Crystal Facet Engineering of TiO2 Nanostructures for Enhancing Photoelectrochemical Water Splitting with BiVO4 Nanodots
Corresponding Author: Ho Won Jang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 48
Abstract
Although bismuth vanadate (BiVO4) has been promising as photoanode material for photoelectrochemical water splitting, its charge recombination issue by short charge diffusion length has led to various studies about heterostructure photoanodes. As a hole blocking layer of BiVO4, titanium dioxide (TiO2) has been considered unsuitable because of its relatively positive valence band edge and low electrical conductivity. Herein, a crystal facet engineering of TiO2 nanostructures is proposed to control band structures for the hole blocking layer of BiVO4 nanodots. We design two types of TiO2 nanostructures, which are nanorods (NRs) and nanoflowers (NFs) with different (001) and (110) crystal facets, respectively, and fabricate BiVO4/TiO2 heterostructure photoanodes. The BiVO4/TiO2 NFs showed 4.8 times higher photocurrent density than the BiVO4/TiO2 NRs. Transient decay time analysis and time-resolved photoluminescence reveal the enhancement is attributed to the reduced charge recombination, which is originated from the formation of type II band alignment between BiVO4 nanodots and TiO2 NFs. This work provides not only new insights into the interplay between crystal facets and band structures but also important steps for the design of highly efficient photoelectrodes.
Highlights:
1 Two types of BiVO4/TiO2 heterostructure photoanodes comprising TiO2 nanorods (NRs) and TiO2 nanoflowers (NFs) with different (001) and (110) crystal facets, respectively, were designed.
2 The higher photoactivity of BiVO4/TiO2 NFs than BiVO4/TiO2 NRs was attributed to the improvement of charge separation by the TiO2 NFs.
3 The formation of type II band alignment between BiVO4 nanodots and TiO2 NFs expedited electron transport and reduced charge recombination.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang, J. Tang, Photoelectrochemical devices for solar water splitting-materials and challenges. Chem. Soc. Rev. 46, 4645–4660 (2017). https://doi.org/10.1039/c6cs00306k
- I.S. Cho, Z. Chen, A.J. Forman, D.R. Kim, P.M. Rao et al., Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11, 4978–4984 (2011). https://doi.org/10.1021/nl2029392
- J.W. Yang, S.H. Ahn, H.W. Jang, Crucial role of heterostructures in highly advanced water splitting photoelectrodes. Curr. Opin. Green Sustain. Chem. 29, 100454 (2021). https://doi.org/10.1016/j.cogsc.2021.100454
- K. Sivula, F. le Formal, M. Grätzel, WO3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem. Mater. 21, 2862–2867 (2009). https://doi.org/10.1021/cm900565a
- M.G. Lee, D.H. Kim, W. Sohn, C.W. Moon, H. Park et al., Conformally coated BiVO4 nanodots on porosity-controlled WO3 nanorods as highly efficient type II heterojunction photoanodes for water oxidation. Nano Energy 28, 250–260 (2016). https://doi.org/10.1016/j.nanoen.2016.08.046
- J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11, 1928–1933 (2011). https://doi.org/10.1021/nl2000743
- X. Shi, I.Y. Choi, K. Zhang, J. Kwon, D.Y. Kim et al., Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat. Commun. 5, 4775 (2014). https://doi.org/10.1038/ncomms5775
- A. Kargar, S.J. Kim, P. Allameh, C. Choi, N. Park et al., p-Si/SnO2/Fe2O3 Core/Shell/Shell nanowire photocathodes for neutral pH water splitting. Adv. Funct. Mater. 25, 2609–2615 (2015). https://doi.org/10.1002/adfm.201404571
- L. Wang, A. Palacios-Padrós, R. Kirchgeorg, A. Tighineanu, P. Schmuki, Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:SnO2 host-guest system. Chemsuschem 7, 421–424 (2014). https://doi.org/10.1002/cssc.201301120
- S. Shen, S.A. Lindley, X. Chen, J.Z. Zhang, Hematite heterostructures for photoelectrochemical water splitting: Rational materials design and charge carrier dynamics. Energy Environ. Sci. 9, 2744–2775 (2016). https://doi.org/10.1039/c6ee01845a
- B.R. Lee, H.W. Jang, β-In2S3 as water splitting photoanodes: promise and challenges. Electron. Mater. Lett. 17, 119–135 (2021). https://doi.org/10.1007/s13391-020-00266-5
- S. Byun, B. Kim, S. Jeon, B. Shin, Effects of a SnO2 hole blocking layer in a BiVO4-based photoanode on photoelectrocatalytic water oxidation. J. Mater. Chem. A 5, 6905–6913 (2017). https://doi.org/10.1039/c7ta00806f
- J.W. Yang, I.J. Park, S.A. Lee, M.G. Lee, T.H. Lee et al., Near-complete charge separation in tailored BiVO4-based heterostructure photoanodes toward artificial leaf. Appl. Catal. B: Environ. 293, 120217 (2021). https://doi.org/10.1016/j.apcatb.2021.120217
- J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee et al., TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cen. Sci. 2, 80–88 (2016). https://doi.org/10.1021/acscentsci.5b00402
- Z. Yu, H. Liu, M. Zhu, Y. Li, W. Li, Interfacial charge transport in 1D TiO2 based photoelectrodes for photoelectrochemical water splitting. Small 17, 1903378 (2021). https://doi.org/10.1002/smll.201903378
- O. Monfort, D. Raptis, L. Satrapinskyy, T. Roch, G. Plesch et al., Production of hydrogen by water splitting in a photoelectrochemical cell using a BiVO4/TiO2 layered photoanode. Electrochim. Acta 251, 244–249 (2017). https://doi.org/10.1016/j.electacta.2017.08.125
- X. Zhang, B. Zhang, K. Cao, J. Brillet, J. Chen et al., A perovskite solar cell-TiO2@BiVO4 photoelectrochemical system for direct solar water splitting. J. Mater. Chem. A 3, 21630–21636 (2015). https://doi.org/10.1039/c5ta05838d
- D.M. Andoshe, K. Yim, W. Sohn, C. Kim, T.L. Kim et al., One-pot synthesis of sulfur and nitrogen codoped titanium dioxide nanorod arrays for superior photoelectrochemical water oxidation. Appl. Catal. B: Environ. 234, 213–222 (2018). https://doi.org/10.1016/j.apcatb.2018.04.045
- S. Wang, G. Liu, L. Wang, Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 119, 5192–5247 (2019). https://doi.org/10.1021/acs.chemrev.8b00584
- B. Fu, Z. Wu, S. Cao, K. Guo, L. Piao, Effect of aspect ratios of rutile TiO2 nanorods on overall photocatalytic water splitting performance. Nanoscale 12, 4895–4902 (2020). https://doi.org/10.1039/c9nr10870j
- C. Phawa, S. Prayoonpokarach, K. Sinthiptharakoon, P. Chakthranont, W. Sangkhun et al., Effects of matching facet pairs of TiO2 on photoelectrochemical water splitting behaviors. ChemCatChem 12, 2116–2124 (2020). https://doi.org/10.1002/cctc.201901857
- L. Wang, J. Ge, A. Wang, M. Deng, X. Wang et al., Designing p-type semiconductor-metal hybrid structures for improved photocatalysis. Angew. Chem. 126, 5207–5211 (2014). https://doi.org/10.1002/ange.201310635
- M.G. Lee, K. Jin, K.C. Kwon, W. Sohn, H. Park et al., Efficient water splitting cascade photoanodes with ligand-engineered MnO cocatalysts. Adv. Sci. 5, 1800727 (2018). https://doi.org/10.1002/advs.201800727
- J.P. Jalava, V.M. Taavitsainen, R.J. Lamminmäki, M. Lindholm, S. Auvinen et al., Modeling TiO2’s refractive index function from bulk to nanoparticles. J. Quant. Spec. Radiat. Transf. 167, 105–118 (2015). https://doi.org/10.1016/j.jqsrt.2015.08.007
- J.M. Ball, S.D. Stranks, M.T. Hörantner, S. Hüttner, W. Zhang et al., Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ. Sci. 8, 602–609 (2015). https://doi.org/10.1039/c4ee03224a
- S.S.M. Bhat, S.A. Lee, T.H. Lee, C. Kim, J. Park et al., All-solution-processed BiVO4/TiO2 photoanode with NiCo2O4 nanofiber cocatalyst for enhanced solar water oxidation. ACS Appl. Energy Mater. 3, 5646–5656 (2020). https://doi.org/10.1021/acsaem.0c00607
- S.P. Hong, J. Park, S.S.M. Bhat, T.H. Lee, S.A. Lee et al., Comprehensive study on the morphology control of TiO2 nanorods on foreign substrates by the hydrothermal method. Cryst. Growth Des. 18, 6504–6512 (2018). https://doi.org/10.1021/acs.cgd.8b00609
- S.S. Mali, C.A. Betty, P.N. Bhosale, P.S. Patil, C.K. Hong, From nanocorals to nanorods to nanoflowers nanoarchitecture for efficient dye-sensitized solar cells at relatively low film thickness: all hydrothermal process. Sci. Rep. 4, 5451 (2014). https://doi.org/10.1038/srep05451
- J. Harris, R. Silk, M. Smith, Y. Dong, W.T. Chen et al., Hierarchical TiO2 nanoflower photocatalysts with remarkable activity for aqueous methylene blue photo-oxidation. ACS Omega 5, 18919–18934 (2020). https://doi.org/10.1021/acsomega.0c02142
- M. Ge, Q. Li, C. Cao, J. Huang, S. Li et al., One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. 4, 1600152 (2017). https://doi.org/10.1002/advs.201600152
- J.S. Yang, W.P. Liao, J.J. Wu, Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 5, 7425–7431 (2013). https://doi.org/10.1021/am401746b
- T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014). https://doi.org/10.1126/science.1246913
- A.P. Singh, N. Kodan, B.R. Mehta, A. Held, L. Mayrhofer et al., Band edge engineering in BiVO4/TiO2 heterostructure: enhanced photoelectrochemical performance through improved charge transfer. ACS Catal. 6, 5311–5318 (2016). https://doi.org/10.1021/acscatal.6b00956
- S. Kment, F. Riboni, S. Pausova, L. Wang, L. Wang et al., Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chem. Soc. Rev. 46, 3716–3769 (2017). https://doi.org/10.1039/c6cs00015k
- C.X. Kronawitter, L. Vayssieres, S. Shen, L. Guo, D.A. Wheeler et al., A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energy Environ. Sci. 4, 3889–3899 (2011). https://doi.org/10.1039/c1ee02186a
- F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013). https://doi.org/10.1039/c2cs35266d
- B. Lamm, B.J. Trześniewski, H. Döscher, W.A. Smith, M. Stefik, Emerging postsynthetic improvements of BiVO4 photoanodes for solar water splitting. ACS Energy Lett. 3, 112–124 (2018). https://doi.org/10.1021/acsenergylett.7b00834
- J.K. Kim, Y. Cho, M.J. Jeong, B. Levy-Wendt, D. Shin et al., Rapid formation of a disordered layer on monoclinic BiVO4: co-catalyst-free photoelectrochemical solar water splitting. Chemsuschem 11, 933–940 (2018). https://doi.org/10.1002/cssc.201702173
- A. Li, X. Chang, Z. Huang, C. Li, Y. Wei et al., Thin heterojunctions and spatially separated cocatalysts to simultaneously reduce bulk and surface recombination in photocatalysts. Angew. Chem. Int. Ed. 55, 13734–13738 (2016). https://doi.org/10.1002/anie.201605666
- W. Yang, S. Lee, H.C. Kwon, J. Tan, H. Lee et al., Time-resolved observations of photo-generated charge-carrier dynamics in Sb2Se3 photocathodes for photoelectrochemical water splitting. ACS Nano 12, 11088–11097 (2018). https://doi.org/10.1021/acsnano.8b05446
- G. Liu, H.G. Yang, J. Pan, Y.Q. Yang, G.Q.M. Lu et al., Titanium dioxide crystals with tailored facets. Chem. Rev. 114, 9559–9612 (2014). https://doi.org/10.1021/cr400621z
- T.R. Esch, T. Bredow, Band positions of Rutile surfaces and the possibility of water splitting. Surf. Sci. 665, 20–27 (2017). https://doi.org/10.1016/j.susc.2017.08.006
- S. Selcuk, A. Selloni, Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 15, 1107–1112 (2016). https://doi.org/10.1038/nmat4672
- A.Y. Zhang, W.Y. Wang, J.J. Chen, C. Liu, Q.X. Li et al., Epitaxial facet junctions on TiO2 single crystals for efficient photocatalytic water splitting. Energy Environ. Sci. 11, 1444–1448 (2018). https://doi.org/10.1039/c7ee03482b
- L. Lin, Z. Lin, J. Zhang, X. Cai, W. Lin et al., Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 3, 649–655 (2020). https://doi.org/10.1038/s41929-020-0476-3
References
C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang, J. Tang, Photoelectrochemical devices for solar water splitting-materials and challenges. Chem. Soc. Rev. 46, 4645–4660 (2017). https://doi.org/10.1039/c6cs00306k
I.S. Cho, Z. Chen, A.J. Forman, D.R. Kim, P.M. Rao et al., Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11, 4978–4984 (2011). https://doi.org/10.1021/nl2029392
J.W. Yang, S.H. Ahn, H.W. Jang, Crucial role of heterostructures in highly advanced water splitting photoelectrodes. Curr. Opin. Green Sustain. Chem. 29, 100454 (2021). https://doi.org/10.1016/j.cogsc.2021.100454
K. Sivula, F. le Formal, M. Grätzel, WO3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem. Mater. 21, 2862–2867 (2009). https://doi.org/10.1021/cm900565a
M.G. Lee, D.H. Kim, W. Sohn, C.W. Moon, H. Park et al., Conformally coated BiVO4 nanodots on porosity-controlled WO3 nanorods as highly efficient type II heterojunction photoanodes for water oxidation. Nano Energy 28, 250–260 (2016). https://doi.org/10.1016/j.nanoen.2016.08.046
J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11, 1928–1933 (2011). https://doi.org/10.1021/nl2000743
X. Shi, I.Y. Choi, K. Zhang, J. Kwon, D.Y. Kim et al., Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat. Commun. 5, 4775 (2014). https://doi.org/10.1038/ncomms5775
A. Kargar, S.J. Kim, P. Allameh, C. Choi, N. Park et al., p-Si/SnO2/Fe2O3 Core/Shell/Shell nanowire photocathodes for neutral pH water splitting. Adv. Funct. Mater. 25, 2609–2615 (2015). https://doi.org/10.1002/adfm.201404571
L. Wang, A. Palacios-Padrós, R. Kirchgeorg, A. Tighineanu, P. Schmuki, Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:SnO2 host-guest system. Chemsuschem 7, 421–424 (2014). https://doi.org/10.1002/cssc.201301120
S. Shen, S.A. Lindley, X. Chen, J.Z. Zhang, Hematite heterostructures for photoelectrochemical water splitting: Rational materials design and charge carrier dynamics. Energy Environ. Sci. 9, 2744–2775 (2016). https://doi.org/10.1039/c6ee01845a
B.R. Lee, H.W. Jang, β-In2S3 as water splitting photoanodes: promise and challenges. Electron. Mater. Lett. 17, 119–135 (2021). https://doi.org/10.1007/s13391-020-00266-5
S. Byun, B. Kim, S. Jeon, B. Shin, Effects of a SnO2 hole blocking layer in a BiVO4-based photoanode on photoelectrocatalytic water oxidation. J. Mater. Chem. A 5, 6905–6913 (2017). https://doi.org/10.1039/c7ta00806f
J.W. Yang, I.J. Park, S.A. Lee, M.G. Lee, T.H. Lee et al., Near-complete charge separation in tailored BiVO4-based heterostructure photoanodes toward artificial leaf. Appl. Catal. B: Environ. 293, 120217 (2021). https://doi.org/10.1016/j.apcatb.2021.120217
J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee et al., TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cen. Sci. 2, 80–88 (2016). https://doi.org/10.1021/acscentsci.5b00402
Z. Yu, H. Liu, M. Zhu, Y. Li, W. Li, Interfacial charge transport in 1D TiO2 based photoelectrodes for photoelectrochemical water splitting. Small 17, 1903378 (2021). https://doi.org/10.1002/smll.201903378
O. Monfort, D. Raptis, L. Satrapinskyy, T. Roch, G. Plesch et al., Production of hydrogen by water splitting in a photoelectrochemical cell using a BiVO4/TiO2 layered photoanode. Electrochim. Acta 251, 244–249 (2017). https://doi.org/10.1016/j.electacta.2017.08.125
X. Zhang, B. Zhang, K. Cao, J. Brillet, J. Chen et al., A perovskite solar cell-TiO2@BiVO4 photoelectrochemical system for direct solar water splitting. J. Mater. Chem. A 3, 21630–21636 (2015). https://doi.org/10.1039/c5ta05838d
D.M. Andoshe, K. Yim, W. Sohn, C. Kim, T.L. Kim et al., One-pot synthesis of sulfur and nitrogen codoped titanium dioxide nanorod arrays for superior photoelectrochemical water oxidation. Appl. Catal. B: Environ. 234, 213–222 (2018). https://doi.org/10.1016/j.apcatb.2018.04.045
S. Wang, G. Liu, L. Wang, Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 119, 5192–5247 (2019). https://doi.org/10.1021/acs.chemrev.8b00584
B. Fu, Z. Wu, S. Cao, K. Guo, L. Piao, Effect of aspect ratios of rutile TiO2 nanorods on overall photocatalytic water splitting performance. Nanoscale 12, 4895–4902 (2020). https://doi.org/10.1039/c9nr10870j
C. Phawa, S. Prayoonpokarach, K. Sinthiptharakoon, P. Chakthranont, W. Sangkhun et al., Effects of matching facet pairs of TiO2 on photoelectrochemical water splitting behaviors. ChemCatChem 12, 2116–2124 (2020). https://doi.org/10.1002/cctc.201901857
L. Wang, J. Ge, A. Wang, M. Deng, X. Wang et al., Designing p-type semiconductor-metal hybrid structures for improved photocatalysis. Angew. Chem. 126, 5207–5211 (2014). https://doi.org/10.1002/ange.201310635
M.G. Lee, K. Jin, K.C. Kwon, W. Sohn, H. Park et al., Efficient water splitting cascade photoanodes with ligand-engineered MnO cocatalysts. Adv. Sci. 5, 1800727 (2018). https://doi.org/10.1002/advs.201800727
J.P. Jalava, V.M. Taavitsainen, R.J. Lamminmäki, M. Lindholm, S. Auvinen et al., Modeling TiO2’s refractive index function from bulk to nanoparticles. J. Quant. Spec. Radiat. Transf. 167, 105–118 (2015). https://doi.org/10.1016/j.jqsrt.2015.08.007
J.M. Ball, S.D. Stranks, M.T. Hörantner, S. Hüttner, W. Zhang et al., Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ. Sci. 8, 602–609 (2015). https://doi.org/10.1039/c4ee03224a
S.S.M. Bhat, S.A. Lee, T.H. Lee, C. Kim, J. Park et al., All-solution-processed BiVO4/TiO2 photoanode with NiCo2O4 nanofiber cocatalyst for enhanced solar water oxidation. ACS Appl. Energy Mater. 3, 5646–5656 (2020). https://doi.org/10.1021/acsaem.0c00607
S.P. Hong, J. Park, S.S.M. Bhat, T.H. Lee, S.A. Lee et al., Comprehensive study on the morphology control of TiO2 nanorods on foreign substrates by the hydrothermal method. Cryst. Growth Des. 18, 6504–6512 (2018). https://doi.org/10.1021/acs.cgd.8b00609
S.S. Mali, C.A. Betty, P.N. Bhosale, P.S. Patil, C.K. Hong, From nanocorals to nanorods to nanoflowers nanoarchitecture for efficient dye-sensitized solar cells at relatively low film thickness: all hydrothermal process. Sci. Rep. 4, 5451 (2014). https://doi.org/10.1038/srep05451
J. Harris, R. Silk, M. Smith, Y. Dong, W.T. Chen et al., Hierarchical TiO2 nanoflower photocatalysts with remarkable activity for aqueous methylene blue photo-oxidation. ACS Omega 5, 18919–18934 (2020). https://doi.org/10.1021/acsomega.0c02142
M. Ge, Q. Li, C. Cao, J. Huang, S. Li et al., One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. 4, 1600152 (2017). https://doi.org/10.1002/advs.201600152
J.S. Yang, W.P. Liao, J.J. Wu, Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 5, 7425–7431 (2013). https://doi.org/10.1021/am401746b
T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014). https://doi.org/10.1126/science.1246913
A.P. Singh, N. Kodan, B.R. Mehta, A. Held, L. Mayrhofer et al., Band edge engineering in BiVO4/TiO2 heterostructure: enhanced photoelectrochemical performance through improved charge transfer. ACS Catal. 6, 5311–5318 (2016). https://doi.org/10.1021/acscatal.6b00956
S. Kment, F. Riboni, S. Pausova, L. Wang, L. Wang et al., Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chem. Soc. Rev. 46, 3716–3769 (2017). https://doi.org/10.1039/c6cs00015k
C.X. Kronawitter, L. Vayssieres, S. Shen, L. Guo, D.A. Wheeler et al., A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energy Environ. Sci. 4, 3889–3899 (2011). https://doi.org/10.1039/c1ee02186a
F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013). https://doi.org/10.1039/c2cs35266d
B. Lamm, B.J. Trześniewski, H. Döscher, W.A. Smith, M. Stefik, Emerging postsynthetic improvements of BiVO4 photoanodes for solar water splitting. ACS Energy Lett. 3, 112–124 (2018). https://doi.org/10.1021/acsenergylett.7b00834
J.K. Kim, Y. Cho, M.J. Jeong, B. Levy-Wendt, D. Shin et al., Rapid formation of a disordered layer on monoclinic BiVO4: co-catalyst-free photoelectrochemical solar water splitting. Chemsuschem 11, 933–940 (2018). https://doi.org/10.1002/cssc.201702173
A. Li, X. Chang, Z. Huang, C. Li, Y. Wei et al., Thin heterojunctions and spatially separated cocatalysts to simultaneously reduce bulk and surface recombination in photocatalysts. Angew. Chem. Int. Ed. 55, 13734–13738 (2016). https://doi.org/10.1002/anie.201605666
W. Yang, S. Lee, H.C. Kwon, J. Tan, H. Lee et al., Time-resolved observations of photo-generated charge-carrier dynamics in Sb2Se3 photocathodes for photoelectrochemical water splitting. ACS Nano 12, 11088–11097 (2018). https://doi.org/10.1021/acsnano.8b05446
G. Liu, H.G. Yang, J. Pan, Y.Q. Yang, G.Q.M. Lu et al., Titanium dioxide crystals with tailored facets. Chem. Rev. 114, 9559–9612 (2014). https://doi.org/10.1021/cr400621z
T.R. Esch, T. Bredow, Band positions of Rutile surfaces and the possibility of water splitting. Surf. Sci. 665, 20–27 (2017). https://doi.org/10.1016/j.susc.2017.08.006
S. Selcuk, A. Selloni, Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 15, 1107–1112 (2016). https://doi.org/10.1038/nmat4672
A.Y. Zhang, W.Y. Wang, J.J. Chen, C. Liu, Q.X. Li et al., Epitaxial facet junctions on TiO2 single crystals for efficient photocatalytic water splitting. Energy Environ. Sci. 11, 1444–1448 (2018). https://doi.org/10.1039/c7ee03482b
L. Lin, Z. Lin, J. Zhang, X. Cai, W. Lin et al., Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 3, 649–655 (2020). https://doi.org/10.1038/s41929-020-0476-3