Correction to: Memristive Devices Based on Two-Dimensional Transition Metal Chalcogenides for Neuromorphic Computing
Corresponding Author: Ho Won Jang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 71
Abstract
Two-dimensional (2D) transition metal chalcogenides (TMC) and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices, particularly futuristic memristive and synaptic devices for brain-inspired neuromorphic computing systems. The distinct properties such as high durability, electrical and optical tunability, clean surface, flexibility, and LEGO-staking capability enable simple fabrication with high integration density, energy-efficient operation, and high scalability. This review provides a thorough examination of high-performance memristors based on 2D TMCs for neuromorphic computing applications, including the promise of 2D TMC materials and heterostructures, as well as the state-of-the-art demonstration of memristive devices. The challenges and future prospects for the development of these emerging materials and devices are also discussed. The purpose of this review is to provide an outlook on the fabrication and characterization of neuromorphic memristors based on 2D TMCs.
Highlights:
1 Based on the benefits of two-dimensional (2D) transition metal chalcogenides (TMC) materials, the operating concepts and basics of memristors for neuromorphic computing are introduced.
2 The prospects of 2D TMC materials and heterostructures are reviewed, as well as the state-of-the-art demonstration of 2D TMCs-based memristors for neuromorphic computing applications.
3 The most recent advances, current challenges, and future prospects for the manufacture and characterization of memristive neuromorphic devices based on 2D TMCs are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539
- C.D. James, J.B. Aimone, N.E. Miner, C.M. Vineyard, F.H. Rothganger et al., A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications. Biol. Inspired Cogn. Archit. 19, 49–64 (2017). https://doi.org/10.1016/j.bica.2016.11.002
- T. Bohnstingl, F. Scherr, C. Pehle, K. Meier, W. Maass, Neuromorphic hardware learns to learn. Front. Neurosci. 13, 483 (2019). https://doi.org/10.3389/fnins.2019.00483
- G. Indiveri, E. Chicca, R.J. Douglas, Artificial cognitive systems: from VLSI networks of spiking neurons to neuromorphic cognition. Cognit. Comput. 1(2), 119–127 (2009). https://doi.org/10.1007/s12559-008-9003-6
- G. Indiveri, B. Linares-Barranco, T. Hamilton, A. Schaik, R. Etienne-Cummings et al., Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011). https://doi.org/10.3389/fnins.2011.00073
- S. Yu, P.Y. Chen, Emerging memory technologies: recent trends and prospects. IEEE Solid-State Circuits Mag. 8(2), 43–56 (2016). https://doi.org/10.1109/MSSC.2016.2546199
- D.S. Jeong, K.M. Kim, S. Kim, B.J. Choi, C.S. Hwang, Memristors for energy-efficient new computing paradigms. Adv. Electron. Mater. 2(9), 1600090 (2016). https://doi.org/10.1002/aelm.201600090
- A. Serb, A. Corna, R. George, A. Khiat, F. Rocchi et al., Memristive synapses connect brain and silicon spiking neurons. Sci. Rep. 10(1), 2590 (2020). https://doi.org/10.1038/s41598-020-58831-9
- P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada et al., A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014). https://doi.org/10.1126/science.1254642
- Q. Lu, F. Sun, L. Liu, L. Li, Y. Wang et al., Biological receptor-inspired flexible artificial synapse based on ionic dynamics. Microsyst. Nanoeng. 6(1), 84 (2020). https://doi.org/10.1038/s41378-020-00189-z
- E. Bullmore, O. Sporns, The economy of brain network organization. Nat. Rev. Neurosci. 13(5), 336–349 (2012). https://doi.org/10.1038/nrn3214
- L. Zhao, B. Beverlin, T. Netoff, D. Nykamp, Synchronization from second order network connectivity statistics. Front. Comput. Neurosci. 5, 28 (2011). https://doi.org/10.3389/fncom.2011.00028
- Y. Choi, S. Oh, C. Qian, J.H. Park, J.H. Cho, Vertical organic synapse expandable to 3D crossbar array. Nat. Commun. 11(1), 4595 (2020). https://doi.org/10.1038/s41467-020-17850-w
- Ö. Türel, J.H. Lee, X. Ma, K.K. Likharev, Neuromorphic architectures for nanoelectronic circuits. Int. J. Circuit Theory Appl. 32(5), 277–302 (2004)
- J.J. Wang, S.G. Hu, X.T. Zhan, Q. Yu, Z. Liu et al., Handwritten-digit recognition by hybrid convolutional neural network based on HfO2 memristive spiking-neuron. Sci. Rep. 8(1), 12546 (2018). https://doi.org/10.1038/s41598-018-30768-0
- A. Chanthbouala, V. Garcia, R.O. Cherifi, K. Bouzehouane, S. Fusil et al., A ferroelectric memristor. Nat. Mater. 11(10), 860–864 (2012). https://doi.org/10.1038/nmat3415
- C. Qian, J. Sun, L. Kong, G. Gou, J. Yang et al., Artificial synapses based on in-plane gate organic electrochemical transistors. ACS Appl. Mater. Interfaces 8(39), 26169–26175 (2016). https://doi.org/10.1021/acsami.6b08866
- L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337
- L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976). https://doi.org/10.1109/PROC.1976.10092
- Z. Xiao, J. Huang, Energy-efficient hybrid perovskite memristors and synaptic devices. Adv. Electron. Mater. 2(7), 1600100 (2016). https://doi.org/10.1002/aelm.201600100
- G. Rachmuth, H.Z. Shouval, M.F. Bear, C.S. Poon, A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity. Proc. Natl. Acad. Sci. 108(49), E1266–E1274 (2011). https://doi.org/10.1073/pnas.1106161108
- T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski et al., Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10(8), 591–595 (2011). https://doi.org/10.1038/nmat3054
- C. Lee, P. Panda, G. Srinivasan, K. Roy, Training deep spiking convolutional neural networks with STDP-based unsupervised pre-training followed by supervised fine-tuning. Front. Neurosci. 12, 435 (2018). https://doi.org/10.3389/fnins.2018.00435
- T. Iakymchuk, A. Rosado-Muñoz, J.F. Guerrero-Martínez, M. Bataller-Mompeán, J.V. Francés-Víllora, Simplified spiking neural network architecture and STDP learning algorithm applied to image classification. EURASIP J. Image Video Process. 2015(1), 4 (2015). https://doi.org/10.1186/s13640-015-0059-4
- Y. Li, Y. Zhong, J. Zhang, L. Xu, Q. Wang et al., Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci. Rep. 4, 4906 (2014). https://doi.org/10.1038/srep04906
- A.J. Arnold, A. Razavieh, J.R. Nasr, D.S. Schulman, C.M. Eichfeld et al., Mimicking neurotransmitter release in chemical synapses via hysteresis engineering in MoS2 transistors. ACS Nano 11(3), 3110–3118 (2017). https://doi.org/10.1021/acsnano.7b00113
- L. Bao, J. Zhu, Z. Yu, R. Jia, Q. Cai et al., Dual-gated MoS2 neuristor for neuromorphic computing. ACS Appl. Mater. Interfaces 11(44), 41482–41489 (2019). https://doi.org/10.1021/acsami.9b10072
- Z. Zhang, S. Wang, C. Liu, R. Xie, W. Hu et al., All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. (2021). https://doi.org/10.1038/s41565-021-01003-1
- L. Mennel, J. Symonowicz, S. Wachter, D.K. Polyushkin, A.J. Molina-Mendoza et al., Ultrafast machine vision with 2D material neural network image sensors. Nature 579(7797), 62–66 (2020). https://doi.org/10.1038/s41586-020-2038-x
- X. Hou, C. Liu, Y. Ding, L. Liu, S. Wang et al., A logic-memory transistor with the integration of visible information sensing-memory-processing. Adv. Sci. 7(21), 2002072 (2020). https://doi.org/10.1002/advs.202002072
- L.R. Squire, Memory and Brain. Oxford University Press (1987).
- J.D. Kendall, S. Kumar, The building blocks of a brain-inspired computer. Appl. Phys. Rev. 7(1), 011305 (2020). https://doi.org/10.1063/1.5129306
- D. Marković, A. Mizrahi, D. Querlioz, J. Grollier, Physics for neuromorphic computing. Nat. Rev. Phys. 2(9), 499–510 (2020). https://doi.org/10.1038/s42254-020-0208-2
- V.M. Ho, J.A. Lee, K.C. Martin, The cell biology of synaptic plasticity. Science 334(6056), 623–628 (2011). https://doi.org/10.1126/science.1209236
- D. Kuzum, S. Yu, H.S.P. Wong, Synaptic electronics: materials, devices and applications. Nanotechnology 24(38), 382001 (2013). https://doi.org/10.1088/0957-4484/24/38/382001
- R. Stanford, I.M. Ovshinsky, Analog models for information storage and transmission in physiological systems. Mater. Res. Bull. 5(8), 681–690 (1970). https://doi.org/10.1016/0025-5408(70)90109-1
- I. Boybat, M.L. Gallo, S.R. Nandakumar, T. Moraitis, T. Parnell et al., Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9(1), 2514 (2018). https://doi.org/10.1038/s41467-018-04933-y
- S.J. Martin, P.D. Grimwood, R.G.M. Morris, Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23(1), 649–711 (2000). https://doi.org/10.1146/annurev.neuro.23.1.649
- J.C. Magee, C. Grienberger, Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 43(1), 95–117 (2020). https://doi.org/10.1146/annurev-neuro-090919-022842
- L.F. Abbott, S.B. Nelson, Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2000). https://doi.org/10.1038/81453
- N. Caporale, Y. Dan, Spike timing–dependent plasticity: a hebbian learning rule. Annu. Rev. Neurosci. 31(1), 25–46 (2008). https://doi.org/10.1146/annurev.neuro.31.060407.125639
- M. Ziegler, C. Riggert, M. Hansen, T. Bartsch, H. Kohlstedt, Memristive hebbian plasticity model: device requirements for the emulation of hebbian plasticity based on memristive devices. IEEE Trans. Biomed. Circuits Syst. 9(2), 197–206 (2015). https://doi.org/10.1109/TBCAS.2015.2410811
- S. Choi, S. Jang, J.H. Moon, J.C. Kim, H.Y. Jeong et al., A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems. NPG Asia Mater. 10(12), 1097–1106 (2018). https://doi.org/10.1038/s41427-018-0101-y
- K.H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain et al., A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12(1), 389–395 (2012). https://doi.org/10.1021/nl203687n
- M. Hu, J.P. Strachan, Z. Li, E.M. Grafals, N. Davila et al., Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate matrix-vector multiplication, in Proceedings of the 53rd Annual Design Automation Conference, Association for Computing Machinery, New York, NY, USA, (2016). https://doi.org/10.1145/2897937.2898010
- Y. Jeong, W. Lu, Neuromorphic computing using memristor crossbar networks: a focus on bio-inspired approaches. IEEE Nanotechnol. Mag. 12(3), 6–18 (2018). https://doi.org/10.1109/MNANO.2018.2844901
- B. Li, S. Li, H. Wang, L. Chen, L. Liu et al., An electronic synapse based on 2D ferroelectric CuInP2S6. Adv. Electron. Mater. 6(12), 2000760 (2020). https://doi.org/10.1002/aelm.202000760
- F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010). https://doi.org/10.1038/nnano.2010.89
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005). https://doi.org/10.1038/nature04233
- W. Zhang, Q. Wang, Y. Chen, Z. Wang, A.T.S. Wee, Van der Waals stacked 2D layered materials for optoelectronics. 2D Mater. 3(2), 22001 (2016). https://doi.org/10.1088/2053-1583/3/2/022001
- K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H.C. Neto, 2D materials and van der Waals heterostructures. Science 353(6298), 9439 (2016). https://doi.org/10.1126/science.aac9439
- Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248), 820–823 (2009). https://doi.org/10.1038/nature08105
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
- Z. Hu, Z. Wu, C. Han, J. He, Z. Ni et al., Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 47(9), 3100–3128 (2018). https://doi.org/10.1039/C8CS00024G
- D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2), 1102–1120 (2014). https://doi.org/10.1021/nn500064s
- M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
- X. Zhu, D. Li, X. Liang, W.D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18(2), 141–148 (2019). https://doi.org/10.1038/s41563-018-0248-5
- F. Zhang, H. Zhang, S. Krylyuk, C.A. Milligan, Y. Zhu et al., Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories. Nat. Mater. 18(1), 55–61 (2019). https://doi.org/10.1038/s41563-018-0234-y
- X. Tao, Y. Gu, Crystalline–crystalline phase transformation in two-dimensional In2Se3 thin layers. Nano Lett. 13(8), 3501–3505 (2013). https://doi.org/10.1021/nl400888p
- M. Soleimani, M. Pourfath, Ferroelectricity and phase transitions in In2Se3 van der Waals material. Nanoscale 12(44), 22688–22697 (2020). https://doi.org/10.1039/D0NR04096G
- Y. Shi, X. Liang, B. Yuan, V. Chen, H. Li et al., Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1(8), 458–465 (2018). https://doi.org/10.1038/s41928-018-0118-9
- M. Wang, S. Cai, C. Pan, C. Wang, X. Lian et al., Robust memristors based on layered two-dimensional materials. Nat. Electron. 1(2), 130–136 (2018). https://doi.org/10.1038/s41928-018-0021-4
- R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde et al., Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18(1), 434–441 (2018). https://doi.org/10.1021/acs.nanolett.7b04342
- Q. Zhao, Z. Xie, Y.P. Peng, K. Wang, H. Wang et al., Current status and prospects of memristors based on novel 2D materials. Mater. Horizons. 7(6), 1495–1518 (2020). https://doi.org/10.1039/c9mh02033k
- H. Li, L. Tao, J.B. Xu, Intrinsic memristive mechanisms in 2D layered materials for high-performance memory. J. Appl. Phys. 129(5), 50902 (2021). https://doi.org/10.1063/5.0035764
- R. Ge, X. Wu, L. Liang, S.M. Hus, Y. Gu et al., A library of atomically thin 2D materials featuring the conductive-point resistive switching phenomenon. Adv. Mater. 33(7), 2007792 (2021). https://doi.org/10.1002/adma.202007792
- H.K. He, F.F. Yang, R. Yang, Flexible full two-dimensional memristive synapses of graphene/WSe2−xOy/graphene. Phys. Chem. Chem. Phys. 22(36), 20658–20664 (2020). https://doi.org/10.1039/D0CP03822A
- T.J. Ko, M. Wang, C. Yoo, E. Okogbue, M.A. Islam et al., Large-area 2D TMD layers for mechanically reconfigurable electronic devices. J. Phys. D. Appl. Phys. 53(31), 313002 (2020). https://doi.org/10.1088/1361-6463/ab87bb
- J.L. Meng, T.Y. Wang, L. Chen, Q.Q. Sun, H. Zhu et al., Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application. Nano Energy 83, 105815 (2021). https://doi.org/10.1016/j.nanoen.2021.105815
- P. Ajayan, P. Kim, K. Banerjee, Two-dimensional van der Waals materials. Phys. Today 69(9), 38–44 (2016). https://doi.org/10.1063/PT.3.3297
- L. Sun, Y. Zhang, G. Han, G. Hwang, J. Jiang et al., Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10(1), 3161 (2019). https://doi.org/10.1038/s41467-019-11187-9
- E. Lee, S.G. Lee, W.H. Lee, H.C. Lee, N.N. Nguyen et al., Direct CVD growth of a graphene/MoS2 heterostructure with interfacial bonding for two-dimensional electronics. Chem. Mater. 32(11), 4544–4552 (2020). https://doi.org/10.1021/acs.chemmater.0c00503
- Z. Huang, W. Han, H. Tang, L. Ren, D.S. Chander et al., Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater. 2(3), 35011 (2015). https://doi.org/10.1088/2053-1583/2/3/035011
- Y. Ren, L. Hu, J.Y. Mao, J. Yuan, Y.J. Zeng et al., Phosphorene nano-heterostructure based memristors with broadband response synaptic plasticity. J. Mater. Chem. C 6(35), 9383–9393 (2018). https://doi.org/10.1039/C8TC03089H
- W. Zhang, H. Gao, C. Deng, T. Lv, S. Hu et al., An ultrathin memristor based on a two-dimensional WS2/MoS2 heterojunction. Nanoscale 13(26), 11497–11504 (2021). https://doi.org/10.1039/D1NR01683K
- Z. Lin, B.R. Carvalho, E. Kahn, R. Lv, R. Rao et al., Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 3(2), 22002 (2016). https://doi.org/10.1088/2053-1583/3/2/022002
- Q. Liang, Q. Zhang, X. Zhao, M. Liu, A.T.S. Wee, Defect engineering of two-dimensional transition-metal dichalcogenides: applications, challenges, and opportunities. ACS Nano 15(2), 2165–2181 (2021). https://doi.org/10.1021/acsnano.0c09666
- Y.C. Lin, D.O. Dumcenco, Y.S. Huang, K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9(5), 391–396 (2014). https://doi.org/10.1038/nnano.2014.64
- Y. Cheng, A. Nie, Q. Zhang, L.Y. Gan, R. Shahbazian-Yassar et al., Origin of the phase transition in lithiated molybdenum disulfide. ACS Nano 8(11), 11447–11453 (2014). https://doi.org/10.1021/nn505668c
- J. Huang, X. Pan, X. Liao, M. Yan, B. Dunn et al., In situ monitoring of the electrochemically induced phase transition of thermodynamically metastable 1T-MoS2 at nanoscale. Nanoscale 12(16), 9246–9254 (2020). https://doi.org/10.1039/D0NR02161J
- K. Zhang, B.M. Bersch, J. Joshi, R. Addou, C.R. Cormier et al., Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping. Adv. Funct. Mater. 28(16), 1706950 (2018). https://doi.org/10.1002/adfm.201706950
- X. Li, A.A. Puretzky, X. Sang, S. KC, M. Tian, et al., Suppression of defects and deep levels using isoelectronic tungsten substitution in monolayer MoSe2. Adv. Funct. Mater. 27(19), 1650 (2017). https://doi.org/10.1002/adfm.201770119
- X. Li, M.W. Lin, L. Basile, S.M. Hus, A.A. Puretzky et al., Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation. Adv. Mater. 28(37), 8240–8247 (2016). https://doi.org/10.1002/adma.201601991
- A.Y. Lu, H. Zhu, J. Xiao, C.P. Chuu, Y. Han et al., Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12(8), 744–749 (2017). https://doi.org/10.1038/nnano.2017.100
- C. Cui, F. Xue, W.J. Hu, L.J. Li, Two-dimensional materials with piezoelectric and ferroelectric functionalities. NPJ D Mater. Appl. 2(1), 18 (2018). https://doi.org/10.1038/s41699-018-0063-5
- K.A.N. Duerloo, M.T. Ong, E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3(19), 2871–2876 (2012). https://doi.org/10.1021/jz3012436
- A.V. Bune, V.M. Fridkin, S. Ducharme, L.M. Blinov, S.P. Palto et al., Two-dimensional ferroelectric films. Nature 391(6670), 874–877 (1998). https://doi.org/10.1038/36069
- S. Seo, S.H. Jo, S. Kim, J. Shim, S. Oh et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018). https://doi.org/10.1038/s41467-018-07572-5
- R. Fei, W. Li, J. Li, L. Yang, Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 107(17), 173104 (2015). https://doi.org/10.1063/1.4934750
- D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt et al., Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75(7), 76502 (2012). https://doi.org/10.1088/0034-4885/75/7/076502
- S. Oh, T. Kim, M. Kwak, J. Song, J. Woo et al., HfZrOx-based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications. IEEE Electron Device Lett. 38(6), 732–735 (2017). https://doi.org/10.1109/LED.2017.2698083
- Y. Zhang, L. Wang, H. Chen, T. Ma, X. Lu et al., Analog and digital mode α-In2Se3 memristive devices for neuromorphic and memory applications. Adv. Electron. Mater. 2100609 (2021). https://doi.org/10.1002/aelm.202100609
- M. Osada, T. Sasaki, The rise of 2D dielectrics/ferroelectrics. APL Mater. 7(12), 120902 (2019). https://doi.org/10.1063/1.5129447
- T. Horiuchi, M. Takahashi, K. Ohhashi, S. Sakai, Memory window widening of Pt/SrBi2Ta2O9/HfO2/Si ferroelectric-gate field-effect transistors by nitriding Si. Semicond. Sci. Technol. 24(10), 105026 (2009). https://doi.org/10.1088/0268-1242/24/10/105026
- T. Fukushima, T. Yoshimura, K. Masuko, K. Maeda, A. Ashida et al., Electrical characteristics of controlled-polarization-type ferroelectric-gate field-effect transistor. Japaneses J. Appl. Phys. 47(12), 8874–8879 (2008). https://doi.org/10.1143/jjap.47.8874
- S.N. Shirodkar, U.V. Waghmare, Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 112(15), 157601 (2014). https://doi.org/10.1103/PhysRevLett.112.157601
- G.B. Liu, D. Xiao, Y. Yao, X. Xu, W. Yao, Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44(9), 2643–2663 (2015). https://doi.org/10.1039/C4CS00301B
- L. Qi, S. Ruan, Y.J. Zeng, Review on recent developments in 2D ferroelectrics: Theories and applications. Adv. Mater. 33(13), 2005098 (2021). https://doi.org/10.1002/adma.202005098
- H. Qiao, C. Wang, W.S. Choi, M.H. Park, Y. Kim, Ultra-thin ferroelectrics. Mater. Sci. Eng. R Rep. 145, 100622 (2021). https://doi.org/10.1016/j.mser.2021.100622
- F. Liu, L. You, K.L. Seyler, X. Li, P. Yu et al., Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016). https://doi.org/10.1038/ncomms12357
- C. Cui, W.J. Hu, X. Yan, C. Addiego, W. Gao et al., Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 18(2), 1253–1258 (2018). https://doi.org/10.1021/acs.nanolett.7b04852
- M. Wu, S. Dong, K. Yao, J. Liu, X.C. Zeng, Ferroelectricity in covalently functionalized two-dimensional materials: integration of high-mobility semiconductors and nonvolatile memory. Nano Lett. 16(11), 7309–7315 (2016). https://doi.org/10.1021/acs.nanolett.6b04309
- J.H. Lee, J.Y. Park, E.B. Cho, T.Y. Kim, S.A. Han et al., Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Adv. Mater. 29(29), 1606667 (2017). https://doi.org/10.1002/adma.201606667
- S. Wan, Y. Li, W. Li, X. Mao, W. Zhu et al., Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale 10(31), 14885–14892 (2018). https://doi.org/10.1039/C8NR04422H
- G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha et al., Recent advances in two-dimensional materials beyond graphene. ACS Nano 9(12), 11509–11539 (2015). https://doi.org/10.1021/acsnano.5b05556
- R. Xu, H. Jang, M.H. Lee, D. Amanov, Y. Cho et al., Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 19(4), 2411–2417 (2019). https://doi.org/10.1021/acs.nanolett.8b05140
- K. Wang, L. Li, R. Zhao, J. Zhao, Z. Zhou et al., A pure 2H-MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator. Adv. Electron. Mater. 6(3), 1901342 (2020). https://doi.org/10.1002/aelm.201901342
- D. Dev, A. Krishnaprasad, M.S. Shawkat, Z. He, S. Das et al., 2D MoS2-based threshold switching memristor for artificial neuron. IEEE Electron Device Lett. 41(6), 936–939 (2020). https://doi.org/10.1109/LED.2020.2988247
- T.J. Ko, H. Li, S.A. Mofid, C. Yoo, E. Okogbue et al., Two-dimensional near-atom-thickness materials for emerging neuromorphic devices and applications. IScience 23(11), 101676 (2020). https://doi.org/10.1016/j.isci.2020.101676
- X. Yan, C. Qin, C. Lu, J. Zhao, R. Zhao et al., Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing. ACS Appl. Mater. Interfaces 11(51), 48029–48038 (2019). https://doi.org/10.1021/acsami.9b17160
- X. Yan, Q. Zhao, A.P. Chen, J. Zhao, Z. Zhou et al., Vacancy-induced synaptic behavior in 2D WS2 nanosheet–based memristor for low-power neuromorphic computing. Small 15(24), 1901423 (2019). https://doi.org/10.1002/smll.201901423
- W. Huh, S. Jang, J.Y. Lee, D. Lee, D. Lee et al., Synaptic barristor based on phase-engineered 2D heterostructures. Adv. Mater. 30(35), 1801447 (2018). https://doi.org/10.1002/adma.201801447
- A.A. Bessonov, M.N. Kirikova, D.I. Petukhov, M. Allen, T. Ryhänen et al., Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14(2), 199–204 (2015). https://doi.org/10.1038/nmat4135
- P. Cheng, K. Sun, Y.H. Hu, Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano Lett. 16(1), 572–576 (2016). https://doi.org/10.1021/acs.nanolett.5b04260
- H. Chen, C. Liu, Z. Wu, Y. He, Z. Wang et al., Time-tailoring van der Waals heterostructures for human memory system programming. Adv. Sci. 6(20), 1901072 (2019). https://doi.org/10.1002/advs.201901072
- T. Paul, T. Ahmed, K.K. Tiwari, C.S. Thakur, A. Ghosh, A high-performance MoS2 synaptic device with floating gate engineering for neuromorphic computing. 2D Mater. 6(4), 45008 (2019). https://doi.org/10.1088/2053-1583/ab23ba
- A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11(6), 28–36 (2008). https://doi.org/10.1016/S1369-7021(08)70119-6
- R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nanosci. Technol. 158–165 (2009). https://doi.org/10.1142/9789814287005_0016
- R. Waser, R. Dittmann, C. Staikov, K. Szot, Redox-based resistive switching memories nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009). https://doi.org/10.1002/adma.200900375
- Z. Wang, S. Joshi, S. Savel’Ev, W. Song, R. Midya et al., Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1(2), 137–145 (2018). https://doi.org/10.1038/s41928-018-0023-2
- H. Lim, H.W. Ahn, V. Kornijcuk, G. Kim, J.Y. Seok et al., Relaxation oscillator-realized artificial electronic neurons, their responses, and noise. Nanoscale 8(18), 9629–9640 (2016). https://doi.org/10.1039/c6nr01278g
- S. Kc, R.C. Longo, R. Addou, R.M. Wallace, K. Cho, Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers. Nanotechnology 25(37), 375703 (2014). https://doi.org/10.1088/0957-4484/25/37/375703
- W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615–2622 (2013). https://doi.org/10.1021/nl4007479
- J. Lin, S.T. Pantelides, W. Zhou, Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer. ACS Nano 9(5), 5189–5197 (2015). https://doi.org/10.1021/acsnano.5b00554
- G. Gao, Y. Jiao, F. Ma, Y. Jiao, E. Waclawik et al., Charge mediated semiconducting-to-metallic phase transition in molybdenum disulfide monolayer and hydrogen evolution reaction in new 1T′ phase. J. Phys. Chem. C 119(23), 13124–13128 (2015). https://doi.org/10.1021/acs.jpcc.5b04658
- X. Fan, P. Xu, D. Zhou, Y. Sun, Y.C. Li et al., Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett. 15(9), 5956–5960 (2015). https://doi.org/10.1021/acs.nanolett.5b02091
- M. Kan, J.Y. Wang, X.W. Li, S.H. Zhang, Y.W. Li et al., Structures and phase transition of a MoS2 monolayer. J. Phys. Chem. C 118(3), 1515–1522 (2014). https://doi.org/10.1021/jp4076355
- M. Yoshida, R. Suzuki, Y. Zhang, M. Nakano, Y. Iwasa, Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci. Adv. 1(9), 1500606 (2015). https://doi.org/10.1126/sciadv.1500606
- M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10(4), 313–318 (2015). https://doi.org/10.1038/nnano.2015.40
- Y.C. King, T.J. King, C. Hu, Charge-trap memory device fabricated by oxidation of Si1-xGex. IEEE Trans. Electron Devices. 48(4), 696–700 (2001). https://doi.org/10.1109/16.915694
- H.W. You, W.J. Cho, Charge trapping properties of the HfO2 layer with various thicknesses for charge trap flash memory applications. Appl. Phys. Lett. 96(9), 3–5 (2010). https://doi.org/10.1063/1.3337103
- A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Interface resistance switching at a few nanometer thick perovskite manganite active layers. Appl. Phys. Lett. 88(23), 86–89 (2006). https://doi.org/10.1063/1.2211147
- S.H. Kim, S.G. Yi, M.U. Park, C. Lee, M. Kim et al., Multilevel MoS2 optical memory with photoresponsive top floating gates. ACS Appl. Mater. Interfaces 11(28), 25306–25312 (2019). https://doi.org/10.1021/acsami.9b05491
- E. Zhang, W. Wang, C. Zhang, Y. Jin, G. Zhu et al., Tunable charge-trap memory based on few-layer MoS2. ACS Nano 9(1), 612–619 (2015). https://doi.org/10.1021/nn5059419
- Q.A. Vu, Y.S. Shin, Y.R. Kim, V.L. Nguyen, W.T. Kang et al., Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 7, 12725 (2016). https://doi.org/10.1038/ncomms12725
- K. A. Khair, S. S. Ahmed. Strain-dependent polar optical phonon scattering and drive current optimization in nanoscale monolayer MoS2 FETs. Electron. Mater. Lett. 16, 299–309 (2020). https://doi.org/10.1007/s13391-020-00214-3
- Z. Xu, F. Li, C. Wu, F. Ma, Y. Zheng et al., Ultrathin electronic synapse having high temporal/spatial uniformity and an Al2O3/graphene quantum dots/Al2O3 sandwich structure for neuromorphic computing. NPG Asia Mater. 11(1), 18 (2019). https://doi.org/10.1038/s41427-019-0118-x
- S. Chen, J. Huang, Recent advances in synaptic devices based on halide perovskite. ACS Appl. Electron. Mater. 2(7), 1815–1825 (2020). https://doi.org/10.1021/acsaelm.0c00180
- X.F. Lu, Y. Zhang, N. Wang, S. Luo, K. Peng et al., Exploring low power and ultrafast memristor on p-type van der Waals SnS. Nano Lett. 21(20), 8800–8807 (2021). https://doi.org/10.1021/acs.nanolett.1c03169
- G. Cao, P. Meng, J. Chen, H. Liu, R. Bian et al., 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 31(4), 2005443 (2021). https://doi.org/10.1002/adfm.202005443
- L. Zhang, T. Gong, H. Wang, Z. Guo, H. Zhang, Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale 11(26), 12413–12435 (2019). https://doi.org/10.1039/C9NR02886B
- M. Lübben, I. Valov, Active electrode redox reactions and device behavior in ECM type resistive switching memories. Adv. Electron. Mater. 5(9), 1800933 (2019). https://doi.org/10.1002/aelm.201800933
- X. Wu, R. Ge, P.A. Chen, H. Chou, Z. Zhang et al., Thinnest nonvolatile memory based on monolayer h-BN. Adv. Mater. 31(15), 1806790 (2019). https://doi.org/10.1002/adma.201806790
- H.Q. Yang, X.Y. Wang, H. Wu, B. Zhang, D.D. Xie et al., Sn vacancy engineering for enhancing the thermoelectric performance of two-dimensional SnS. J. Mater. Chem. C 7(11), 3351–3359 (2019). https://doi.org/10.1039/C8TC05711G
- K.D. Miller, Synaptic economics: Competition and cooperation in synaptic plasticity. Neuron 17(3), 371–374 (1996). https://doi.org/10.1016/S0896-6273(00)80169-5
- M. Chistiakova, N.M. Bannon, M. Bazhenov, M. Volgushev, Heterosynaptic plasticity: multiple mechanisms and multiple roles. Neuroscientist 20(5), 483–498 (2014). https://doi.org/10.1177/1073858414529829
- G. Perea, M. Navarrete, A. Araque, Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32(8), 421–431 (2009). https://doi.org/10.1016/j.tins.2009.05.001
- M. Kumar, D.K. Ban, S.M. Kim, J. Kim, C.P. Wong, Vertically aligned WS2 layers for high-performing memristors and artificial synapses. Adv. Electron. Mater. 5(10), 1900467 (2019). https://doi.org/10.1002/aelm.201900467
- M.S. Choi, G.H. Lee, Y.J. Yu, D.Y. Lee, S. Hwan Lee et al., Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013). https://doi.org/10.1038/ncomms2652
- P.E. Schulz, E.P. Cook, D. Johnston, Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J. Neurosci. 14(9), 5325–5337 (1994). https://doi.org/10.1523/JNEUROSCI.14-09-05325.1994
- D. Debanne, N.C. Guérineau, B.H. Gähwiler, S.M. Thompson, Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. J. Physiol. 491(1), 163–176 (1996). https://doi.org/10.1113/jphysiol.1996.sp021204
- F.I.M. Craik, J.M. Jennings, Human Memory (Handb. Aging Cogn, Lawrence Erlbaum Associates, 1992), pp. 51–110
- R.T. Zacks, L. Hasher, K.Z.H. Li, Human Memory. Handb. Aging Cogn. 2nd Ed., Lawrence Erlbaum Associates, 293–357 (2020).
- T. Chang, S.H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9), 7669–7676 (2011). https://doi.org/10.1021/nn202983n
- R.A. John, F. Liu, N.A. Chien, M.R. Kulkarni, C. Zhu et al., Synergistic gating of Electro-iono-photoactive 2D chalcogenide neuristors: coexistence of hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 30(25), 1800220 (2018). https://doi.org/10.1002/adma.201800220
- X. Feng, X. Liu, K.W. Ang, 2D photonic memristor beyond graphene: progress and prospects. Nanophotonics 9(7), 1579–1599 (2020). https://doi.org/10.1515/nanoph-2019-0543
- J. Yu, X. Yang, G. Gao, Y. Xiong, Y. Wang et al., Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv. 7(12), eabd9117 (2021). https://doi.org/10.1126/sciadv.abd9117
- C. Choi, J. Leem, M.S. Kim, A. Taqieddin, C. Cho et al., Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020). https://doi.org/10.1038/s41467-020-19806-6
- S. Yin, C. Song, Y. Sun, L. Qiao, B. Wang et al., Electric and light dual-gate tunable MoS2 memtransistor. ACS Appl. Mater. Interfaces 11(46), 43344–43350 (2019). https://doi.org/10.1021/acsami.9b14259
- W. Wang, S. Gao, Y. Li, W. Yue, H. Kan et al., Artificial optoelectronic synapses based on TiNxO2–x/MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 31(34), 2101201 (2021). https://doi.org/10.1002/adfm.202101201
- S. Wang, C. Chen, Z. Yu, Y. He, X. Chen et al., A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 31(3), 1806227 (2019). https://doi.org/10.1002/adma.201806227
- Z.D. Luo, X. Xia, M.M. Yang, N.R. Wilson, A. Gruverman et al., Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano 14(1), 746–754 (2020). https://doi.org/10.1021/acsnano.9b07687
- H.K. He, R. Yang, W. Zhou, H.M. Huang, J. Xiong et al., Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small 14(15), 1800079 (2018). https://doi.org/10.1002/smll.201800079
- H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan et al., Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013). https://doi.org/10.1038/ncomms3642
- H. Tan, G. Liu, X. Zhu, H. Yang, B. Chen et al., An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions. Adv. Mater. 27(17), 2797–2803 (2015). https://doi.org/10.1002/adma.201500039
- Y. Guo, X. Wei, J. Shu, B. Liu, J. Yin et al., Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors. Appl. Phys. Lett. 106(10), 103109 (2015). https://doi.org/10.1063/1.4914968
- Y. Park, H.W. Baac, J. Heo, G. Yoo, Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors. Appl. Phys. Lett. 108(8), 83102 (2016). https://doi.org/10.1063/1.4942406
- F. Ma, Y. Zhu, Z. Xu, Y. Liu, X. Zheng et al., Optoelectronic perovskite synapses for neuromorphic computing. Adv. Funct. Mater. 30(11), 1908901 (2020). https://doi.org/10.1002/adfm.201908901
- Y. Wang, J. Yang, Z. Wang, J. Chen, Q. Yang et al., Near-infrared annihilation of conductive filaments in quasiplane MoSe2/Bi2Se3 nanosheets for mimicking heterosynaptic plasticity. Small 15(7), 1805431 (2019). https://doi.org/10.1002/smll.201805431
- M. Kumar, S. Abbas, J. Kim, All-oxide-based highly transparent photonic synapse for neuromorphic computing. ACS Appl. Mater. Interfaces 10(40), 34370–34376 (2018). https://doi.org/10.1021/acsami.8b10870
- L. Yang, M. Singh, S.W. Shen, K.Y. Chih, S.W. Liu et al., Transparent and flexible inorganic perovskite photonic artificial synapses with dual-mode operation. Adv. Funct. Mater. 31(6), 2008259 (2021). https://doi.org/10.1002/adfm.202008259
- K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao et al., Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353(6296), 274–278 (2016). https://doi.org/10.1126/science.aad8609
- W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao et al., Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017). https://doi.org/10.1038/ncomms14956
- J. Chu, Y. Wang, X. Wang, K. Hu, G. Rao et al., 2D polarized materials: ferromagnetic, ferrovalley, ferroelectric materials, and related heterostructures. Adv. Mater. 33(5), 2004469 (2021). https://doi.org/10.1002/adma.202004469
- J. Guyonnet, H. Béa, P. Paruch, Lateral piezoelectric response across ferroelectric domain walls in thin films. J. Appl. Phys. 108(4), 42002 (2010). https://doi.org/10.1063/1.3474953
- K. Asadi, Resistance switching in two-terminal ferroelectric-semiconductor lateral heterostructures. Appl. Phys. Rev. 7(2), 21307 (2020). https://doi.org/10.1063/1.5128611
- L.W. Martin, A.M. Rappe, Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2(2), 16087 (2016). https://doi.org/10.1038/natrevmats.2016.87
- K.C. Kwon, Y. Zhang, L. Wang, W. Yu, X. Wang et al., In-plane ferroelectric tin monosulfide and its application in a ferroelectric analog synaptic device. ACS Nano 14(6), 7628–7638 (2020). https://doi.org/10.1021/acsnano.0c03869
- S. Boyn, J. Grollier, G. Lecerf, B. Xu, N. Locatelli et al., Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017). https://doi.org/10.1038/ncomms14736
- M.K. Kim, J.S. Lee, Ferroelectric analog synaptic transistors. Nano Lett. 19(3), 2044–2050 (2019). https://doi.org/10.1021/acs.nanolett.9b00180
- F. Xue, X. He, W. Liu, D. Periyanagounder, C. Zhang et al., Optoelectronic ferroelectric domain-wall memories made from a single van der Waals ferroelectric. Adv. Funct. Mater. 30(52), 2004206 (2020). https://doi.org/10.1002/adfm.202004206
- P.Y. Chen, X. Peng, S. Yu, NeuroSim: a circuit-level macro model for benchmarking neuro-inspired architectures in online learning. IEEE Trans. Comput. Des. Integr. Circuits Syst. 37(12), 3067–3080 (2018). https://doi.org/10.1109/TCAD.2018.2789723
- F. Zhou, Z. Zhou, J. Chen, T.H. Choy, J. Wang et al., Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14(8), 776–782 (2019). https://doi.org/10.1038/s41565-019-0501-3
- Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou et al., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30(38), 1802883 (2018). https://doi.org/10.1002/adma.201802883
- C. Liu, H. Chen, S. Wang, Q. Liu, Y.G. Jiang et al., Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15(7), 545–557 (2020). https://doi.org/10.1038/s41565-020-0724-3
- M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1(11), 16052 (2016). https://doi.org/10.1038/natrevmats.2016.52
- X. Cui, G.H. Lee, Y.D. Kim, G. Arefe, P.Y. Huang et al., Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10(6), 534–540 (2015). https://doi.org/10.1038/nnano.2015.70
- W. Zhu, V. Perebeinos, M. Freitag, P. Avouris, Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80(23), 235402 (2009). https://doi.org/10.1103/PhysRevB.80.235402
- C. Liu, H. Chen, X. Hou, H. Zhang, J. Han et al., Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 14(7), 662–667 (2019). https://doi.org/10.1038/s41565-019-0462-6
- D. Li, B. Wu, X. Zhu, J. Wang, B. Ryu et al., MoS2 memristors exhibiting variable switching characteristics toward biorealistic synaptic emulation. ACS Nano 12(9), 9240–9252 (2018). https://doi.org/10.1021/acsnano.8b03977
References
Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539
C.D. James, J.B. Aimone, N.E. Miner, C.M. Vineyard, F.H. Rothganger et al., A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications. Biol. Inspired Cogn. Archit. 19, 49–64 (2017). https://doi.org/10.1016/j.bica.2016.11.002
T. Bohnstingl, F. Scherr, C. Pehle, K. Meier, W. Maass, Neuromorphic hardware learns to learn. Front. Neurosci. 13, 483 (2019). https://doi.org/10.3389/fnins.2019.00483
G. Indiveri, E. Chicca, R.J. Douglas, Artificial cognitive systems: from VLSI networks of spiking neurons to neuromorphic cognition. Cognit. Comput. 1(2), 119–127 (2009). https://doi.org/10.1007/s12559-008-9003-6
G. Indiveri, B. Linares-Barranco, T. Hamilton, A. Schaik, R. Etienne-Cummings et al., Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011). https://doi.org/10.3389/fnins.2011.00073
S. Yu, P.Y. Chen, Emerging memory technologies: recent trends and prospects. IEEE Solid-State Circuits Mag. 8(2), 43–56 (2016). https://doi.org/10.1109/MSSC.2016.2546199
D.S. Jeong, K.M. Kim, S. Kim, B.J. Choi, C.S. Hwang, Memristors for energy-efficient new computing paradigms. Adv. Electron. Mater. 2(9), 1600090 (2016). https://doi.org/10.1002/aelm.201600090
A. Serb, A. Corna, R. George, A. Khiat, F. Rocchi et al., Memristive synapses connect brain and silicon spiking neurons. Sci. Rep. 10(1), 2590 (2020). https://doi.org/10.1038/s41598-020-58831-9
P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada et al., A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014). https://doi.org/10.1126/science.1254642
Q. Lu, F. Sun, L. Liu, L. Li, Y. Wang et al., Biological receptor-inspired flexible artificial synapse based on ionic dynamics. Microsyst. Nanoeng. 6(1), 84 (2020). https://doi.org/10.1038/s41378-020-00189-z
E. Bullmore, O. Sporns, The economy of brain network organization. Nat. Rev. Neurosci. 13(5), 336–349 (2012). https://doi.org/10.1038/nrn3214
L. Zhao, B. Beverlin, T. Netoff, D. Nykamp, Synchronization from second order network connectivity statistics. Front. Comput. Neurosci. 5, 28 (2011). https://doi.org/10.3389/fncom.2011.00028
Y. Choi, S. Oh, C. Qian, J.H. Park, J.H. Cho, Vertical organic synapse expandable to 3D crossbar array. Nat. Commun. 11(1), 4595 (2020). https://doi.org/10.1038/s41467-020-17850-w
Ö. Türel, J.H. Lee, X. Ma, K.K. Likharev, Neuromorphic architectures for nanoelectronic circuits. Int. J. Circuit Theory Appl. 32(5), 277–302 (2004)
J.J. Wang, S.G. Hu, X.T. Zhan, Q. Yu, Z. Liu et al., Handwritten-digit recognition by hybrid convolutional neural network based on HfO2 memristive spiking-neuron. Sci. Rep. 8(1), 12546 (2018). https://doi.org/10.1038/s41598-018-30768-0
A. Chanthbouala, V. Garcia, R.O. Cherifi, K. Bouzehouane, S. Fusil et al., A ferroelectric memristor. Nat. Mater. 11(10), 860–864 (2012). https://doi.org/10.1038/nmat3415
C. Qian, J. Sun, L. Kong, G. Gou, J. Yang et al., Artificial synapses based on in-plane gate organic electrochemical transistors. ACS Appl. Mater. Interfaces 8(39), 26169–26175 (2016). https://doi.org/10.1021/acsami.6b08866
L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337
L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976). https://doi.org/10.1109/PROC.1976.10092
Z. Xiao, J. Huang, Energy-efficient hybrid perovskite memristors and synaptic devices. Adv. Electron. Mater. 2(7), 1600100 (2016). https://doi.org/10.1002/aelm.201600100
G. Rachmuth, H.Z. Shouval, M.F. Bear, C.S. Poon, A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity. Proc. Natl. Acad. Sci. 108(49), E1266–E1274 (2011). https://doi.org/10.1073/pnas.1106161108
T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski et al., Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10(8), 591–595 (2011). https://doi.org/10.1038/nmat3054
C. Lee, P. Panda, G. Srinivasan, K. Roy, Training deep spiking convolutional neural networks with STDP-based unsupervised pre-training followed by supervised fine-tuning. Front. Neurosci. 12, 435 (2018). https://doi.org/10.3389/fnins.2018.00435
T. Iakymchuk, A. Rosado-Muñoz, J.F. Guerrero-Martínez, M. Bataller-Mompeán, J.V. Francés-Víllora, Simplified spiking neural network architecture and STDP learning algorithm applied to image classification. EURASIP J. Image Video Process. 2015(1), 4 (2015). https://doi.org/10.1186/s13640-015-0059-4
Y. Li, Y. Zhong, J. Zhang, L. Xu, Q. Wang et al., Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci. Rep. 4, 4906 (2014). https://doi.org/10.1038/srep04906
A.J. Arnold, A. Razavieh, J.R. Nasr, D.S. Schulman, C.M. Eichfeld et al., Mimicking neurotransmitter release in chemical synapses via hysteresis engineering in MoS2 transistors. ACS Nano 11(3), 3110–3118 (2017). https://doi.org/10.1021/acsnano.7b00113
L. Bao, J. Zhu, Z. Yu, R. Jia, Q. Cai et al., Dual-gated MoS2 neuristor for neuromorphic computing. ACS Appl. Mater. Interfaces 11(44), 41482–41489 (2019). https://doi.org/10.1021/acsami.9b10072
Z. Zhang, S. Wang, C. Liu, R. Xie, W. Hu et al., All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. (2021). https://doi.org/10.1038/s41565-021-01003-1
L. Mennel, J. Symonowicz, S. Wachter, D.K. Polyushkin, A.J. Molina-Mendoza et al., Ultrafast machine vision with 2D material neural network image sensors. Nature 579(7797), 62–66 (2020). https://doi.org/10.1038/s41586-020-2038-x
X. Hou, C. Liu, Y. Ding, L. Liu, S. Wang et al., A logic-memory transistor with the integration of visible information sensing-memory-processing. Adv. Sci. 7(21), 2002072 (2020). https://doi.org/10.1002/advs.202002072
L.R. Squire, Memory and Brain. Oxford University Press (1987).
J.D. Kendall, S. Kumar, The building blocks of a brain-inspired computer. Appl. Phys. Rev. 7(1), 011305 (2020). https://doi.org/10.1063/1.5129306
D. Marković, A. Mizrahi, D. Querlioz, J. Grollier, Physics for neuromorphic computing. Nat. Rev. Phys. 2(9), 499–510 (2020). https://doi.org/10.1038/s42254-020-0208-2
V.M. Ho, J.A. Lee, K.C. Martin, The cell biology of synaptic plasticity. Science 334(6056), 623–628 (2011). https://doi.org/10.1126/science.1209236
D. Kuzum, S. Yu, H.S.P. Wong, Synaptic electronics: materials, devices and applications. Nanotechnology 24(38), 382001 (2013). https://doi.org/10.1088/0957-4484/24/38/382001
R. Stanford, I.M. Ovshinsky, Analog models for information storage and transmission in physiological systems. Mater. Res. Bull. 5(8), 681–690 (1970). https://doi.org/10.1016/0025-5408(70)90109-1
I. Boybat, M.L. Gallo, S.R. Nandakumar, T. Moraitis, T. Parnell et al., Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9(1), 2514 (2018). https://doi.org/10.1038/s41467-018-04933-y
S.J. Martin, P.D. Grimwood, R.G.M. Morris, Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23(1), 649–711 (2000). https://doi.org/10.1146/annurev.neuro.23.1.649
J.C. Magee, C. Grienberger, Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 43(1), 95–117 (2020). https://doi.org/10.1146/annurev-neuro-090919-022842
L.F. Abbott, S.B. Nelson, Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2000). https://doi.org/10.1038/81453
N. Caporale, Y. Dan, Spike timing–dependent plasticity: a hebbian learning rule. Annu. Rev. Neurosci. 31(1), 25–46 (2008). https://doi.org/10.1146/annurev.neuro.31.060407.125639
M. Ziegler, C. Riggert, M. Hansen, T. Bartsch, H. Kohlstedt, Memristive hebbian plasticity model: device requirements for the emulation of hebbian plasticity based on memristive devices. IEEE Trans. Biomed. Circuits Syst. 9(2), 197–206 (2015). https://doi.org/10.1109/TBCAS.2015.2410811
S. Choi, S. Jang, J.H. Moon, J.C. Kim, H.Y. Jeong et al., A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems. NPG Asia Mater. 10(12), 1097–1106 (2018). https://doi.org/10.1038/s41427-018-0101-y
K.H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain et al., A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12(1), 389–395 (2012). https://doi.org/10.1021/nl203687n
M. Hu, J.P. Strachan, Z. Li, E.M. Grafals, N. Davila et al., Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate matrix-vector multiplication, in Proceedings of the 53rd Annual Design Automation Conference, Association for Computing Machinery, New York, NY, USA, (2016). https://doi.org/10.1145/2897937.2898010
Y. Jeong, W. Lu, Neuromorphic computing using memristor crossbar networks: a focus on bio-inspired approaches. IEEE Nanotechnol. Mag. 12(3), 6–18 (2018). https://doi.org/10.1109/MNANO.2018.2844901
B. Li, S. Li, H. Wang, L. Chen, L. Liu et al., An electronic synapse based on 2D ferroelectric CuInP2S6. Adv. Electron. Mater. 6(12), 2000760 (2020). https://doi.org/10.1002/aelm.202000760
F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010). https://doi.org/10.1038/nnano.2010.89
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005). https://doi.org/10.1038/nature04233
W. Zhang, Q. Wang, Y. Chen, Z. Wang, A.T.S. Wee, Van der Waals stacked 2D layered materials for optoelectronics. 2D Mater. 3(2), 22001 (2016). https://doi.org/10.1088/2053-1583/3/2/022001
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H.C. Neto, 2D materials and van der Waals heterostructures. Science 353(6298), 9439 (2016). https://doi.org/10.1126/science.aac9439
Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248), 820–823 (2009). https://doi.org/10.1038/nature08105
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
Z. Hu, Z. Wu, C. Han, J. He, Z. Ni et al., Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 47(9), 3100–3128 (2018). https://doi.org/10.1039/C8CS00024G
D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2), 1102–1120 (2014). https://doi.org/10.1021/nn500064s
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
X. Zhu, D. Li, X. Liang, W.D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18(2), 141–148 (2019). https://doi.org/10.1038/s41563-018-0248-5
F. Zhang, H. Zhang, S. Krylyuk, C.A. Milligan, Y. Zhu et al., Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories. Nat. Mater. 18(1), 55–61 (2019). https://doi.org/10.1038/s41563-018-0234-y
X. Tao, Y. Gu, Crystalline–crystalline phase transformation in two-dimensional In2Se3 thin layers. Nano Lett. 13(8), 3501–3505 (2013). https://doi.org/10.1021/nl400888p
M. Soleimani, M. Pourfath, Ferroelectricity and phase transitions in In2Se3 van der Waals material. Nanoscale 12(44), 22688–22697 (2020). https://doi.org/10.1039/D0NR04096G
Y. Shi, X. Liang, B. Yuan, V. Chen, H. Li et al., Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1(8), 458–465 (2018). https://doi.org/10.1038/s41928-018-0118-9
M. Wang, S. Cai, C. Pan, C. Wang, X. Lian et al., Robust memristors based on layered two-dimensional materials. Nat. Electron. 1(2), 130–136 (2018). https://doi.org/10.1038/s41928-018-0021-4
R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde et al., Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18(1), 434–441 (2018). https://doi.org/10.1021/acs.nanolett.7b04342
Q. Zhao, Z. Xie, Y.P. Peng, K. Wang, H. Wang et al., Current status and prospects of memristors based on novel 2D materials. Mater. Horizons. 7(6), 1495–1518 (2020). https://doi.org/10.1039/c9mh02033k
H. Li, L. Tao, J.B. Xu, Intrinsic memristive mechanisms in 2D layered materials for high-performance memory. J. Appl. Phys. 129(5), 50902 (2021). https://doi.org/10.1063/5.0035764
R. Ge, X. Wu, L. Liang, S.M. Hus, Y. Gu et al., A library of atomically thin 2D materials featuring the conductive-point resistive switching phenomenon. Adv. Mater. 33(7), 2007792 (2021). https://doi.org/10.1002/adma.202007792
H.K. He, F.F. Yang, R. Yang, Flexible full two-dimensional memristive synapses of graphene/WSe2−xOy/graphene. Phys. Chem. Chem. Phys. 22(36), 20658–20664 (2020). https://doi.org/10.1039/D0CP03822A
T.J. Ko, M. Wang, C. Yoo, E. Okogbue, M.A. Islam et al., Large-area 2D TMD layers for mechanically reconfigurable electronic devices. J. Phys. D. Appl. Phys. 53(31), 313002 (2020). https://doi.org/10.1088/1361-6463/ab87bb
J.L. Meng, T.Y. Wang, L. Chen, Q.Q. Sun, H. Zhu et al., Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application. Nano Energy 83, 105815 (2021). https://doi.org/10.1016/j.nanoen.2021.105815
P. Ajayan, P. Kim, K. Banerjee, Two-dimensional van der Waals materials. Phys. Today 69(9), 38–44 (2016). https://doi.org/10.1063/PT.3.3297
L. Sun, Y. Zhang, G. Han, G. Hwang, J. Jiang et al., Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10(1), 3161 (2019). https://doi.org/10.1038/s41467-019-11187-9
E. Lee, S.G. Lee, W.H. Lee, H.C. Lee, N.N. Nguyen et al., Direct CVD growth of a graphene/MoS2 heterostructure with interfacial bonding for two-dimensional electronics. Chem. Mater. 32(11), 4544–4552 (2020). https://doi.org/10.1021/acs.chemmater.0c00503
Z. Huang, W. Han, H. Tang, L. Ren, D.S. Chander et al., Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater. 2(3), 35011 (2015). https://doi.org/10.1088/2053-1583/2/3/035011
Y. Ren, L. Hu, J.Y. Mao, J. Yuan, Y.J. Zeng et al., Phosphorene nano-heterostructure based memristors with broadband response synaptic plasticity. J. Mater. Chem. C 6(35), 9383–9393 (2018). https://doi.org/10.1039/C8TC03089H
W. Zhang, H. Gao, C. Deng, T. Lv, S. Hu et al., An ultrathin memristor based on a two-dimensional WS2/MoS2 heterojunction. Nanoscale 13(26), 11497–11504 (2021). https://doi.org/10.1039/D1NR01683K
Z. Lin, B.R. Carvalho, E. Kahn, R. Lv, R. Rao et al., Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 3(2), 22002 (2016). https://doi.org/10.1088/2053-1583/3/2/022002
Q. Liang, Q. Zhang, X. Zhao, M. Liu, A.T.S. Wee, Defect engineering of two-dimensional transition-metal dichalcogenides: applications, challenges, and opportunities. ACS Nano 15(2), 2165–2181 (2021). https://doi.org/10.1021/acsnano.0c09666
Y.C. Lin, D.O. Dumcenco, Y.S. Huang, K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9(5), 391–396 (2014). https://doi.org/10.1038/nnano.2014.64
Y. Cheng, A. Nie, Q. Zhang, L.Y. Gan, R. Shahbazian-Yassar et al., Origin of the phase transition in lithiated molybdenum disulfide. ACS Nano 8(11), 11447–11453 (2014). https://doi.org/10.1021/nn505668c
J. Huang, X. Pan, X. Liao, M. Yan, B. Dunn et al., In situ monitoring of the electrochemically induced phase transition of thermodynamically metastable 1T-MoS2 at nanoscale. Nanoscale 12(16), 9246–9254 (2020). https://doi.org/10.1039/D0NR02161J
K. Zhang, B.M. Bersch, J. Joshi, R. Addou, C.R. Cormier et al., Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping. Adv. Funct. Mater. 28(16), 1706950 (2018). https://doi.org/10.1002/adfm.201706950
X. Li, A.A. Puretzky, X. Sang, S. KC, M. Tian, et al., Suppression of defects and deep levels using isoelectronic tungsten substitution in monolayer MoSe2. Adv. Funct. Mater. 27(19), 1650 (2017). https://doi.org/10.1002/adfm.201770119
X. Li, M.W. Lin, L. Basile, S.M. Hus, A.A. Puretzky et al., Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation. Adv. Mater. 28(37), 8240–8247 (2016). https://doi.org/10.1002/adma.201601991
A.Y. Lu, H. Zhu, J. Xiao, C.P. Chuu, Y. Han et al., Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12(8), 744–749 (2017). https://doi.org/10.1038/nnano.2017.100
C. Cui, F. Xue, W.J. Hu, L.J. Li, Two-dimensional materials with piezoelectric and ferroelectric functionalities. NPJ D Mater. Appl. 2(1), 18 (2018). https://doi.org/10.1038/s41699-018-0063-5
K.A.N. Duerloo, M.T. Ong, E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3(19), 2871–2876 (2012). https://doi.org/10.1021/jz3012436
A.V. Bune, V.M. Fridkin, S. Ducharme, L.M. Blinov, S.P. Palto et al., Two-dimensional ferroelectric films. Nature 391(6670), 874–877 (1998). https://doi.org/10.1038/36069
S. Seo, S.H. Jo, S. Kim, J. Shim, S. Oh et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018). https://doi.org/10.1038/s41467-018-07572-5
R. Fei, W. Li, J. Li, L. Yang, Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 107(17), 173104 (2015). https://doi.org/10.1063/1.4934750
D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt et al., Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75(7), 76502 (2012). https://doi.org/10.1088/0034-4885/75/7/076502
S. Oh, T. Kim, M. Kwak, J. Song, J. Woo et al., HfZrOx-based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications. IEEE Electron Device Lett. 38(6), 732–735 (2017). https://doi.org/10.1109/LED.2017.2698083
Y. Zhang, L. Wang, H. Chen, T. Ma, X. Lu et al., Analog and digital mode α-In2Se3 memristive devices for neuromorphic and memory applications. Adv. Electron. Mater. 2100609 (2021). https://doi.org/10.1002/aelm.202100609
M. Osada, T. Sasaki, The rise of 2D dielectrics/ferroelectrics. APL Mater. 7(12), 120902 (2019). https://doi.org/10.1063/1.5129447
T. Horiuchi, M. Takahashi, K. Ohhashi, S. Sakai, Memory window widening of Pt/SrBi2Ta2O9/HfO2/Si ferroelectric-gate field-effect transistors by nitriding Si. Semicond. Sci. Technol. 24(10), 105026 (2009). https://doi.org/10.1088/0268-1242/24/10/105026
T. Fukushima, T. Yoshimura, K. Masuko, K. Maeda, A. Ashida et al., Electrical characteristics of controlled-polarization-type ferroelectric-gate field-effect transistor. Japaneses J. Appl. Phys. 47(12), 8874–8879 (2008). https://doi.org/10.1143/jjap.47.8874
S.N. Shirodkar, U.V. Waghmare, Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 112(15), 157601 (2014). https://doi.org/10.1103/PhysRevLett.112.157601
G.B. Liu, D. Xiao, Y. Yao, X. Xu, W. Yao, Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44(9), 2643–2663 (2015). https://doi.org/10.1039/C4CS00301B
L. Qi, S. Ruan, Y.J. Zeng, Review on recent developments in 2D ferroelectrics: Theories and applications. Adv. Mater. 33(13), 2005098 (2021). https://doi.org/10.1002/adma.202005098
H. Qiao, C. Wang, W.S. Choi, M.H. Park, Y. Kim, Ultra-thin ferroelectrics. Mater. Sci. Eng. R Rep. 145, 100622 (2021). https://doi.org/10.1016/j.mser.2021.100622
F. Liu, L. You, K.L. Seyler, X. Li, P. Yu et al., Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016). https://doi.org/10.1038/ncomms12357
C. Cui, W.J. Hu, X. Yan, C. Addiego, W. Gao et al., Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 18(2), 1253–1258 (2018). https://doi.org/10.1021/acs.nanolett.7b04852
M. Wu, S. Dong, K. Yao, J. Liu, X.C. Zeng, Ferroelectricity in covalently functionalized two-dimensional materials: integration of high-mobility semiconductors and nonvolatile memory. Nano Lett. 16(11), 7309–7315 (2016). https://doi.org/10.1021/acs.nanolett.6b04309
J.H. Lee, J.Y. Park, E.B. Cho, T.Y. Kim, S.A. Han et al., Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Adv. Mater. 29(29), 1606667 (2017). https://doi.org/10.1002/adma.201606667
S. Wan, Y. Li, W. Li, X. Mao, W. Zhu et al., Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale 10(31), 14885–14892 (2018). https://doi.org/10.1039/C8NR04422H
G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha et al., Recent advances in two-dimensional materials beyond graphene. ACS Nano 9(12), 11509–11539 (2015). https://doi.org/10.1021/acsnano.5b05556
R. Xu, H. Jang, M.H. Lee, D. Amanov, Y. Cho et al., Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 19(4), 2411–2417 (2019). https://doi.org/10.1021/acs.nanolett.8b05140
K. Wang, L. Li, R. Zhao, J. Zhao, Z. Zhou et al., A pure 2H-MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator. Adv. Electron. Mater. 6(3), 1901342 (2020). https://doi.org/10.1002/aelm.201901342
D. Dev, A. Krishnaprasad, M.S. Shawkat, Z. He, S. Das et al., 2D MoS2-based threshold switching memristor for artificial neuron. IEEE Electron Device Lett. 41(6), 936–939 (2020). https://doi.org/10.1109/LED.2020.2988247
T.J. Ko, H. Li, S.A. Mofid, C. Yoo, E. Okogbue et al., Two-dimensional near-atom-thickness materials for emerging neuromorphic devices and applications. IScience 23(11), 101676 (2020). https://doi.org/10.1016/j.isci.2020.101676
X. Yan, C. Qin, C. Lu, J. Zhao, R. Zhao et al., Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing. ACS Appl. Mater. Interfaces 11(51), 48029–48038 (2019). https://doi.org/10.1021/acsami.9b17160
X. Yan, Q. Zhao, A.P. Chen, J. Zhao, Z. Zhou et al., Vacancy-induced synaptic behavior in 2D WS2 nanosheet–based memristor for low-power neuromorphic computing. Small 15(24), 1901423 (2019). https://doi.org/10.1002/smll.201901423
W. Huh, S. Jang, J.Y. Lee, D. Lee, D. Lee et al., Synaptic barristor based on phase-engineered 2D heterostructures. Adv. Mater. 30(35), 1801447 (2018). https://doi.org/10.1002/adma.201801447
A.A. Bessonov, M.N. Kirikova, D.I. Petukhov, M. Allen, T. Ryhänen et al., Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14(2), 199–204 (2015). https://doi.org/10.1038/nmat4135
P. Cheng, K. Sun, Y.H. Hu, Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano Lett. 16(1), 572–576 (2016). https://doi.org/10.1021/acs.nanolett.5b04260
H. Chen, C. Liu, Z. Wu, Y. He, Z. Wang et al., Time-tailoring van der Waals heterostructures for human memory system programming. Adv. Sci. 6(20), 1901072 (2019). https://doi.org/10.1002/advs.201901072
T. Paul, T. Ahmed, K.K. Tiwari, C.S. Thakur, A. Ghosh, A high-performance MoS2 synaptic device with floating gate engineering for neuromorphic computing. 2D Mater. 6(4), 45008 (2019). https://doi.org/10.1088/2053-1583/ab23ba
A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11(6), 28–36 (2008). https://doi.org/10.1016/S1369-7021(08)70119-6
R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nanosci. Technol. 158–165 (2009). https://doi.org/10.1142/9789814287005_0016
R. Waser, R. Dittmann, C. Staikov, K. Szot, Redox-based resistive switching memories nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009). https://doi.org/10.1002/adma.200900375
Z. Wang, S. Joshi, S. Savel’Ev, W. Song, R. Midya et al., Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1(2), 137–145 (2018). https://doi.org/10.1038/s41928-018-0023-2
H. Lim, H.W. Ahn, V. Kornijcuk, G. Kim, J.Y. Seok et al., Relaxation oscillator-realized artificial electronic neurons, their responses, and noise. Nanoscale 8(18), 9629–9640 (2016). https://doi.org/10.1039/c6nr01278g
S. Kc, R.C. Longo, R. Addou, R.M. Wallace, K. Cho, Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers. Nanotechnology 25(37), 375703 (2014). https://doi.org/10.1088/0957-4484/25/37/375703
W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615–2622 (2013). https://doi.org/10.1021/nl4007479
J. Lin, S.T. Pantelides, W. Zhou, Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer. ACS Nano 9(5), 5189–5197 (2015). https://doi.org/10.1021/acsnano.5b00554
G. Gao, Y. Jiao, F. Ma, Y. Jiao, E. Waclawik et al., Charge mediated semiconducting-to-metallic phase transition in molybdenum disulfide monolayer and hydrogen evolution reaction in new 1T′ phase. J. Phys. Chem. C 119(23), 13124–13128 (2015). https://doi.org/10.1021/acs.jpcc.5b04658
X. Fan, P. Xu, D. Zhou, Y. Sun, Y.C. Li et al., Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett. 15(9), 5956–5960 (2015). https://doi.org/10.1021/acs.nanolett.5b02091
M. Kan, J.Y. Wang, X.W. Li, S.H. Zhang, Y.W. Li et al., Structures and phase transition of a MoS2 monolayer. J. Phys. Chem. C 118(3), 1515–1522 (2014). https://doi.org/10.1021/jp4076355
M. Yoshida, R. Suzuki, Y. Zhang, M. Nakano, Y. Iwasa, Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci. Adv. 1(9), 1500606 (2015). https://doi.org/10.1126/sciadv.1500606
M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10(4), 313–318 (2015). https://doi.org/10.1038/nnano.2015.40
Y.C. King, T.J. King, C. Hu, Charge-trap memory device fabricated by oxidation of Si1-xGex. IEEE Trans. Electron Devices. 48(4), 696–700 (2001). https://doi.org/10.1109/16.915694
H.W. You, W.J. Cho, Charge trapping properties of the HfO2 layer with various thicknesses for charge trap flash memory applications. Appl. Phys. Lett. 96(9), 3–5 (2010). https://doi.org/10.1063/1.3337103
A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Interface resistance switching at a few nanometer thick perovskite manganite active layers. Appl. Phys. Lett. 88(23), 86–89 (2006). https://doi.org/10.1063/1.2211147
S.H. Kim, S.G. Yi, M.U. Park, C. Lee, M. Kim et al., Multilevel MoS2 optical memory with photoresponsive top floating gates. ACS Appl. Mater. Interfaces 11(28), 25306–25312 (2019). https://doi.org/10.1021/acsami.9b05491
E. Zhang, W. Wang, C. Zhang, Y. Jin, G. Zhu et al., Tunable charge-trap memory based on few-layer MoS2. ACS Nano 9(1), 612–619 (2015). https://doi.org/10.1021/nn5059419
Q.A. Vu, Y.S. Shin, Y.R. Kim, V.L. Nguyen, W.T. Kang et al., Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 7, 12725 (2016). https://doi.org/10.1038/ncomms12725
K. A. Khair, S. S. Ahmed. Strain-dependent polar optical phonon scattering and drive current optimization in nanoscale monolayer MoS2 FETs. Electron. Mater. Lett. 16, 299–309 (2020). https://doi.org/10.1007/s13391-020-00214-3
Z. Xu, F. Li, C. Wu, F. Ma, Y. Zheng et al., Ultrathin electronic synapse having high temporal/spatial uniformity and an Al2O3/graphene quantum dots/Al2O3 sandwich structure for neuromorphic computing. NPG Asia Mater. 11(1), 18 (2019). https://doi.org/10.1038/s41427-019-0118-x
S. Chen, J. Huang, Recent advances in synaptic devices based on halide perovskite. ACS Appl. Electron. Mater. 2(7), 1815–1825 (2020). https://doi.org/10.1021/acsaelm.0c00180
X.F. Lu, Y. Zhang, N. Wang, S. Luo, K. Peng et al., Exploring low power and ultrafast memristor on p-type van der Waals SnS. Nano Lett. 21(20), 8800–8807 (2021). https://doi.org/10.1021/acs.nanolett.1c03169
G. Cao, P. Meng, J. Chen, H. Liu, R. Bian et al., 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 31(4), 2005443 (2021). https://doi.org/10.1002/adfm.202005443
L. Zhang, T. Gong, H. Wang, Z. Guo, H. Zhang, Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale 11(26), 12413–12435 (2019). https://doi.org/10.1039/C9NR02886B
M. Lübben, I. Valov, Active electrode redox reactions and device behavior in ECM type resistive switching memories. Adv. Electron. Mater. 5(9), 1800933 (2019). https://doi.org/10.1002/aelm.201800933
X. Wu, R. Ge, P.A. Chen, H. Chou, Z. Zhang et al., Thinnest nonvolatile memory based on monolayer h-BN. Adv. Mater. 31(15), 1806790 (2019). https://doi.org/10.1002/adma.201806790
H.Q. Yang, X.Y. Wang, H. Wu, B. Zhang, D.D. Xie et al., Sn vacancy engineering for enhancing the thermoelectric performance of two-dimensional SnS. J. Mater. Chem. C 7(11), 3351–3359 (2019). https://doi.org/10.1039/C8TC05711G
K.D. Miller, Synaptic economics: Competition and cooperation in synaptic plasticity. Neuron 17(3), 371–374 (1996). https://doi.org/10.1016/S0896-6273(00)80169-5
M. Chistiakova, N.M. Bannon, M. Bazhenov, M. Volgushev, Heterosynaptic plasticity: multiple mechanisms and multiple roles. Neuroscientist 20(5), 483–498 (2014). https://doi.org/10.1177/1073858414529829
G. Perea, M. Navarrete, A. Araque, Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32(8), 421–431 (2009). https://doi.org/10.1016/j.tins.2009.05.001
M. Kumar, D.K. Ban, S.M. Kim, J. Kim, C.P. Wong, Vertically aligned WS2 layers for high-performing memristors and artificial synapses. Adv. Electron. Mater. 5(10), 1900467 (2019). https://doi.org/10.1002/aelm.201900467
M.S. Choi, G.H. Lee, Y.J. Yu, D.Y. Lee, S. Hwan Lee et al., Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013). https://doi.org/10.1038/ncomms2652
P.E. Schulz, E.P. Cook, D. Johnston, Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J. Neurosci. 14(9), 5325–5337 (1994). https://doi.org/10.1523/JNEUROSCI.14-09-05325.1994
D. Debanne, N.C. Guérineau, B.H. Gähwiler, S.M. Thompson, Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. J. Physiol. 491(1), 163–176 (1996). https://doi.org/10.1113/jphysiol.1996.sp021204
F.I.M. Craik, J.M. Jennings, Human Memory (Handb. Aging Cogn, Lawrence Erlbaum Associates, 1992), pp. 51–110
R.T. Zacks, L. Hasher, K.Z.H. Li, Human Memory. Handb. Aging Cogn. 2nd Ed., Lawrence Erlbaum Associates, 293–357 (2020).
T. Chang, S.H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9), 7669–7676 (2011). https://doi.org/10.1021/nn202983n
R.A. John, F. Liu, N.A. Chien, M.R. Kulkarni, C. Zhu et al., Synergistic gating of Electro-iono-photoactive 2D chalcogenide neuristors: coexistence of hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 30(25), 1800220 (2018). https://doi.org/10.1002/adma.201800220
X. Feng, X. Liu, K.W. Ang, 2D photonic memristor beyond graphene: progress and prospects. Nanophotonics 9(7), 1579–1599 (2020). https://doi.org/10.1515/nanoph-2019-0543
J. Yu, X. Yang, G. Gao, Y. Xiong, Y. Wang et al., Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv. 7(12), eabd9117 (2021). https://doi.org/10.1126/sciadv.abd9117
C. Choi, J. Leem, M.S. Kim, A. Taqieddin, C. Cho et al., Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020). https://doi.org/10.1038/s41467-020-19806-6
S. Yin, C. Song, Y. Sun, L. Qiao, B. Wang et al., Electric and light dual-gate tunable MoS2 memtransistor. ACS Appl. Mater. Interfaces 11(46), 43344–43350 (2019). https://doi.org/10.1021/acsami.9b14259
W. Wang, S. Gao, Y. Li, W. Yue, H. Kan et al., Artificial optoelectronic synapses based on TiNxO2–x/MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 31(34), 2101201 (2021). https://doi.org/10.1002/adfm.202101201
S. Wang, C. Chen, Z. Yu, Y. He, X. Chen et al., A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 31(3), 1806227 (2019). https://doi.org/10.1002/adma.201806227
Z.D. Luo, X. Xia, M.M. Yang, N.R. Wilson, A. Gruverman et al., Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano 14(1), 746–754 (2020). https://doi.org/10.1021/acsnano.9b07687
H.K. He, R. Yang, W. Zhou, H.M. Huang, J. Xiong et al., Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small 14(15), 1800079 (2018). https://doi.org/10.1002/smll.201800079
H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan et al., Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013). https://doi.org/10.1038/ncomms3642
H. Tan, G. Liu, X. Zhu, H. Yang, B. Chen et al., An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions. Adv. Mater. 27(17), 2797–2803 (2015). https://doi.org/10.1002/adma.201500039
Y. Guo, X. Wei, J. Shu, B. Liu, J. Yin et al., Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors. Appl. Phys. Lett. 106(10), 103109 (2015). https://doi.org/10.1063/1.4914968
Y. Park, H.W. Baac, J. Heo, G. Yoo, Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors. Appl. Phys. Lett. 108(8), 83102 (2016). https://doi.org/10.1063/1.4942406
F. Ma, Y. Zhu, Z. Xu, Y. Liu, X. Zheng et al., Optoelectronic perovskite synapses for neuromorphic computing. Adv. Funct. Mater. 30(11), 1908901 (2020). https://doi.org/10.1002/adfm.201908901
Y. Wang, J. Yang, Z. Wang, J. Chen, Q. Yang et al., Near-infrared annihilation of conductive filaments in quasiplane MoSe2/Bi2Se3 nanosheets for mimicking heterosynaptic plasticity. Small 15(7), 1805431 (2019). https://doi.org/10.1002/smll.201805431
M. Kumar, S. Abbas, J. Kim, All-oxide-based highly transparent photonic synapse for neuromorphic computing. ACS Appl. Mater. Interfaces 10(40), 34370–34376 (2018). https://doi.org/10.1021/acsami.8b10870
L. Yang, M. Singh, S.W. Shen, K.Y. Chih, S.W. Liu et al., Transparent and flexible inorganic perovskite photonic artificial synapses with dual-mode operation. Adv. Funct. Mater. 31(6), 2008259 (2021). https://doi.org/10.1002/adfm.202008259
K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao et al., Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353(6296), 274–278 (2016). https://doi.org/10.1126/science.aad8609
W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao et al., Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017). https://doi.org/10.1038/ncomms14956
J. Chu, Y. Wang, X. Wang, K. Hu, G. Rao et al., 2D polarized materials: ferromagnetic, ferrovalley, ferroelectric materials, and related heterostructures. Adv. Mater. 33(5), 2004469 (2021). https://doi.org/10.1002/adma.202004469
J. Guyonnet, H. Béa, P. Paruch, Lateral piezoelectric response across ferroelectric domain walls in thin films. J. Appl. Phys. 108(4), 42002 (2010). https://doi.org/10.1063/1.3474953
K. Asadi, Resistance switching in two-terminal ferroelectric-semiconductor lateral heterostructures. Appl. Phys. Rev. 7(2), 21307 (2020). https://doi.org/10.1063/1.5128611
L.W. Martin, A.M. Rappe, Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2(2), 16087 (2016). https://doi.org/10.1038/natrevmats.2016.87
K.C. Kwon, Y. Zhang, L. Wang, W. Yu, X. Wang et al., In-plane ferroelectric tin monosulfide and its application in a ferroelectric analog synaptic device. ACS Nano 14(6), 7628–7638 (2020). https://doi.org/10.1021/acsnano.0c03869
S. Boyn, J. Grollier, G. Lecerf, B. Xu, N. Locatelli et al., Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017). https://doi.org/10.1038/ncomms14736
M.K. Kim, J.S. Lee, Ferroelectric analog synaptic transistors. Nano Lett. 19(3), 2044–2050 (2019). https://doi.org/10.1021/acs.nanolett.9b00180
F. Xue, X. He, W. Liu, D. Periyanagounder, C. Zhang et al., Optoelectronic ferroelectric domain-wall memories made from a single van der Waals ferroelectric. Adv. Funct. Mater. 30(52), 2004206 (2020). https://doi.org/10.1002/adfm.202004206
P.Y. Chen, X. Peng, S. Yu, NeuroSim: a circuit-level macro model for benchmarking neuro-inspired architectures in online learning. IEEE Trans. Comput. Des. Integr. Circuits Syst. 37(12), 3067–3080 (2018). https://doi.org/10.1109/TCAD.2018.2789723
F. Zhou, Z. Zhou, J. Chen, T.H. Choy, J. Wang et al., Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14(8), 776–782 (2019). https://doi.org/10.1038/s41565-019-0501-3
Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou et al., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30(38), 1802883 (2018). https://doi.org/10.1002/adma.201802883
C. Liu, H. Chen, S. Wang, Q. Liu, Y.G. Jiang et al., Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15(7), 545–557 (2020). https://doi.org/10.1038/s41565-020-0724-3
M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1(11), 16052 (2016). https://doi.org/10.1038/natrevmats.2016.52
X. Cui, G.H. Lee, Y.D. Kim, G. Arefe, P.Y. Huang et al., Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10(6), 534–540 (2015). https://doi.org/10.1038/nnano.2015.70
W. Zhu, V. Perebeinos, M. Freitag, P. Avouris, Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80(23), 235402 (2009). https://doi.org/10.1103/PhysRevB.80.235402
C. Liu, H. Chen, X. Hou, H. Zhang, J. Han et al., Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 14(7), 662–667 (2019). https://doi.org/10.1038/s41565-019-0462-6
D. Li, B. Wu, X. Zhu, J. Wang, B. Ryu et al., MoS2 memristors exhibiting variable switching characteristics toward biorealistic synaptic emulation. ACS Nano 12(9), 9240–9252 (2018). https://doi.org/10.1021/acsnano.8b03977