Flexible Monolithic 3D-Integrated Self-Powered Tactile Sensing Array Based on Holey MXene Paste
Corresponding Author: Yang Yue
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 68
Abstract
Flexible electronics face critical challenges in achieving monolithic three-dimensional (3D) integration, including material compatibility, structural stability, and scalable fabrication methods. Inspired by the tactile sensing mechanism of the human skin, we have developed a flexible monolithic 3D-integrated tactile sensing system based on a holey MXene paste, where each vertical one-body unit simultaneously functions as a microsupercapacitor and pressure sensor. The in-plane mesopores of MXene significantly improve ion accessibility, mitigate the self-stacking of nanosheets, and allow the holey MXene to multifunctionally act as a sensing material, an active electrode, and a conductive interconnect, thus drastically reducing the interface mismatch and enhancing the mechanical robustness. Furthermore, we fabricate a large-scale device using a blade-coating and stamping method, which demonstrates excellent mechanical flexibility, low-power consumption, rapid response, and stable long-term operation. As a proof-of-concept application, we integrate our sensing array into a smart access control system, leveraging deep learning to accurately identify users based on their unique pressing behaviors. This study provides a promising approach for designing highly integrated, intelligent, and flexible electronic systems for advanced human–computer interactions and personalized electronics.
Highlights:
1 A flexible monolithic 3D-integrated tactile sensing system, inspired by the tactile perception mechanism of human skin, was developed based on a holey MXene paste.
2 Large-scale device fabrication was achieved using blade-coating and imprinting methods, demonstrating excellent mechanical flexibility, low-power consumption, fast response, and stable long-term performance.
3 The sensor array was integrated into a smart access control system, leveraging deep learning to achieve precise identification based on the unique pressing behaviors of users.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Zheng, X. Shi, P. Das, Z.-S. Wu, X. Bao, The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries. Adv. Mater. 31(50), 1900583 (2019). https://doi.org/10.1002/adma.201900583
- G. Li, Z. Ma, C. You, G. Huang, E. Song et al., Silicon nanomembrane phototransistor flipped with multifunctional sensors toward smart digital dust. Sci. Adv. 6(18), eaaz6511 (2020). https://doi.org/10.1126/sciadv.aaz6511
- C. Ye, M. Wang, J. Min, R.Y. Tay, H. Lukas et al., A wearable aptamer nanobiosensor for non-invasive female hormone monitoring. Nat. Nanotechnol. 19(3), 330–337 (2024). https://doi.org/10.1038/s41565-023-01513-0
- P. Wang, G. Sun, S. Hua, W. Yu, C. Meng et al., Multifunctional all-nanofiber cloth integrating personal health monitoring and thermal regulation capabilities. InfoMat 7(1), e12629 (2025). https://doi.org/10.1002/inf2.12629
- Y. Li, Z. Tian, X.-Z. Gao, H.-Y. Zhao, X. Li et al., All-weather self-powered intelligent traffic monitoring system based on a conjunction of self-healable piezoresistive sensors and triboelectric nanogenerators. Adv. Funct. Mater. 33(52), 2308845 (2023). https://doi.org/10.1002/adfm.202308845
- J.-Y. Yoo, S. Oh, W. Shalish, W.-Y. Maeng, E. Cerier et al., Wireless broadband acousto-mechanical sensing system for continuous physiological monitoring. Nat. Med. 29(12), 3137–3148 (2023). https://doi.org/10.1038/s41591-023-02637-5
- H. Cho, I. Lee, J. Jang, J.-H. Kim, H. Lee et al., Real-time finger motion recognition using skin-conformable electronics. Nat. Electron. 6(8), 619–629 (2023). https://doi.org/10.1038/s41928-023-01012-z
- P. Wang, G. Wang, G. Sun, C. Bao, Y. Li et al., A flexible-integrated multimodal hydrogel-based sensing patch. Nano-Micro Lett. 17(1), 156 (2025). https://doi.org/10.1007/s40820-025-01656-w
- P. Wang, X. Li, G. Sun, G. Wang, Q. Han et al., Natural human skin-inspired wearable and breathable nanofiber-based sensors with excellent thermal management functionality. Adv. Fiber Mater. 6(6), 1955–1968 (2024). https://doi.org/10.1007/s42765-024-00464-y
- J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15(1), 181 (2023). https://doi.org/10.1007/s40820-023-01156-9
- H. Huang, X. Chu, Y. Xie, B. Zhang, Z. Wang et al., Ti3C2Tx MXene-based micro-supercapacitors with ultrahigh volumetric energy density for all-in-one Si-electronics. ACS Nano 16(3), 3776–3784 (2022). https://doi.org/10.1021/acsnano.1c08172
- Y. Zhang, L. Wang, L. Zhao, K. Wang, Y. Zheng et al., Flexible self-powered integrated sensing system with 3D periodic ordered black Phosphorus@MXene thin-films. Adv. Mater. 33(22), e2007890 (2021). https://doi.org/10.1002/adma.202007890
- J. Ye, H. Tan, S. Wu, K. Ni, F. Pan et al., Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output. Adv. Mater. 30(27), e1801384 (2018). https://doi.org/10.1002/adma.201801384
- D. Lu, Y. Chen, Z. Lu, L. Ma, Q. Tao et al., Monolithic three-dimensional tier-by-tier integration via van der Waals lamination. Nature 630(8016), 340–345 (2024). https://doi.org/10.1038/s41586-024-07406-z
- J.-H. Kang, H. Shin, K.S. Kim, M.-K. Song, D. Lee et al., Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22(12), 1470–1477 (2023). https://doi.org/10.1038/s41563-023-01704-z
- S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 33(47), 2005902 (2021). https://doi.org/10.1002/adma.202005902
- G. Sun, Z. Sun, P. Wang, Z. Zhang, C. Meng et al., Breathable, hydrophobic and antibacterial bioinspired fabric pressure sensors for comfortable skin-mountable health monitoring. Chem. Eng. J. 506, 159808 (2025). https://doi.org/10.1016/j.cej.2025.159808
- J. Dong, Y. Peng, J. Long, Y. Zhang, Z. Wang et al., An all-stretchable, ultraviolet protective, and electromagnetic-interference-free e-textile. Adv. Funct. Mater. 33(45), 2308426 (2023). https://doi.org/10.1002/adfm.202308426
- J. Dong, D. Wang, Y. Peng, C. Zhang, F. Lai et al., Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy 97, 107160 (2022). https://doi.org/10.1016/j.nanoen.2022.107160
- Y. Liu, J. Liu, S. Chen, T. Lei, Y. Kim et al., Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3(1), 58–68 (2019). https://doi.org/10.1038/s41551-018-0335-6
- F. Bu, W. Zhou, Y. Xu, Y. Du, C. Guan et al., Recent developments of advanced micro-supercapacitors: design, fabrication and applications. NPJ Flex. Electron. 4, 31 (2020). https://doi.org/10.1038/s41528-020-00093-6
- C. Gao, J. Huang, Y. Xiao, G. Zhang, C. Dai et al., A seamlessly integrated device of micro-supercapacitor and wireless charging with ultrahigh energy density and capacitance. Nat. Commun. 12(1), 2647 (2021). https://doi.org/10.1038/s41467-021-22912-8
- H.C. Ates, P.Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narváez, F. Güder et al., End-to-end design of wearable sensors. Nat. Rev. Mater. 7(11), 887–907 (2022). https://doi.org/10.1038/s41578-022-00460-x
- H. Liu, C. Du, L. Liao, H. Zhang, H. Zhou et al., Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity. Nat. Commun. 13, 3420 (2022). https://doi.org/10.1038/s41467-022-31051-7
- J. Dong, J. Hou, Y. Peng, Y. Zhang, H. Liu et al., Breathable and stretchable epidermal electronics for health management: recent advances and challenges. Adv. Mater. 36(49), 2409071 (2024). https://doi.org/10.1002/adma.202409071
- Y. Peng, J. Dong, J. Long, Y. Zhang, X. Tang et al., Thermally conductive and UV-EMI shielding electronic textiles for unrestricted and multifaceted health monitoring. Nano-Micro Lett. 16(1), 199 (2024). https://doi.org/10.1007/s40820-024-01429-x
- W. He, L. Xu, G. Yu, K. Wang, D. Bao et al., Linear enhanced 3D nanofluid force-electric conversion device. Adv. Mater. 37(8), e2417498 (2025). https://doi.org/10.1002/adma.202417498
- K. Niu, J. Shi, L. Zhang, Y. Yue, M. Wang et al., A self-healing aqueous ammonium-ion micro batteries based on PVA-NH4Cl hydrogel electrolyte and MXene-integrated perylene anode. Nano Res. Energy 3(4), e9120127 (2024). https://doi.org/10.26599/nre.2024.9120127
- E. Kim, S. Kim, H.M. Jin, G. Kim, H.-H. Ha et al., Unlocking novel functionality: pseudocapacitive sensing in MXene-based flexible supercapacitors. Nano-Micro Lett. 17(1), 86 (2024). https://doi.org/10.1007/s40820-024-01567-2
- Y. Sun, W. He, C. Jiang, J. Li, J. Liu et al., Wearable biodevices based on two-dimensional materials: from flexible sensors to smart integrated systems. Nano-Micro Lett. 17(1), 109 (2025). https://doi.org/10.1007/s40820-024-01597-w
- Y. Xiao, H. Li, T. Gu, X. Jia, S. Sun et al., Ti3C2Tx composite aerogels enable pressure sensors for dialect speech recognition assisted by deep learning. Nano-Micro Lett. 17(1), 101 (2024). https://doi.org/10.1007/s40820-024-01605-z
- T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15(1), 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
- Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 14(1), 56 (2022). https://doi.org/10.1007/s40820-022-00796-7
- M. Wang, Y. Cheng, H. Zhang, F. Cheng, Y. Wang et al., Nature-inspired interconnected macro/meso/micro-porous MXene electrode. Adv. Funct. Mater. 33(12), 2211199 (2023). https://doi.org/10.1002/adfm.202211199
- Y. Cheng, Y. Xie, Y. Ma, M. Wang, Y. Zhang et al., Optimization of ion/electron channels enabled by multiscale MXene aerogel for integrated self-healable flexible energy storage and electronic skin system. Nano Energy 107, 108131 (2023). https://doi.org/10.1016/j.nanoen.2022.108131
- Y. Zhang, Y. Cheng, Q. Zhang, W. He, Y. Wang et al., Hyperstable low-tortuosity fast ion nanochannels for MXene electrodes. Energy Storage Mater. 73, 103829 (2024). https://doi.org/10.1016/j.ensm.2024.103829
- Y. Cheng, Y. Xie, S. Yan, Z. Liu, Y. Ma et al., Maximizing the ion accessibility and high mechanical strength in nanoscale ion channel MXene electrodes for high-capacity zinc-ion energy storage. Sci. Bull. 67(21), 2216–2224 (2022). https://doi.org/10.1016/j.scib.2022.10.003
- S. Zheng, Q. Tu, J.J. Urban, S. Li, B. Mi, Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11(6), 6440–6450 (2017). https://doi.org/10.1021/acsnano.7b02999
- Z. Wu, Y. Deng, J. Yu, J. Han, T. Shang et al., Hydroiodic-acid-initiated dense yet porous Ti3C2Tx MXene monoliths toward superhigh areal energy storage. Adv. Mater. 35(29), 2300580 (2023). https://doi.org/10.1002/adma.202300580
- W. Zhang, Y. Lu, L. Wan, P. Zhou, Y. Xia et al., Engineering a passivating electric double layer for high performance lithium metal batteries. Nat. Commun. 13(1), 2029 (2022). https://doi.org/10.1038/s41467-022-29761-z
- Y. Luo, Q. Zhang, W. Hong, Z. Xiao, H. Bai, A high-performance electrochemical supercapacitor based on a polyaniline/reduced graphene oxide electrode and a copper(ii) ion active electrolyte. Phys. Chem. Chem. Phys. 20(1), 131–136 (2018). https://doi.org/10.1039/C7CP07156F
- H.A. Andreas, K. Lussier, A.M. Oickle, Effect of Fe-contamination on rate of self-discharge in carbon-based aqueous electrochemical capacitors. J. Power. Sources 187(1), 275–283 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.096
- Q. Zhang, C. Cai, J. Qin, B. Wei, Tunable self-discharge process of carbon nanotube based supercapacitors. Nano Energy 4, 14–22 (2014). https://doi.org/10.1016/j.nanoen.2013.12.005
- M. Xia, J. Nie, Z. Zhang, X. Lu, Z.L. Wang, Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals. Nano Energy 47, 43–50 (2018). https://doi.org/10.1016/j.nanoen.2018.02.022
- J. Wang, B. Ding, X. Hao, Y. Xu, Y. Wang et al., A modified molten-salt method to prepare graphene electrode with high capacitance and low self-discharge rate. Carbon 102, 255–261 (2016). https://doi.org/10.1016/j.carbon.2016.02.047
- F.O. Ochai-Ejeh, M.J. Madito, D.Y. Momodu, A.A. Khaleed, O. Olaniyan et al., High performance hybrid supercapacitor device based on cobalt manganese layered double hydroxide and activated carbon derived from cork (Quercus suber). Electrochim. Acta 252, 41–54 (2017). https://doi.org/10.1016/j.electacta.2017.08.163
- Y. Yue, Z. Yang, N. Liu, W. Liu, H. Zhang et al., A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil. ACS Nano 10(12), 11249–11257 (2016). https://doi.org/10.1021/acsnano.6b06326
- Q. Han, X. Chi, S. Zhang, Y. Liu, B. Zhou et al., Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries. J. Mater. Chem. A 6(45), 23046–23054 (2018). https://doi.org/10.1039/c8ta08314b
- J. Liu, B. Zhang, P. Zhang, K. Zhao, Z. Lu et al., Protein crystallization-mediated self-strengthening of high-performance printable conducting organohydrogels. ACS Nano 16(11), 17998–18008 (2022). https://doi.org/10.1021/acsnano.2c07823
- C. Wang, Z. Chen, C.L.J. Chan, Z. Wan, W. Ye et al., Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays. Nat. Electron. 7(2), 157–167 (2024). https://doi.org/10.1038/s41928-023-01107-7
- A. Tashakori, Z. Jiang, A. Servati, S. Soltanian, H. Narayana et al., Capturing complex hand movements and object interactions using machine learning-powered stretchable smart textile gloves. Nat. Mach. Intell. 6(1), 106–118 (2024). https://doi.org/10.1038/s42256-023-00780-9
References
S. Zheng, X. Shi, P. Das, Z.-S. Wu, X. Bao, The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries. Adv. Mater. 31(50), 1900583 (2019). https://doi.org/10.1002/adma.201900583
G. Li, Z. Ma, C. You, G. Huang, E. Song et al., Silicon nanomembrane phototransistor flipped with multifunctional sensors toward smart digital dust. Sci. Adv. 6(18), eaaz6511 (2020). https://doi.org/10.1126/sciadv.aaz6511
C. Ye, M. Wang, J. Min, R.Y. Tay, H. Lukas et al., A wearable aptamer nanobiosensor for non-invasive female hormone monitoring. Nat. Nanotechnol. 19(3), 330–337 (2024). https://doi.org/10.1038/s41565-023-01513-0
P. Wang, G. Sun, S. Hua, W. Yu, C. Meng et al., Multifunctional all-nanofiber cloth integrating personal health monitoring and thermal regulation capabilities. InfoMat 7(1), e12629 (2025). https://doi.org/10.1002/inf2.12629
Y. Li, Z. Tian, X.-Z. Gao, H.-Y. Zhao, X. Li et al., All-weather self-powered intelligent traffic monitoring system based on a conjunction of self-healable piezoresistive sensors and triboelectric nanogenerators. Adv. Funct. Mater. 33(52), 2308845 (2023). https://doi.org/10.1002/adfm.202308845
J.-Y. Yoo, S. Oh, W. Shalish, W.-Y. Maeng, E. Cerier et al., Wireless broadband acousto-mechanical sensing system for continuous physiological monitoring. Nat. Med. 29(12), 3137–3148 (2023). https://doi.org/10.1038/s41591-023-02637-5
H. Cho, I. Lee, J. Jang, J.-H. Kim, H. Lee et al., Real-time finger motion recognition using skin-conformable electronics. Nat. Electron. 6(8), 619–629 (2023). https://doi.org/10.1038/s41928-023-01012-z
P. Wang, G. Wang, G. Sun, C. Bao, Y. Li et al., A flexible-integrated multimodal hydrogel-based sensing patch. Nano-Micro Lett. 17(1), 156 (2025). https://doi.org/10.1007/s40820-025-01656-w
P. Wang, X. Li, G. Sun, G. Wang, Q. Han et al., Natural human skin-inspired wearable and breathable nanofiber-based sensors with excellent thermal management functionality. Adv. Fiber Mater. 6(6), 1955–1968 (2024). https://doi.org/10.1007/s42765-024-00464-y
J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15(1), 181 (2023). https://doi.org/10.1007/s40820-023-01156-9
H. Huang, X. Chu, Y. Xie, B. Zhang, Z. Wang et al., Ti3C2Tx MXene-based micro-supercapacitors with ultrahigh volumetric energy density for all-in-one Si-electronics. ACS Nano 16(3), 3776–3784 (2022). https://doi.org/10.1021/acsnano.1c08172
Y. Zhang, L. Wang, L. Zhao, K. Wang, Y. Zheng et al., Flexible self-powered integrated sensing system with 3D periodic ordered black Phosphorus@MXene thin-films. Adv. Mater. 33(22), e2007890 (2021). https://doi.org/10.1002/adma.202007890
J. Ye, H. Tan, S. Wu, K. Ni, F. Pan et al., Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output. Adv. Mater. 30(27), e1801384 (2018). https://doi.org/10.1002/adma.201801384
D. Lu, Y. Chen, Z. Lu, L. Ma, Q. Tao et al., Monolithic three-dimensional tier-by-tier integration via van der Waals lamination. Nature 630(8016), 340–345 (2024). https://doi.org/10.1038/s41586-024-07406-z
J.-H. Kang, H. Shin, K.S. Kim, M.-K. Song, D. Lee et al., Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22(12), 1470–1477 (2023). https://doi.org/10.1038/s41563-023-01704-z
S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 33(47), 2005902 (2021). https://doi.org/10.1002/adma.202005902
G. Sun, Z. Sun, P. Wang, Z. Zhang, C. Meng et al., Breathable, hydrophobic and antibacterial bioinspired fabric pressure sensors for comfortable skin-mountable health monitoring. Chem. Eng. J. 506, 159808 (2025). https://doi.org/10.1016/j.cej.2025.159808
J. Dong, Y. Peng, J. Long, Y. Zhang, Z. Wang et al., An all-stretchable, ultraviolet protective, and electromagnetic-interference-free e-textile. Adv. Funct. Mater. 33(45), 2308426 (2023). https://doi.org/10.1002/adfm.202308426
J. Dong, D. Wang, Y. Peng, C. Zhang, F. Lai et al., Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy 97, 107160 (2022). https://doi.org/10.1016/j.nanoen.2022.107160
Y. Liu, J. Liu, S. Chen, T. Lei, Y. Kim et al., Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3(1), 58–68 (2019). https://doi.org/10.1038/s41551-018-0335-6
F. Bu, W. Zhou, Y. Xu, Y. Du, C. Guan et al., Recent developments of advanced micro-supercapacitors: design, fabrication and applications. NPJ Flex. Electron. 4, 31 (2020). https://doi.org/10.1038/s41528-020-00093-6
C. Gao, J. Huang, Y. Xiao, G. Zhang, C. Dai et al., A seamlessly integrated device of micro-supercapacitor and wireless charging with ultrahigh energy density and capacitance. Nat. Commun. 12(1), 2647 (2021). https://doi.org/10.1038/s41467-021-22912-8
H.C. Ates, P.Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narváez, F. Güder et al., End-to-end design of wearable sensors. Nat. Rev. Mater. 7(11), 887–907 (2022). https://doi.org/10.1038/s41578-022-00460-x
H. Liu, C. Du, L. Liao, H. Zhang, H. Zhou et al., Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity. Nat. Commun. 13, 3420 (2022). https://doi.org/10.1038/s41467-022-31051-7
J. Dong, J. Hou, Y. Peng, Y. Zhang, H. Liu et al., Breathable and stretchable epidermal electronics for health management: recent advances and challenges. Adv. Mater. 36(49), 2409071 (2024). https://doi.org/10.1002/adma.202409071
Y. Peng, J. Dong, J. Long, Y. Zhang, X. Tang et al., Thermally conductive and UV-EMI shielding electronic textiles for unrestricted and multifaceted health monitoring. Nano-Micro Lett. 16(1), 199 (2024). https://doi.org/10.1007/s40820-024-01429-x
W. He, L. Xu, G. Yu, K. Wang, D. Bao et al., Linear enhanced 3D nanofluid force-electric conversion device. Adv. Mater. 37(8), e2417498 (2025). https://doi.org/10.1002/adma.202417498
K. Niu, J. Shi, L. Zhang, Y. Yue, M. Wang et al., A self-healing aqueous ammonium-ion micro batteries based on PVA-NH4Cl hydrogel electrolyte and MXene-integrated perylene anode. Nano Res. Energy 3(4), e9120127 (2024). https://doi.org/10.26599/nre.2024.9120127
E. Kim, S. Kim, H.M. Jin, G. Kim, H.-H. Ha et al., Unlocking novel functionality: pseudocapacitive sensing in MXene-based flexible supercapacitors. Nano-Micro Lett. 17(1), 86 (2024). https://doi.org/10.1007/s40820-024-01567-2
Y. Sun, W. He, C. Jiang, J. Li, J. Liu et al., Wearable biodevices based on two-dimensional materials: from flexible sensors to smart integrated systems. Nano-Micro Lett. 17(1), 109 (2025). https://doi.org/10.1007/s40820-024-01597-w
Y. Xiao, H. Li, T. Gu, X. Jia, S. Sun et al., Ti3C2Tx composite aerogels enable pressure sensors for dialect speech recognition assisted by deep learning. Nano-Micro Lett. 17(1), 101 (2024). https://doi.org/10.1007/s40820-024-01605-z
T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15(1), 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 14(1), 56 (2022). https://doi.org/10.1007/s40820-022-00796-7
M. Wang, Y. Cheng, H. Zhang, F. Cheng, Y. Wang et al., Nature-inspired interconnected macro/meso/micro-porous MXene electrode. Adv. Funct. Mater. 33(12), 2211199 (2023). https://doi.org/10.1002/adfm.202211199
Y. Cheng, Y. Xie, Y. Ma, M. Wang, Y. Zhang et al., Optimization of ion/electron channels enabled by multiscale MXene aerogel for integrated self-healable flexible energy storage and electronic skin system. Nano Energy 107, 108131 (2023). https://doi.org/10.1016/j.nanoen.2022.108131
Y. Zhang, Y. Cheng, Q. Zhang, W. He, Y. Wang et al., Hyperstable low-tortuosity fast ion nanochannels for MXene electrodes. Energy Storage Mater. 73, 103829 (2024). https://doi.org/10.1016/j.ensm.2024.103829
Y. Cheng, Y. Xie, S. Yan, Z. Liu, Y. Ma et al., Maximizing the ion accessibility and high mechanical strength in nanoscale ion channel MXene electrodes for high-capacity zinc-ion energy storage. Sci. Bull. 67(21), 2216–2224 (2022). https://doi.org/10.1016/j.scib.2022.10.003
S. Zheng, Q. Tu, J.J. Urban, S. Li, B. Mi, Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11(6), 6440–6450 (2017). https://doi.org/10.1021/acsnano.7b02999
Z. Wu, Y. Deng, J. Yu, J. Han, T. Shang et al., Hydroiodic-acid-initiated dense yet porous Ti3C2Tx MXene monoliths toward superhigh areal energy storage. Adv. Mater. 35(29), 2300580 (2023). https://doi.org/10.1002/adma.202300580
W. Zhang, Y. Lu, L. Wan, P. Zhou, Y. Xia et al., Engineering a passivating electric double layer for high performance lithium metal batteries. Nat. Commun. 13(1), 2029 (2022). https://doi.org/10.1038/s41467-022-29761-z
Y. Luo, Q. Zhang, W. Hong, Z. Xiao, H. Bai, A high-performance electrochemical supercapacitor based on a polyaniline/reduced graphene oxide electrode and a copper(ii) ion active electrolyte. Phys. Chem. Chem. Phys. 20(1), 131–136 (2018). https://doi.org/10.1039/C7CP07156F
H.A. Andreas, K. Lussier, A.M. Oickle, Effect of Fe-contamination on rate of self-discharge in carbon-based aqueous electrochemical capacitors. J. Power. Sources 187(1), 275–283 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.096
Q. Zhang, C. Cai, J. Qin, B. Wei, Tunable self-discharge process of carbon nanotube based supercapacitors. Nano Energy 4, 14–22 (2014). https://doi.org/10.1016/j.nanoen.2013.12.005
M. Xia, J. Nie, Z. Zhang, X. Lu, Z.L. Wang, Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals. Nano Energy 47, 43–50 (2018). https://doi.org/10.1016/j.nanoen.2018.02.022
J. Wang, B. Ding, X. Hao, Y. Xu, Y. Wang et al., A modified molten-salt method to prepare graphene electrode with high capacitance and low self-discharge rate. Carbon 102, 255–261 (2016). https://doi.org/10.1016/j.carbon.2016.02.047
F.O. Ochai-Ejeh, M.J. Madito, D.Y. Momodu, A.A. Khaleed, O. Olaniyan et al., High performance hybrid supercapacitor device based on cobalt manganese layered double hydroxide and activated carbon derived from cork (Quercus suber). Electrochim. Acta 252, 41–54 (2017). https://doi.org/10.1016/j.electacta.2017.08.163
Y. Yue, Z. Yang, N. Liu, W. Liu, H. Zhang et al., A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil. ACS Nano 10(12), 11249–11257 (2016). https://doi.org/10.1021/acsnano.6b06326
Q. Han, X. Chi, S. Zhang, Y. Liu, B. Zhou et al., Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries. J. Mater. Chem. A 6(45), 23046–23054 (2018). https://doi.org/10.1039/c8ta08314b
J. Liu, B. Zhang, P. Zhang, K. Zhao, Z. Lu et al., Protein crystallization-mediated self-strengthening of high-performance printable conducting organohydrogels. ACS Nano 16(11), 17998–18008 (2022). https://doi.org/10.1021/acsnano.2c07823
C. Wang, Z. Chen, C.L.J. Chan, Z. Wan, W. Ye et al., Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays. Nat. Electron. 7(2), 157–167 (2024). https://doi.org/10.1038/s41928-023-01107-7
A. Tashakori, Z. Jiang, A. Servati, S. Soltanian, H. Narayana et al., Capturing complex hand movements and object interactions using machine learning-powered stretchable smart textile gloves. Nat. Mach. Intell. 6(1), 106–118 (2024). https://doi.org/10.1038/s42256-023-00780-9