001883 (2020). https://doi.org/10.1002/advs.202001883
- E. Espid, F. Taghipour, Development of highly sensitive ZnO/In2O3 composite gas sensor activated by UV-LED. Sens. Actuat. B Chem. 241, 828–839 (2017). https://doi.org/10.1016/j.snb.2016.10.129
- E. Espid, A.S. Noce, F. Taghipour, The effect of radiation parameters on the performance of photo-activated gas sensors. J. Photochem. Photobiol. A Chem. 374, 95–105 (2019). https://doi.org/10.1016/j.jphotochem.2019.01.038
- Q. Zhang, G. Xie, M. Xu, Y. Su, H. Tai et al., Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanops. Sens. Actuat. B Chem. 259, 269–281 (2018). https://doi.org/10.1016/j.snb.2017.12.052
- M. Sokolsky-Papkov, A. Kabanov, Synthesis of well-defined gold nanops using pluronic: the role of radicals and surfactants in nanops formation. Polymers 11, 1553 (2019). https://doi.org/10.3390/polym11101553
- P. Prasanthan, N. Kishore, Self-assemblies of pluronic micelles in partitioning of anticancer drugs and effectiveness of this system towards target protein. RSC Adv. 11, 22057–22069 (2021). https://doi.org/10.1039/d1ra03770f
- Z. Wu, C. Guo, S. Liang, H. Zhang, L. Wang et al., A pluronic F127 coating strategy to produce stable up-conversion NaYF4: Yb, Er(Tm) nanops in culture media for bioimaging. J. Mater. Chem. 22, 18596–18602 (2012). https://doi.org/10.1039/C2JM33626J
- S. Chen, C. Guo, G.-H. Hu, J. Wang, J.-H. Ma et al., Effect of hydrophobicity inside PEO-PPO-PEO block copolymer micelles on the stabilization of gold nanops: experiments. Langmuir 22, 9704–9711 (2006). https://doi.org/10.1021/la061093m
- E. Fudo, A. Tanaka, H. Kominami, AuOx, Surface oxide layer as a hole-transferring cocatalyst for water oxidation over au nanop-decorated TiO2 photocatalysts. ACS Appl. Nano Mater. 5, 8982–8990 (2022). https://doi.org/10.1021/acsanm.2c01186
- N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001). https://doi.org/10.1023/A:1014405811371
- L.L. Fields, J.P. Zheng, Y. Cheng, P. Xiong, Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt. Appl. Phys. Lett. 88, 263102 (2006). https://doi.org/10.1063/1.2217710
- A.A. Abokifa, K. Haddad, J. Fortner, C.S. Lo, P. Biswas, Sensing mechanism of ethanol and acetone at room temperature by SnO2 nano-columns synthesized by aerosol routes: theoretical calculations compared to experimental results. J. Mater. Chem. A 6, 2053–2066 (2018). https://doi.org/10.1039/C7TA09535J
- L. Chen, H. Shi, C. Ye, X. Xia, Y. Li et al., Enhanced ethanol-sensing characteristics of Au decorated In-doped SnO2 porous nanotubes at low working temperature. Sens. Actuat. B Chem. 375, 132864 (2023). https://doi.org/10.1016/j.snb.2022.132864
- L.-Y. Zhu, L.-X. Ou, L.-W. Mao, X.-Y. Wu, Y.-P. Liu et al., Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview. Nano-Micro Lett. 15, 89 (2023). https://doi.org/10.1007/s40820-023-01047-z
- A. Mirzaei, H.R. Yousefi, F. Falsafi, M. Bonyani, J.-H. Lee et al., An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas. Int. J. Hydrog. Energy 44, 20552–20571 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.180
- C.-C. Zhao, J.-B. Eun, Isolation and identification of hyper-ammonia-producing bacteria from commercial fermented skates (Raja kenojei). J. Food Sci. Technol. 55, 5082–5090 (2018). https://doi.org/10.1007/s13197-018-3447-9
- T. Mogi, D. Kim, H. Shiina, S. Horiguchi, Self-ignition and explosion during discharge of high-pressure hydrogen. J. Loss Prev. Process Ind. 21, 199–204 (2008). https://doi.org/10.1016/j.jlp.2007.06.008
References
S.Y. Park, Y. Kim, T. Kim, T.H. Eom, S.Y. Kim et al., Chemoresistive materials for electronic nose: Progress, perspectives, and challenges. InfoMat 1, 289–316 (2019). https://doi.org/10.1002/inf2.12029
S.H. Cho, J.M. Suh, T.H. Eom, T. Kim, H.W. Jang, Colorimetric sensors for toxic and hazardous gas detection: a review. Electron. Mater. Lett. 17, 1–17 (2021). https://doi.org/10.1007/s13391-020-00254-9
H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuat. B Chem. 192, 607–627 (2014). https://doi.org/10.1016/j.snb.2013.11.005
R. Kumar, X. Liu, J. Zhang, M. Kuma, r Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials. Nano-Micro Lett. 12, 164 (2020). https://doi.org/10.1007/s40820-020-00503-4
S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim, Recent advances in energy-saving chemiresistive gas sensors: a review. Nano Energy 79, 105369 (2021). https://doi.org/10.1016/j.nanoen.2020.105369
N. Luo, C. Wang, D. Zhang, M. Guo, X. Wang et al., Ultralow detection limit MEMS hydrogen sensor based on SnO2 with oxygen vacancies. Sens. Actuat. B Chem. 354, 130982 (2022). https://doi.org/10.1016/j.snb.2021.130982
J.M. Suh, T.H. Eom, S.H. Cho, T. Kim, H.W. Jang, Light-activated gas sensing: a perspective of integration with micro-LEDs and plasmonic nanops. Mater. Adv. 2, 827–844 (2021). https://doi.org/10.1039/d0ma00685h
J. Wang, H. Shen, Y. Xia, S. Komarneni, Light-activated room-temperature gas sensors based on metal oxide nanostructures: a review on recent advances. Ceram. Int. 47, 7353–7368 (2021). https://doi.org/10.1016/j.ceramint.2020.11.187
T.H. Eom, S.H. Cho, J.M. Suh, T. Kim, T.H. Lee et al., Substantially improved room temperature NO2 sensing in 2-dimensional SnS2 nanoflowers enabled by visible light illumination. J. Mater. Chem. A 9, 11168–11178 (2021). https://doi.org/10.1039/d1ta00953b
H.-Y. Li, J.-W. Yoon, C.-S. Lee, K. Lim, J.-W. Yoon et al., Visible light assisted NO2 sensing at room temperature by CdS nanoflake array. Sens. Actuat. B Chem. 255, 2963–2970 (2018). https://doi.org/10.1016/j.snb.2017.09.118
G. Li, Z. Sun, D. Zhang, Q. Xu, L. Meng et al., Mechanism of sensitivity enhancement of a ZnO nanofilm gas sensor by UV light illumination. ACS Sens. 4, 1577–1585 (2019). https://doi.org/10.1021/acssensors.9b00259
H.K. Biesalski, U.C. Obermueller-Jevic, UV light, beta-carotene and human skin—beneficial and potentially harmful effects. Arch. Biochem. Biophys. 389, 1–6 (2001). https://doi.org/10.1006/abbi.2001.2313
H. Van Loveren, W. Goettsch, W. Slob, J. Garssen, Risk assessment for the harmful effects of immunotoxic agents on the immunological resistance to infectious diseases: ultraviolet light as an example. Toxicology 119, 59–64 (1997). https://doi.org/10.1016/s0300-483x(96)03597-4
T.H. Eom, S.H. Cho, J.M. Suh, T. Kim, J.W. Yang et al., Visible light driven ultrasensitive and selective NO2 detection in tin oxide nanops with sulfur doping assisted by l-cysteine. Small 18, e2106613 (2022). https://doi.org/10.1002/smll.202106613
X. Li, W. Ge, P. Wang, K. Han, H. Zhao et al., Near-infrared enhanced SnO2/SnSe2 heterostructures for room-temperature NO2 detection: Experiments and DFT calculations. Sens. Actuat. B Chem. 397, 134643 (2023). https://doi.org/10.1016/j.snb.2023.134643
T. Kim, T.H. Lee, S.Y. Park, T.H. Eom, I. Cho et al., Drastic gas sensing selectivity in 2-dimensional MoS2 nanoflakes by noble metal decoration. ACS Nano 17, 4404–4413 (2023). https://doi.org/10.1021/acsnano.2c09733
S. Park, Y. Lim, D. Oh, J. Ahn, C. Park et al., Steering selectivity in the detection of exhaled biomarkers over oxide nanofibers dispersed with noble metals. J. Mater. Chem. A 11, 3535–3545 (2023). https://doi.org/10.1039/d2ta07226b
H.W. Jang, S.Y. Kim, J.-L. Lee, Mechanism for ohmic contact formation of oxidized Ni/Au on p-type GaN. J. Appl. Phys. 94, 1748–1752 (2003). https://doi.org/10.1063/1.1586983
C.-Y. Hsu, W.-H. Lan, Y.S. Wu, Effect of thermal annealing of Ni/Au ohmic contact on the leakage current of GaN based light emitting diodes. Appl. Phys. Lett. 83, 2447–2449 (2003). https://doi.org/10.1063/1.1601306
Y.C. Lin, S.J. Chang, Y.K. Su, T.Y. Tsai, C.S. Chang et al., InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts. Solid State Electron. 47, 849–853 (2003). https://doi.org/10.1016/S0038-1101(02)00440-9
S.H. Mohamed, SnO2 dendrites–nanowires for optoelectronic and gas sensing applications. J. Alloys Compd. 510, 119–124 (2012). https://doi.org/10.1016/j.jallcom.2011.09.006
E.D. Palik, Handbook of optical constants of solids (Academic press; 1998).
E. Tea, J. Huang, C. Hin, First principles study of band line up at defective metal-oxide interface: oxygen point defects at Al/SiO2 interface. J. Phys. D Appl. Phys. 49, 095304 (2016). https://doi.org/10.1088/0022-3727/49/9/095304
H. Matsui, K. Santhi, S. Sugiyama, M. Yoshihara, S. Karuppuchamy, Visible light-induced photocatalytic activity of SiO2/carbon cluster composite materials. Ceram. Int. 40, 2169–2172 (2014). https://doi.org/10.1016/j.ceramint.2013.07.134
J.E. Ryu, S. Park, Y. Park, S.W. Ryu, K. Hwang et al., Technological breakthroughs in chip fabrication, transfer, and color conversion for high-performance micro-LED displays. Adv. Mater. 35, e2204947 (2023). https://doi.org/10.1002/adma.202204947
W. Tian, J. Li, Size-dependent optical-electrical characteristics of blue GaN/InGaN micro-light-emitting diodes. Appl. Opt. 59, 9225–9232 (2020). https://doi.org/10.1364/AO.405572
R.-H. Horng, C.-X. Ye, P.-W. Chen, D. Iida, K. Ohkawa et al., Study on the effect of size on InGaN red micro-LEDs. Sci. Rep. 12, 1324 (2022). https://doi.org/10.1038/s41598-022-05370-0
T. Mukai, M. Yamada, S. Nakamura, Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes. Jpn. J. Appl. Phys. 37, L1358 (1998). https://doi.org/10.1143/jjap.37.l1358
S.J. Chang, W.C. Lai, Y.K. Su, J.F. Chen, C.H. Liu et al., InGaN-GaN multiquantum-well blue and green light-emitting diodes. IEEE J. Sel. Top. Quantum Electron. 8, 278–283 (2002). https://doi.org/10.1109/2944.999181
F. Trani, M. Causà, D. Ninno, G. Cantele, V. Barone, Density functional study of oxygen vacancies at the SnO2 surface and subsurface sites. Phys. Rev. B 77, 245410 (2008). https://doi.org/10.1103/physrevb.77.245410
N. Zamand, A.N. Pour, M.R. Housaindokht, M. Izadyar, Surface decomposition of dimethyl methylphosphonate on SnO2 nanops: role of nanop size. Prog. React. Kinet. Mech. 42, 99–110 (2017). https://doi.org/10.3184/146867817x14806858831785
C. Kílíç, A. Zunger, Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett. 88, 095501 (2002). https://doi.org/10.1103/PhysRevLett.88.095501
A. Das Mahapatra, D. Basak, Investigation on sub-band gap defects aided UV to NIR broad-band low-intensity photodetection by SnO2 thin film. Sens. Actuat. A Phys. 312, 112168 (2020). https://doi.org/10.1016/j.sna.2020.112168
J. Wang, Z. Chen, Y. Liu, C.-H. Shek, C.M.L. Wu et al., Heterojunctions and optical properties of ZnO/SnO2 nanocomposites adorned with quantum dots. Sol. Energy Mater. Sol. Cells 128, 254–259 (2014). https://doi.org/10.1016/j.solmat.2014.05.038
C. Hu, L. Chen, Y. Hu, A. Chen, L. Chen et al., Light-motivated SnO2/TiO2 heterojunctions enabling the breakthrough in energy density for lithium-ion batteries. Adv. Mater. 33, e2103558 (2021). https://doi.org/10.1002/adma.202103558
J. Wang, H. Li, S. Meng, X. Ye, X. Fu et al., Controlled synthesis of Sn-based oxides via a hydrothermal method and their visible light photocatalytic performances. RSC Adv. 7, 27024–27032 (2017). https://doi.org/10.1039/C7RA04041E
W. Dong, J. Xu, C. Wang, Y. Lu, X. Liu et al., A robust and conductive black tin oxide nanostructure makes efficient lithium-ion batteries possible. Adv. Mater. 29, 1700136 (2017). https://doi.org/10.1002/adma.201700136
M. Fondell, M. Gorgoi, M. Boman, A. Lindblad, An HAXPES study of Sn, SnS, SnO and SnO2. J. Electron Spectrosc. Relat. Phenom. 195, 195–199 (2014). https://doi.org/10.1016/j.elspec.2014.07.012
M. Karmaoui, A.B. Jorge, P.F. McMillan, A.E. Aliev, R.C. Pullar et al., One-step synthesis, structure, and band gap properties of SnO2 nanops made by a low temperature nonaqueous sol-gel technique. ACS Omega 3, 13227–13238 (2018). https://doi.org/10.1021/acsomega.8b02122
Y. Porte, R. Maller, H. Faber, H.N. AlShareef, T.D. Anthopoulos et al., Exploring and controlling intrinsic defect formation in SnO2 thin films. J. Mater. Chem. C 4, 758–765 (2016). https://doi.org/10.1039/c5tc03520a
S. Deepa, K. Prasanna Kumari, B. Thomas, Contribution of oxygen-vacancy defect-types in enhanced CO2 sensing of nanoparticulate Zn-doped SnO2 films. Ceram. Int. 43, 17128–17141 (2017). https://doi.org/10.1016/j.ceramint.2017.09.134
M. Egashira, M. Nakashima, S. Kawasumi, T. Selyama, Temperature programmed desorption study of water adsorbed on metal oxides. 2. Tin oxide surfaces. J. Phys. Chem. 85, 4125–4130 (1981). https://doi.org/10.1021/j150626a034
E. Wongrat, T. Nuengnit, R. Panyathip, N. Chanlek, N. Hongsith et al., Highly selective room temperature ammonia sensors based on ZnO nanostructures decorated with graphene quantum dots (GQDs). Sens. Actuat. B Chem. 326, 128983 (2021). https://doi.org/10.1016/j.snb.2020.128983
P. Srinivasan, D. Prakalya, B.G. Jeyaprakash, UV-activated ZnO/CdO n-n isotype heterostructure as breath sensor. J. Alloys Compd. 819, 152985 (2020). https://doi.org/10.1016/j.jallcom.2019.152985
Q. Geng, X. Lin, R. Si, X. Chen, W. Dai et al., The correlation between the ethylene response and its oxidation over TiO2 under UV irradiation. Sens. Actuat. B Chem. 174, 449–457 (2012). https://doi.org/10.1016/j.snb.2012.08.062
H. Dong, L.-X. Zhang, H. Xu, Y.-Y. Yin, Y.-F. Liu et al., A highly efficient humidity sensor based on lead (II) coordination polymer via in situ decarboxylation and hydrolysis synthesis. Rare Met. 41, 1652–1660 (2022). https://doi.org/10.1007/s12598-021-01913-y
Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3, 274–295 (2005). https://doi.org/10.1166/sl.2005.045
J.M. Suh, T.H. Lee, K. Hong, Y.G. Song, S.H. Cho et al., Extremely sensitive and selective NO2 detection at relative humidity 90% in 2-dimensional tin sulfides/SnO2 nanorod heterostructure. Sens. Actuat. B Chem. 369, 132319 (2022). https://doi.org/10.1016/j.snb.2022.132319
I. Cho, Y.C. Sim, K. Lee, M. Cho, J. Park et al., Nanowatt-level photoactivated gas sensor based on fully-integrated visible MicroLED and plasmonic nanomaterials. Small 19, e2207165 (2023). https://doi.org/10.1002/smll.202207165
I. Cho, Y.C. Sim, M. Cho, Y.H. Cho, I. Park, Monolithic micro light-emitting diode/metal oxide nanowire gas sensor with microwatt-level power consumption. ACS Sens. 5, 563–570 (2020). https://doi.org/10.1021/acssensors.9b02487
D. Cho, J.M. Suh, S.H. Nam, S.Y. Park, M. Park et al., Optically activated 3D thin-shell TiO2 for super-sensitive chemoresistive responses: toward visible light activation. Adv. Sci. 8, 2001883 (2020). https://doi.org/10.1002/advs.202001883
E. Espid, F. Taghipour, Development of highly sensitive ZnO/In2O3 composite gas sensor activated by UV-LED. Sens. Actuat. B Chem. 241, 828–839 (2017). https://doi.org/10.1016/j.snb.2016.10.129
E. Espid, A.S. Noce, F. Taghipour, The effect of radiation parameters on the performance of photo-activated gas sensors. J. Photochem. Photobiol. A Chem. 374, 95–105 (2019). https://doi.org/10.1016/j.jphotochem.2019.01.038
Q. Zhang, G. Xie, M. Xu, Y. Su, H. Tai et al., Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanops. Sens. Actuat. B Chem. 259, 269–281 (2018). https://doi.org/10.1016/j.snb.2017.12.052
M. Sokolsky-Papkov, A. Kabanov, Synthesis of well-defined gold nanops using pluronic: the role of radicals and surfactants in nanops formation. Polymers 11, 1553 (2019). https://doi.org/10.3390/polym11101553
P. Prasanthan, N. Kishore, Self-assemblies of pluronic micelles in partitioning of anticancer drugs and effectiveness of this system towards target protein. RSC Adv. 11, 22057–22069 (2021). https://doi.org/10.1039/d1ra03770f
Z. Wu, C. Guo, S. Liang, H. Zhang, L. Wang et al., A pluronic F127 coating strategy to produce stable up-conversion NaYF4: Yb, Er(Tm) nanops in culture media for bioimaging. J. Mater. Chem. 22, 18596–18602 (2012). https://doi.org/10.1039/C2JM33626J
S. Chen, C. Guo, G.-H. Hu, J. Wang, J.-H. Ma et al., Effect of hydrophobicity inside PEO-PPO-PEO block copolymer micelles on the stabilization of gold nanops: experiments. Langmuir 22, 9704–9711 (2006). https://doi.org/10.1021/la061093m
E. Fudo, A. Tanaka, H. Kominami, AuOx, Surface oxide layer as a hole-transferring cocatalyst for water oxidation over au nanop-decorated TiO2 photocatalysts. ACS Appl. Nano Mater. 5, 8982–8990 (2022). https://doi.org/10.1021/acsanm.2c01186
N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001). https://doi.org/10.1023/A:1014405811371
L.L. Fields, J.P. Zheng, Y. Cheng, P. Xiong, Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt. Appl. Phys. Lett. 88, 263102 (2006). https://doi.org/10.1063/1.2217710
A.A. Abokifa, K. Haddad, J. Fortner, C.S. Lo, P. Biswas, Sensing mechanism of ethanol and acetone at room temperature by SnO2 nano-columns synthesized by aerosol routes: theoretical calculations compared to experimental results. J. Mater. Chem. A 6, 2053–2066 (2018). https://doi.org/10.1039/C7TA09535J
L. Chen, H. Shi, C. Ye, X. Xia, Y. Li et al., Enhanced ethanol-sensing characteristics of Au decorated In-doped SnO2 porous nanotubes at low working temperature. Sens. Actuat. B Chem. 375, 132864 (2023). https://doi.org/10.1016/j.snb.2022.132864
L.-Y. Zhu, L.-X. Ou, L.-W. Mao, X.-Y. Wu, Y.-P. Liu et al., Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview. Nano-Micro Lett. 15, 89 (2023). https://doi.org/10.1007/s40820-023-01047-z
A. Mirzaei, H.R. Yousefi, F. Falsafi, M. Bonyani, J.-H. Lee et al., An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas. Int. J. Hydrog. Energy 44, 20552–20571 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.180
C.-C. Zhao, J.-B. Eun, Isolation and identification of hyper-ammonia-producing bacteria from commercial fermented skates (Raja kenojei). J. Food Sci. Technol. 55, 5082–5090 (2018). https://doi.org/10.1007/s13197-018-3447-9
T. Mogi, D. Kim, H. Shiina, S. Horiguchi, Self-ignition and explosion during discharge of high-pressure hydrogen. J. Loss Prev. Process Ind. 21, 199–204 (2008). https://doi.org/10.1016/j.jlp.2007.06.008